JPH0141153B2 - - Google Patents

Info

Publication number
JPH0141153B2
JPH0141153B2 JP56174330A JP17433081A JPH0141153B2 JP H0141153 B2 JPH0141153 B2 JP H0141153B2 JP 56174330 A JP56174330 A JP 56174330A JP 17433081 A JP17433081 A JP 17433081A JP H0141153 B2 JPH0141153 B2 JP H0141153B2
Authority
JP
Japan
Prior art keywords
group
chloromethyl
reaction
formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56174330A
Other languages
Japanese (ja)
Other versions
JPS5874689A (en
Inventor
Shigeru Torii
Hideo Tanaka
Junzo Nogami
Michio Sasaoka
Norio Saito
Toshifumi Shiroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP56174330A priority Critical patent/JPS5874689A/en
Priority to GB8209646A priority patent/GB2099817B/en
Priority to FR8206164A priority patent/FR2509300B1/en
Priority to DE19823213264 priority patent/DE3213264A1/en
Publication of JPS5874689A publication Critical patent/JPS5874689A/en
Priority to US06/865,651 priority patent/US4689411A/en
Priority to US07/071,664 priority patent/US4784734A/en
Priority to US07/166,918 priority patent/US4853468A/en
Publication of JPH0141153B2 publication Critical patent/JPH0141153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Cephalosporin Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は3―クロロメチル―3―セフエム誘導
体の新規な製造法に関する。更に詳しくは本発明
は、一般式 〔式中
The present invention relates to a novel method for producing 3-chloromethyl-3-cephem derivatives. More specifically, the present invention relates to the general formula [During the ceremony

【式】はカルボン酸残基を、R2はカ ルボキシル基の保護基を、R3は置換もしくは非
置換の芳香族炭化水素基をそれぞれ示す。〕で表
わされる3―クロロメチル―3―セフエム誘導体
の製造法に関する。 上記一般式(2)で表わされる3―クロロメチル―
3―セフエム誘導体はセフアロスポリン系抗生物
質を合成するための中間体として重要な化合物で
ある。例えば本発明の化合物は下式に示す方法で
セフアロスポリン系抗生物質に誘導し得る。 従来、3―クロロメチル―3―セフエムの製造
法としては。例えば3―アセトキシメチルセフア
ロスポリン誘導体をハロゲン化して製造されてい
る〔テトラヘドロンレター3991(1974)、同2401
(1976)等参照〕。またコツペルらは3―エキソメ
チレンセフアロスポリンから直接3―クロロメチ
ル―3―セフエムに変換することに成功している
〔J.Am.Chem.soc.,99,2822(1977)参照〕。しか
しながら、これらの方法ではいずれも高価な出発
原料を必要とし、しかも低収率、低純度で3―ク
ロロメチル―3―セフエムが得られるに過ぎな
い。 本発明の目的は、一般式(2)で表わされる3―ク
ロロメチル―3―セフエム誘導体を入手容易な原
料化合物から簡便な操作で高純度、高収率にて製
造し得る方法を提供することにある。 即ち本発明は、一般式 〔式中
[Formula] represents a carboxylic acid residue, R 2 represents a protecting group for a carboxyl group, and R 3 represents a substituted or unsubstituted aromatic hydrocarbon group. ] This invention relates to a method for producing a 3-chloromethyl-3-cephem derivative represented by the following. 3-chloromethyl represented by the above general formula (2)
3-Cefem derivatives are important compounds as intermediates for synthesizing cephalosporin antibiotics. For example, the compound of the present invention can be converted into a cephalosporin antibiotic by the method shown in the following formula. Conventionally, the method for producing 3-chloromethyl-3-cephem is as follows. For example, it is produced by halogenating 3-acetoxymethylcephalosporin derivatives [Tetrahedron Letters 3991 (1974), 2401
(1976) etc.]. Kotzpel et al. also succeeded in converting 3-exomethylenecephalosporin directly to 3-chloromethyl-3-cepheme [see J.Am.Chem.soc., 99 , 2822 (1977)]. However, all of these methods require expensive starting materials, and 3-chloromethyl-3-cephem can only be obtained in low yield and purity. An object of the present invention is to provide a method for producing a 3-chloromethyl-3-cephem derivative represented by general formula (2) with high purity and high yield from readily available raw material compounds through simple operations. It is in. That is, the present invention is based on the general formula [During the ceremony

【式】はカルボン酸残基を、R2はカ ルボキシル基の保護基を、R3は置換もしくは非
置換の芳香族炭化水素基をそれぞれ示す。〕 で表わされるアゼチジノン誘導体に有機溶媒中塩
基を作用させて一般式 〔式中R1及びR2は前記に同じ。〕 で表わされる3―クロロメチル―3―セフエム誘
導体を得ることを特徴とする3―クロロメチル―
3―セフエム誘導体の製造法に係る。 本発明において、R1の具体例としては例えば
ベンジル基、p―ヒドロキシベンジル基、p―ク
ロルベンジル基、p―メトキシベンジル基、p―
ニトロベンジル基等のアリール低級アルキル基、
2,2,2―トリクロロエチルオキシ基、2―ブ
ロモエチルオキシ基等のハロゲン置換低級アルキ
ルオキシ基、フエノキシメチル基、トリルオキシ
メチル基、キシリルオキシメチル基、ナフチルオ
キシメチル基、p―クロロフエノキシメチル基、
p―メトキシフエノキシメチル基、p―ニトロフ
エノキシメチル基、p―ヒドロキシフエノキシメ
チル基等のアリールオキシ低級アルキル基等が挙
げられる。R2の具体例としては例えばメチル基、
エチル基、2―クロロエチル基、2,2,2―ト
リクロロエチル基、n―プロピル基、イソプロピ
ル基、第3級ブチル基等のハロゲン原子を置換基
として有することのある低級アルキル基、ベンジ
ル基、ジフエニルメチル基、p―メトキシベンジ
ル基、p―ニトロベンジル基、2―フエニルエチ
ル基、2―(p―ニトロフエニル)エチル基、3
―フエニルプロピル基、3―(p―ニトロフエニ
ル)プロピル基等のアリール低級アルキル基等が
挙げられる。またR3の具体例としては例えばフ
エニル基、p―メチルフエニル基、p―メトキシ
フエニル基、p―ニトロフエニル基、p―クロロ
フエニル基等が挙げられる。 本発明において出発原料として用いられる一般
式(1)の化合物は新規化合物であり、例えば公知の
一般式 〔式中R1,R2及びR3は前記に同じ。〕で表わさ
れるアゼチジノン誘導体を塩酸及び/又は塩化物
の存在下に電解処理することにより容易に製造さ
れる。 上記一般式(3)で表わされるアゼチジノン誘導体
の電解処理は塩酸及び/又は塩化物の存在下に必
要な電気量を通電することにより行なわれる。塩
化物としては公知のものを広く使用でき、例えば
塩化リチウム、塩化ナトリウム、塩化カリウム等
のアルカリ金属の塩、塩化マグネシウム、塩化バ
リウム、塩化カルシウム等のアルカリ土類金属の
塩、塩化アンモニウム、塩化テトラメチルアンモ
ニウム、塩化テトラエチルアンモニウム、塩化ベ
ンジルトリメチルアンモニウム等のアンモニウム
塩乃至第4級アンモニウム塩等が挙げられる。斯
かる塩酸及び/又は塩化物の使用量としては特に
制限がなく広い範囲内で適宜選択することができ
るが、通常反応系内に一般式(3)の化合物に対して
0.5〜10倍モル量存在させるのがよい。塩化物を
使用する場合には反応系内に鉱酸又は有機酸を共
存させると効果的である。用いられる鉱酸として
は例えば硫酸、硫酸水素ナトリウム、硫酸水素カ
リウム、リン酸、ホウ酸等を挙げることができ、
また有機酸としては例えばギ酸、酢酸、プロピオ
ン酸、酪酸、シユウ酸、クエン酸等のカルボン
酸、パラトルエンスルホン酸、メタンスルホン酸
等のスルホン酸等を挙げることができる。斯かる
鉱酸又は有機酸を反応系内に一般式(3)の化合物に
対して0.5〜10倍モル量程度存在させるのがよい。
この電解処理における反応媒体としては通常水、
有機溶媒又は水と有機溶媒との混合溶媒が用いら
れる。有機溶媒としては、塩素化反応に不活性な
溶媒であれば広く使用でき、例えばギ酸メチル、
ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチ
ル、プロピオン酸エチル等のエステル類、ジクロ
ルメタン、クロロホルム、四塩化炭素、ジクロル
エタン、ジブロムエタン、クロルベンゼン等のハ
ロゲン化炭化水素類、ジエチルエーテル、ジブチ
ルエーテル、ジオキサン、テトラヒドロフラン等
のエーテル類、アセトニトリル、ブチロニトリル
等のニトリル類、ペンタン、ヘキサン、シクロヘ
キサン等の炭化水素類、二硫化炭素等を挙げるこ
とができる。電解反応は、定電位電解及び定電流
電解のいずれでも行うことができる。電流密度は
通常1〜500mA/cm2の範囲であり、好ましくは
5〜200mA/cm2である。反応に必要な電気量は、
基質濃度溶媒の種類、電解槽の型状等によつて一
定しないが、通常2〜50F/molでよい。電極と
しては白金、炭素、ステンレス、チタン、ニツケ
ル等通常使用される電極を使用することができ
る。反応温度としては原料及び生成物が分解、変
性しない温度以下であれば特に限定されないが、
−30℃〜60℃の範囲で行われ、好ましくは−20〜
30℃の範囲である。電解槽としては、無隔膜電解
槽、隔膜電解槽共に使用することができる。斯く
して一般式(1)で表わされる化合物が製造される。 本発明の反応において用いられる有機溶媒とし
ては例えばメタノール、エタノール、イソプロパ
ノール等のアルコール類、アセトニトリル、ブチ
ロニトリル等のニトリル類、アセトン、メチルエ
チルケトン等のケトン類、ジメチルホルムアミ
ド、ジエチルホルムアミド等のアミド類等が単独
もしくは混合溶媒として用いられるが、好ましく
はホルムアミド、ジエチルホルムアミド、ジメチ
ルアセトアミド等の極性溶媒が単独もしくは混合
溶媒として用いられる。塩基としては例えば、水
酸化カリウム、水酸化ナトリウム等の金属水酸化
物、酢酸カリウム、酢酸ナトリウム等のカルボン
酸金属塩、トリエチルアミン、1,8―ジアザビ
シクロ〔5,4,0〕7―ウンデセン、15―ジア
ザビシクロ〔4,3,0〕5―ノネンピリジン等
のアミン類、ヨウ化カリウム、ヨウ化ナトリウム
等のハロゲン化金属、アンモニア、アンモニア水
等が使用できるが、アンモニア又はアンモニア水
が好ましい。斯かる塩基の使用量としては特に限
定がなく広い範囲内で適宜選択できるが、通常一
般式(1)の化合物に対して0.1〜10倍モル量、好ま
しくは等モル〜1.5倍モル量用いるのがよい。反
応温度は通常−78℃〜40℃、好ましくは−50℃〜
5℃である。反応時間は、反応温度や原料化合物
の種類により一定しないが、5分〜10時間で反応
は完結し、通常反応時間は10分間〜1時間であ
る。 斯くして得られる本発明の化合物は通常行なわ
れている分離手段、例えば溶媒抽出、カラムクロ
マトグラフイー等の手段により反応混合物から容
易に単離精製される。 本発明によれば、目的とする一般式(2)の化合物
を簡便な操作で高純度、高収率にて製造し得る。 以下に参考例及び実施例を挙げる。 参考例 2―(3―フエノキシアセトアミド―4―フエ
ニルスルホニルチオ―2―アゼチジノン―1―イ
ル)―3―メチル―3―ブテン酸メチル30.5mg、
NaCl1.0g、水3ml、塩化メチレン5ml及び濃硫
酸0.07mlを容器に入れ撹拌し、二液層の溶液を調
製する。白金電極を用いて15分間電解を行う。電
気量は5F/molに相当する。反応終了後、反応混
合物を塩化メチレンで抽出し、飽和亜硫酸ナトリ
ウム水、飽和重曹水、飽和食塩水の順に洗浄す
る。塩化メチレン層を無水硫酸ナトリウム上で乾
燥後、減圧下に濃縮し、シリカゲルカラムにより
精製して3―クロロメチル―2―(―フエニルア
セトアミド―4―フエニルスルホニルチオ―2―
アゼチジノン―1―イル)―3―ブテン酸メチル
29.9mgを得る。 収率92.4% IR(cm-1)3060,2960,1780,1740,1655,
1600,1595,1520,1490,1440,1322,
1235,1135,1070 NMR(CDCl3δ)3.72(s,3H),4.10(s,2H)
4.40(s,2H),4.82(s,1H)5.12(s,
1H),5.26(s,1H)5.1〜5.35(m,1H)
5.94(d,J=6.6Hz)6.7〜8.0(m,11H) 実施例 1 3―クロロメチル―7―フエニルアセトアミド
―3―セフエム―4―カルボン酸ベンジルエス
テルの合成 3―クロロメチル―2―(3―フエニルアセト
アミド―4―フエニルスルホニルチオ―2―アゼ
チジノン―1―イル)―3―ブテン酸ベンジルエ
ステル101mgと乾燥DMF1mlを反応容器中で混合
し均一溶媒とする。反応容器をドライアイス―ア
セトン浴にひたして−25℃に冷却する。これに市
販の28%アンモニア水15.5μを加え、づついて
反応温度を−30℃〜−20℃の範囲に保ち、1時間
撹拌する。反応後5%塩酸5滴を加えたのち酢酸
エチルを約30ml加える。氷を浮べた食塩水中に反
応混合物を移し、有機層を分離する。得られた有
機層を飽和食塩水で2回洗い、得られた有機層を
無水硫酸ナトリウム上で乾燥した後、濃縮する。
得られた残渣をシリカゲルカラムによつて精製
し、3―クロロメチル―7―フエニルアセトアミ
ド―3―セフエム―4―カルボン酸ベンジルエス
テルが68mg(収率88%)が得られる。 以下に得られた化合物の分析値を示す。 IR(CHCl3):1790,1730,1682(cm-1) NMR(CDCl3):δppn=3.32および3.60(2H,
ABq,18Hz),3.53(2H,s),4.31及び
4.45(2H,ABq,12Hz),4.86,(1H,d,
5Hz),5.20(2H,s),5.77(1H,d.d,5
Hz,9.2Hz),6.43(1H,d,9.2Hz),7.27
(5H,s),7.33(5H,s) 実施例 2 3―クロロメチル―7―フエニルアセトアミド
―3―セフエム―4―カルボン酸ベンジルエス
テルの製造 3―クロロメチル―2―(3―フエニルアセト
アミド―4―フエニルスルホニルチオ―2―アゼ
チジノン―1―イル)―3―ブテン酸ベンジルエ
ステル34mgと乾燥DMF0.4mlを反応容器に加え均
一溶媒とする。次に反応容器をドライアイス―ア
セトン浴にひたして−35℃に冷却する。予めアン
モニアガスをふきこみ調製しておいたアンモニア
濃度11.4mg/mlのDMF0.125mlを反応容器に加え、
反応温度を−40〜−35℃に保ち1時間撹拌する。
反応後実施例―1と同様の処理を行ない、3―ク
ロロメチル―7―フエニルアセトアミド―3―セ
フエム―4―カルボン酸ベンジルエステルが18.8
mg(収率74%)得られる。 得られた化合物の分析値は実施例―1の値と一
致した。 実施例 3〜12 実施例1と同様の反応を行ない、アゼチジノン
誘導体(1)より3―クロロメチル―3―セフエム誘
導体(2)を得た。結果を表―1に示す。
[Formula] represents a carboxylic acid residue, R 2 represents a protecting group for a carboxyl group, and R 3 represents a substituted or unsubstituted aromatic hydrocarbon group. ] The azetidinone derivative represented by is treated with a base in an organic solvent to form the general formula [In the formula, R 1 and R 2 are the same as above. ] 3-chloromethyl- characterized by obtaining a 3-chloromethyl-3-cephem derivative represented by
3-Relates to a method for producing cefem derivatives. In the present invention, specific examples of R 1 include benzyl group, p-hydroxybenzyl group, p-chlorobenzyl group, p-methoxybenzyl group, p-
Aryl lower alkyl groups such as nitrobenzyl groups,
Halogen-substituted lower alkyloxy groups such as 2,2,2-trichloroethyloxy group and 2-bromoethyloxy group, phenoxymethyl group, tolyloxymethyl group, xylyloxymethyl group, naphthyloxymethyl group, p-chlorophenoxy methyl group,
Examples include aryloxy lower alkyl groups such as p-methoxyphenoxymethyl group, p-nitrophenoxymethyl group, and p-hydroxyphenoxymethyl group. Specific examples of R 2 include methyl group,
Lower alkyl groups that may have a halogen atom as a substituent, such as ethyl group, 2-chloroethyl group, 2,2,2-trichloroethyl group, n-propyl group, isopropyl group, tertiary butyl group, benzyl group, diphenylmethyl group, p-methoxybenzyl group, p-nitrobenzyl group, 2-phenylethyl group, 2-(p-nitrophenyl)ethyl group, 3
Examples include aryl lower alkyl groups such as -phenylpropyl group and 3-(p-nitrophenyl)propyl group. Further, specific examples of R 3 include phenyl group, p-methylphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-chlorophenyl group, and the like. The compound of general formula (1) used as a starting material in the present invention is a new compound, for example, a compound of the known general formula [In the formula, R 1 , R 2 and R 3 are the same as above. It is easily produced by electrolytically treating an azetidinone derivative represented by ] in the presence of hydrochloric acid and/or chloride. The electrolytic treatment of the azetidinone derivative represented by the above general formula (3) is carried out by applying a necessary amount of electricity in the presence of hydrochloric acid and/or chloride. A wide variety of known chlorides can be used, including salts of alkali metals such as lithium chloride, sodium chloride, and potassium chloride, salts of alkaline earth metals such as magnesium chloride, barium chloride, and calcium chloride, ammonium chloride, and tetrachloride. Examples include ammonium salts and quaternary ammonium salts such as methylammonium, tetraethylammonium chloride, and benzyltrimethylammonium chloride. The amount of hydrochloric acid and/or chloride to be used is not particularly limited and can be appropriately selected within a wide range.
It is preferable to have it present in a molar amount of 0.5 to 10 times. When using a chloride, it is effective to coexist a mineral acid or an organic acid in the reaction system. Examples of the mineral acids that can be used include sulfuric acid, sodium hydrogen sulfate, potassium hydrogen sulfate, phosphoric acid, and boric acid.
Examples of organic acids include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, and citric acid, and sulfonic acids such as paratoluenesulfonic acid and methanesulfonic acid. The mineral acid or organic acid is preferably present in the reaction system in an amount of about 0.5 to 10 times the molar amount of the compound of general formula (3).
The reaction medium in this electrolytic treatment is usually water,
An organic solvent or a mixed solvent of water and an organic solvent is used. A wide range of organic solvents can be used as long as they are inert to the chlorination reaction, such as methyl formate,
Esters such as ethyl formate, methyl acetate, ethyl acetate, butyl acetate, ethyl propionate, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, dibromoethane, chlorobenzene, diethyl ether, dibutyl ether, dioxane, Examples include ethers such as tetrahydrofuran, nitriles such as acetonitrile and butyronitrile, hydrocarbons such as pentane, hexane and cyclohexane, and carbon disulfide. The electrolytic reaction can be performed by either constant potential electrolysis or constant current electrolysis. The current density is usually in the range of 1 to 500 mA/cm 2 , preferably 5 to 200 mA/cm 2 . The amount of electricity required for the reaction is
The substrate concentration varies depending on the type of solvent, the shape of the electrolytic cell, etc., but is usually 2 to 50 F/mol. As the electrode, commonly used electrodes such as platinum, carbon, stainless steel, titanium, and nickel can be used. The reaction temperature is not particularly limited as long as it is below a temperature at which the raw materials and products do not decompose or denature;
It is carried out in the range of -30°C to 60°C, preferably -20°C to
It is in the range of 30℃. As the electrolytic cell, both an electrolytic cell without a diaphragm and an electrolytic cell with a diaphragm can be used. In this way, a compound represented by general formula (1) is produced. Examples of organic solvents used in the reaction of the present invention include alcohols such as methanol, ethanol, and isopropanol, nitriles such as acetonitrile and butyronitrile, ketones such as acetone and methyl ethyl ketone, and amides such as dimethylformamide and diethylformamide. Alternatively, polar solvents such as formamide, diethylformamide, and dimethylacetamide are preferably used alone or as a mixed solvent. Examples of the base include metal hydroxides such as potassium hydroxide and sodium hydroxide, carboxylic acid metal salts such as potassium acetate and sodium acetate, triethylamine, 1,8-diazabicyclo[5,4,0]7-undecene, 15 Amines such as -diazabicyclo[4,3,0]5-nonenepyridine, metal halides such as potassium iodide and sodium iodide, ammonia, ammonia water, etc. can be used, but ammonia or ammonia water is preferred. The amount of such a base to be used is not particularly limited and can be appropriately selected within a wide range, but it is usually used in an amount of 0.1 to 10 times, preferably an equimole to 1.5 times, the amount of the compound of general formula (1). Good. The reaction temperature is usually -78°C to 40°C, preferably -50°C to
The temperature is 5°C. Although the reaction time varies depending on the reaction temperature and the type of raw material compound, the reaction is completed in 5 minutes to 10 hours, and the reaction time is usually 10 minutes to 1 hour. The compound of the present invention thus obtained can be easily isolated and purified from the reaction mixture by conventional separation means such as solvent extraction and column chromatography. According to the present invention, the target compound of general formula (2) can be produced with high purity and high yield through simple operations. Reference examples and examples are listed below. Reference example 30.5 mg of methyl 2-(3-phenoxyacetamido-4-phenylsulfonylthio-2-azetidinon-1-yl)-3-methyl-3-butenoate,
1.0 g of NaCl, 3 ml of water, 5 ml of methylene chloride, and 0.07 ml of concentrated sulfuric acid are placed in a container and stirred to prepare a two-layer solution. Perform electrolysis for 15 minutes using a platinum electrode. The amount of electricity corresponds to 5F/mol. After the reaction is completed, the reaction mixture is extracted with methylene chloride and washed with saturated sodium sulfite solution, saturated sodium bicarbonate solution, and saturated brine in this order. The methylene chloride layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified using a silica gel column to give 3-chloromethyl-2-(-phenylacetamide-4-phenylsulfonylthio-2-).
Methyl azetidinone-1-yl)-3-butenoate
You get 29.9mg. Yield 92.4% IR (cm -1 ) 3060, 2960, 1780, 1740, 1655,
1600, 1595, 1520, 1490, 1440, 1322,
1235, 1135, 1070 NMR (CDCl 3 δ) 3.72 (s, 3H), 4.10 (s, 2H)
4.40 (s, 2H), 4.82 (s, 1H) 5.12 (s,
1H), 5.26 (s, 1H) 5.1-5.35 (m, 1H)
5.94 (d, J = 6.6Hz) 6.7-8.0 (m, 11H) Example 1 Synthesis of 3-chloromethyl-7-phenylacetamido-3-cephem-4-carboxylic acid benzyl ester 101 mg of 3-chloromethyl-2-(3-phenylacetamido-4-phenylsulfonylthio-2-azetidinon-1-yl)-3-butenoic acid benzyl ester and 1 ml of dry DMF were mixed in a reaction vessel to form a homogeneous solvent. do. The reaction vessel is cooled to -25°C by immersing it in a dry ice-acetone bath. To this was added 15.5μ of commercially available 28% ammonia water, and the mixture was stirred for 1 hour while maintaining the reaction temperature in the range of -30°C to -20°C. After the reaction, add 5 drops of 5% hydrochloric acid, and then add about 30 ml of ethyl acetate. Transfer the reaction mixture to brine over ice and separate the organic layer. The obtained organic layer is washed twice with saturated brine, dried over anhydrous sodium sulfate, and then concentrated.
The resulting residue is purified using a silica gel column to obtain 68 mg (yield: 88%) of 3-chloromethyl-7-phenylacetamido-3-cephem-4-carboxylic acid benzyl ester. The analytical values of the obtained compound are shown below. IR (CHCl 3 ): 1790, 1730, 1682 (cm -1 ) NMR (CDCl 3 ): δ ppn = 3.32 and 3.60 (2H,
ABq, 18Hz), 3.53 (2H, s), 4.31 and
4.45 (2H, ABq, 12Hz), 4.86, (1H, d,
5Hz), 5.20 (2H, s), 5.77 (1H, dd, 5
Hz, 9.2Hz), 6.43 (1H, d, 9.2Hz), 7.27
(5H, s), 7.33 (5H, s) Example 2 Production of 3-chloromethyl-7-phenylacetamide-3-cephem-4-carboxylic acid benzyl ester 3-chloromethyl-2-(3-phenyl Add 34 mg of acetamido-4-phenylsulfonylthio-2-azetidinon-1-yl)-3-butenoic acid benzyl ester and 0.4 ml of dry DMF to a reaction vessel to make a homogeneous solvent. The reaction vessel is then immersed in a dry ice-acetone bath and cooled to -35°C. Add 0.125 ml of DMF with an ammonia concentration of 11.4 mg/ml, which was prepared in advance by blowing ammonia gas, into the reaction container.
The reaction temperature was maintained at -40 to -35°C and stirred for 1 hour.
After the reaction, the same treatment as in Example-1 was carried out, and 18.8
mg (yield 74%). The analytical values of the obtained compound matched those of Example-1. Examples 3 to 12 The same reaction as in Example 1 was carried out to obtain 3-chloromethyl-3-cephem derivative (2) from azetidinone derivative (1). The results are shown in Table-1.

【表】 得られた化合物の分析値を表―2に示す。【table】 The analytical values of the obtained compound are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 〔式中【式】はカルボン酸残基を、R2はカ ルボキシル基の保護基を、R3は置換もしくは非
置換の芳香族炭化水素基をそれぞれ示す。〕 で表わされるアゼチジノン誘導体に有機溶媒中塩
基を作用させて一般式 〔式中R1及びR2は前記に同じ。〕 で表わされる3―クロロメチル―3―セフエム誘
導体を得ることを特徴とする3―クロロメチル―
3―セフエム誘導体の製造法。 2 有機溶媒がジメチルホルムアミド、ジエチル
ホルムアミド及びジメチルアセトアミドなる群か
ら選ばれた少くとも1種である特許請求の範囲第
1項記載の方法。 3 塩基がアンモニア又はアンモニア水である特
許請求の範囲第1項又は第2項記載の方法。 4 反応を−78〜40℃にて行う特許請求の範囲第
1項乃至第3項のいずれかに記載の方法。
[Claims] 1. General formula [In the formula, [Formula] represents a carboxylic acid residue, R 2 represents a protecting group for a carboxyl group, and R 3 represents a substituted or unsubstituted aromatic hydrocarbon group. ] The azetidinone derivative represented by is treated with a base in an organic solvent to form the general formula [In the formula, R 1 and R 2 are the same as above. ] 3-chloromethyl- characterized by obtaining a 3-chloromethyl-3-cephem derivative represented by
3-Method for producing cefem derivatives. 2. The method according to claim 1, wherein the organic solvent is at least one selected from the group consisting of dimethylformamide, diethylformamide, and dimethylacetamide. 3. The method according to claim 1 or 2, wherein the base is ammonia or aqueous ammonia. 4. The method according to any one of claims 1 to 3, wherein the reaction is carried out at -78 to 40°C.
JP56174330A 1981-04-10 1981-10-29 Preparation of 3-chloromethyl-3-cephem derivative Granted JPS5874689A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56174330A JPS5874689A (en) 1981-10-29 1981-10-29 Preparation of 3-chloromethyl-3-cephem derivative
GB8209646A GB2099817B (en) 1981-04-10 1982-04-01 Azetidinone derivatives and process for the preparation of the same
FR8206164A FR2509300B1 (en) 1981-04-10 1982-04-08 AZETIDINONE DERIVATIVES AND PROCESS FOR THEIR PREPARATION
DE19823213264 DE3213264A1 (en) 1981-04-10 1982-04-08 NEW AZETIDINONE COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF
US06/865,651 US4689411A (en) 1981-04-10 1986-05-15 4-thio azetidinone intermediates and process for the preparation of the same
US07/071,664 US4784734A (en) 1981-04-10 1987-07-09 Azetidinone derivatives and process for the preparation of the same
US07/166,918 US4853468A (en) 1981-04-10 1988-03-11 Process for the preparation of cephem derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174330A JPS5874689A (en) 1981-10-29 1981-10-29 Preparation of 3-chloromethyl-3-cephem derivative

Publications (2)

Publication Number Publication Date
JPS5874689A JPS5874689A (en) 1983-05-06
JPH0141153B2 true JPH0141153B2 (en) 1989-09-04

Family

ID=15976748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174330A Granted JPS5874689A (en) 1981-04-10 1981-10-29 Preparation of 3-chloromethyl-3-cephem derivative

Country Status (1)

Country Link
JP (1) JPS5874689A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963989A4 (en) * 1997-08-25 2000-10-25 Otsuka Chemical Co Ltd Cephalosporin crystals and process for producing the same
AU2003269416A1 (en) * 2002-11-01 2004-05-25 Orchid Chemicals And Pharmaceuticals Ltd An improved process for the preparation of chloro methyl cephem derivatives
WO2005026176A1 (en) * 2003-09-09 2005-03-24 Nippon Chemical Industrial Co.,Ltd. Process for producing 3-chloromethyl-3-cephem derivative
US7157574B2 (en) 2004-03-25 2007-01-02 Nippon Chemical Industrial Co., Ltd. Process for preparing crystalline 3-chloromethyl-3-cephem derivatives

Also Published As

Publication number Publication date
JPS5874689A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
DE2216146A1 (en) Process for the preparation of cephalosporin derivatives
EP0118567B1 (en) Process for the preparationof 2-substituted cephem derivatives
JPH0141153B2 (en)
JP3751880B2 (en) Method for producing high-purity cefpodoxime proxetil
US4603014A (en) Thiazolinoazetidinone derivatives and process for the preparation of the same
KR920005830B1 (en) Process for preparing amino-hydroxy cepham carboxylates
US4499265A (en) Process for preparing 3-exo-methylenecepham derivatives
JPS6135199B2 (en)
KR20040043184A (en) Process for the preparation of highly pure cefuroxime axetil
JP2595605B2 (en) Method for producing 2-substituted oxyimino-3-oxobutyric acid
US3714146A (en) Novel syntheses of cephalexin and intermediates therefor
US4401528A (en) Process for preparing 2-oxycephalosporin derivatives
JPH0247473B2 (en)
US20040002600A1 (en) Process for the conversion of penam ring system to cepham ring system
US4532077A (en) Thiazolineazetidinone-type compounds
EP0122002B1 (en) Process for preparing azetidinone derivatives
KR100242097B1 (en) Process for the preparation of 3-alkoxymethylcephems
JP3537050B2 (en) Method for producing 3-chloromethyl-3-cephem derivative crystal
JPS6228787B2 (en)
JP2612443B2 (en) Method for producing 2β-substituted methylpenicillin derivative
JP2959809B2 (en) Method for producing 7-amino-3-chloromethyl- △ (3) -cephem-4-carboxylic acid esters
JPS6236036B2 (en)
JPH1180164A (en) Production of 3-dialkoxymethyl cephem compound
JPS6043340B2 (en) Chlorinated azetidinone derivatives and their production method
JPS632435B2 (en)