JPS6235691A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS6235691A
JPS6235691A JP60176200A JP17620085A JPS6235691A JP S6235691 A JPS6235691 A JP S6235691A JP 60176200 A JP60176200 A JP 60176200A JP 17620085 A JP17620085 A JP 17620085A JP S6235691 A JPS6235691 A JP S6235691A
Authority
JP
Japan
Prior art keywords
diffraction grating
substrate
resist film
ingaasp layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60176200A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60176200A priority Critical patent/JPS6235691A/en
Publication of JPS6235691A publication Critical patent/JPS6235691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1225Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers with a varying coupling constant along the optical axis

Abstract

PURPOSE:To form different diffraction gratings with the same phase relation on one substrate by a method wherein, after a thin film of compound containing InP is formed in a region of an InP substrate where the first diffraction grating is to be formed, a resist film is formed over the whole surface. CONSTITUTION:After an InGaAsP layer 22 is formed on the surface of an InP substrate 21, the InGaAsP layer 22 is removed by etching except the part on a region where the first diffraction grating is to be formed. Then a resist film 23 is formed over the whole surface and the pattern of the diffraction grating is formed by a double-beam interference method. If etching is carried out with sodium hydroxide after exposure, only the InGaAsP layer is etched. Then, if etching is carried out with a solution of hydrochloric acid, where the InGaAsP layer remains, this layer serves as a mask and prevents the substrate from being etched and, on the other hand, where the InGaAsP layer is not left, only the resist serves as a mask and the substrate is etched. As a result, two different etched shapes are formed on the substrate so that the first diffraction grating 24 and the second diffraction grating 25 can be obtained. Then, the resist film and the InGaAsP layer are removed.

Description

【発明の詳細な説明】 [概要] 本発明は、単体の半導体基板の表面に異なる回折格子を
有する分布帰還型の半導体レーザであって、形状が異な
る二種類の回折格子を容易に形成するために、半絶縁性
基板の表面の一部に基板と同種の薄膜を形成し、その表
面にレジストを塗布して露光エツチングを行うことによ
り、位相が同相の二N類の回折格子を同一基板の表面に
形成したものである。
[Detailed Description of the Invention] [Summary] The present invention provides a distributed feedback semiconductor laser having different diffraction gratings on the surface of a single semiconductor substrate, and provides a method for easily forming two types of diffraction gratings with different shapes. In this method, a thin film of the same type as the substrate is formed on a part of the surface of a semi-insulating substrate, and a resist is applied to the surface and exposed and etched to form a 2N type diffraction grating with the same phase on the same substrate. It is formed on the surface.

[産業上の利用分野] 本発明は、半導体レーザの製造方法に係わり、特に二種
類の異なる回折格子を有する半導体レーザの回折格子の
形成方法に関するものである。
[Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor laser, and particularly to a method of forming a diffraction grating of a semiconductor laser having two different types of diffraction gratings.

光通信の普及により、発光素子として半導体レーザは極
めて重要なデバイスとなっており、半導体レーザの安定
動作、高出力化や高能率化について多くの構造が提案さ
れている。
With the spread of optical communications, semiconductor lasers have become extremely important devices as light emitting elements, and many structures have been proposed for stable operation, higher output, and higher efficiency of semiconductor lasers.

光伝送では、長距離伝送でも損失の少ない単一縦モード
レーザが実用化されていて、実用的に最も優れたものと
して、半導体レーザの活性層の近くに回折格子を形成し
た分布帰還レーザ(DFBレーザ)がある。
For optical transmission, single longitudinal mode lasers with low loss even over long distances have been put into practical use, and the most practical one is the distributed feedback laser (DFB), which has a diffraction grating formed near the active layer of a semiconductor laser. laser).

DFBレーザは、活性層の近くの結晶層に周期構造の回
折格子を形成して特定の波長のレーザ光線を取り出せる
ようにしたものであるが、近時、半導体レーザで、同一
半導体結晶内に異なる二種類のDFBレーザを並列に配
置し、その二種類のDFBレーザを結合させることによ
り、レーザの発光スペクトルの拡がりを抑制する構造が
あるが、同一半導体結晶内に二種類の異なる回折格子を
形成することは位相関係を同相にするために、多くの困
難を伴うために、これらの異なる回折格子を容易に形成
する方法が要望されている。
DFB lasers are made by forming a periodic structure diffraction grating in a crystal layer near the active layer so that a laser beam of a specific wavelength can be extracted. There is a structure that suppresses the broadening of the laser emission spectrum by arranging two types of DFB lasers in parallel and combining the two types of DFB lasers, but this creates two different types of diffraction gratings within the same semiconductor crystal. However, there is a need for a method for easily forming these different diffraction gratings, since it is difficult to achieve the same phase relationship.

[従来の技術] 第2図は、代表的なりFBレーザの模式要部断面図であ
る。
[Prior Art] FIG. 2 is a schematic cross-sectional view of main parts of a typical FB laser.

InP基板1の表面に、第1の回折格子2と、第2の回
折格子3が形成されており、その表面に光ガイド層3と
してインジウムガリウム砒素燐(InGaAsP)層が
積層され、その表面に順次厚みが0゜1 amでInG
aAsPの活性層4、厚みが2pmでInPのクラッド
層5、厚みが0.5 μmでInGaAsPのコンタク
ト層6があり、更に素子の両側には電極7.8が配置さ
れている。
A first diffraction grating 2 and a second diffraction grating 3 are formed on the surface of an InP substrate 1, and an indium gallium arsenide phosphide (InGaAsP) layer is laminated as a light guide layer 3 on the surface. InG with a thickness of 0°1 am
There is an active layer 4 of aAsP, a cladding layer 5 of InP with a thickness of 2 pm, a contact layer 6 of InGaAsP with a thickness of 0.5 μm, and furthermore electrodes 7.8 are arranged on both sides of the element.

第1の回折格子と、第2の回折格子には、構造で決まる
結合定数があり、それぞれの位相関係が同相になるよう
に形成されることが必要である。
The first diffraction grating and the second diffraction grating have a coupling constant determined by their structure, and need to be formed so that their phase relationships are in phase.

第3図(a)〜第3図(d)は、従来の回折格子の形成
方法を示す模式要部断面図である。
FIGS. 3(a) to 3(d) are schematic cross-sectional views of essential parts showing a conventional method of forming a diffraction grating.

第3図(a)はInP基板11の表面のA領域に第1の
回折格子を形成するために、レジスト膜12を厚みを1
500人で被着したものである。
FIG. 3(a) shows that the resist film 12 is thinned to a thickness of 1 in order to form the first diffraction grating in the region A on the surface of the InP substrate 11.
It was covered by 500 people.

第3図(′b)は、二種類の光波を重合わせて干渉縞を
得ることにより、その干渉縞がシャープで尖鋭な強度を
有することを利用した三光束干渉法により、レジスト膜
を露光し、現像エッチグを行ったもので、例えばレジス
トII臭のピッチは2000人、ストライブの幅と高さ
は約1000人程度に形成されている。
Figure 3('b) shows that a resist film is exposed using the three-beam interference method, which utilizes the fact that two types of light waves are superimposed to obtain interference fringes, and the interference fringes are sharp and have sharp intensity. For example, the pitch of the resist II odor is 2,000 lines, and the width and height of the stripes are about 1,000 lines.

第3図(C)は、エツチング液に臭素の飽和溶液を用い
てInP基板のエツチングを行ったもので、InP基板
をエッチグをすることにより、深さが約500人でピン
チが2000人の周期溝13が形成される。
Figure 3 (C) shows an InP substrate etched using a saturated solution of bromine as the etching solution. Grooves 13 are formed.

第3図(d)は、InP基板のエツチングをした後レジ
スト膜を除去したもので、所定の第1の回折格子が形成
されたものである。
In FIG. 3(d), the resist film is removed after etching the InP substrate, and a predetermined first diffraction grating is formed.

このように第1の回折格子が形成した後、この第1の回
折格子と位相が同相になるように、第2の回折格子をI
nP基板表面のB領域に形成するが、第2の回折格子の
形成は上記第3図(a)〜第3図(d)の製造方法に準
じて行われるが、第1と第2の回折格子を位相関係が同
相の位置に形成することは極めて困難であるという欠点
がある。
After the first diffraction grating is formed in this way, the second diffraction grating is placed at I so that it is in phase with the first diffraction grating.
Although the second diffraction grating is formed in region B on the surface of the nP substrate, the formation of the second diffraction grating is performed according to the manufacturing method shown in FIGS. 3(a) to 3(d) above. A drawback is that it is extremely difficult to form the gratings at positions with the same phase relationship.

[発明が解決しようとする問題点] 従来のDFB半導体レーザで、同一基板上に異なる回折
格子を位相関係が同相に形成することは製造方法として
困難であるということが問題点である。
[Problems to be Solved by the Invention] A problem with conventional DFB semiconductor lasers is that it is difficult to form different diffraction gratings on the same substrate with the same phase relationship as a manufacturing method.

[問題点を解決するための手段] 本発明は、上記問題点を解決するための半導体レーザの
製造方法を提案するもので、その解決の手段は、InP
基板の第1の回折格子を形成する領域にInPを含む化
合物の薄膜を形成してから、その表面全体にレジスト膜
を被着し、そのレジスト膜に露光を行って、レジスト膜
と薄膜との双方のエツチングを行なうことにより、所定
の回折格子の形状を有するマスクのパターンを形成して
から、臭素の水溶液でInP基板のエツチングを行うこ
とによりInP基板上に、異なる形状の回折格子を形成
したものなある。
[Means for Solving the Problems] The present invention proposes a method for manufacturing a semiconductor laser to solve the above-mentioned problems.
After forming a thin film of a compound containing InP in the region where the first diffraction grating is to be formed on the substrate, a resist film is deposited on the entire surface of the substrate, and the resist film is exposed to light to create a bond between the resist film and the thin film. By performing etching on both sides, a mask pattern having a predetermined diffraction grating shape was formed, and then by etching the InP substrate with an aqueous solution of bromine, diffraction gratings with different shapes were formed on the InP substrate. There are things.

[作用] 本発明は、レジスト膜とInP化合物の薄膜との積層を
マスクとして第1の回折格子を形成するのと、レジスト
膜だけで第2の回折格子を形成するのを、同時に露光と
エツチングにより行うもので、これらのマスクの違いに
より、基板のエツチング特性が異なることを利用して、
転写時のエツチング形状を変えるようにしたちのてあっ
て、容易且つ正確に異なる回折格子を形成することが可
能になる。
[Function] The present invention enables the formation of a first diffraction grating using a laminated layer of a resist film and a thin film of an InP compound as a mask, and the formation of a second diffraction grating using only a resist film, by simultaneous exposure and etching. This process takes advantage of the fact that the etching characteristics of the substrate differ depending on these masks.
By changing the etching shape during transfer, it becomes possible to easily and accurately form different diffraction gratings.

[実施例] 第1図(al〜第1図(f)は本発明によるDFB型半
導体レーザの製造方法を説明するための模式要部断面図
である。
[Example] FIG. 1(al) to FIG. 1(f) are schematic cross-sectional views of main parts for explaining a method of manufacturing a DFB type semiconductor laser according to the present invention.

第1図(a)は、InP基板21の表面にインジウムガ
リウム砒素燐(InGaAsP)層22を厚さが0.2
 pmで、通常の液相成長方法により成膜したものであ
る。
FIG. 1(a) shows an indium gallium arsenide phosphide (InGaAsP) layer 22 with a thickness of 0.2 mm on the surface of an InP substrate 21.
pm, and was formed by a normal liquid phase growth method.

第1図(b)は、第1の回折格子を形成する領域のIn
GaAsP層22を残して、第2の回折格子を形成する
領域のInGaAsP層をエツチング除去したものであ
る。
FIG. 1(b) shows In in the region forming the first diffraction grating.
The InGaAsP layer in the region where the second diffraction grating is to be formed is removed by etching, leaving the GaAsP layer 22.

第1図(C)は、レジスト膜を全面に被着した後、通常
のフォトリソグラフィと化学エツチング法により、間隔
が300μmで幅が150μmの回折格子のバターニン
グを、レジスト膜23に三光束干渉法により形成するが
、本実施例では波長4416人のHeCdレーザの三光
束干渉法により、周期が4000人の特性を有する回折
格子である。
FIG. 1(C) shows that after a resist film is applied to the entire surface, patterning of a diffraction grating with a spacing of 300 μm and a width of 150 μm is applied to the resist film 23 using conventional photolithography and chemical etching. In this embodiment, a three-beam interferometry method using a HeCd laser with a wavelength of 4416 nm is used to form a diffraction grating having a period of 4000 nm.

第1図(d+は、露光後に、0.5規定液の苛性ソーダ
を用いてエツチングを行うと、InGaAsP層だけが
エツチングされる。
FIG. 1 (d+) shows that when etching is performed using 0.5N caustic soda after exposure, only the InGaAsP layer is etched.

第1図(e)は、続いて塩酸の水溶液を用いてInP基
板に回折格子を転写すると、InGaAsP層がある部
分はInGaAsP層がマスクとなり、しかもInGa
AsP層が基板と極めて密着性がよいために、塩酸によ
るエツチングによって、InGaAsP層が基板のエツ
チングを阻止することになり、一方InGaAsP層が
ない部分はレジストがマスクになるために、レジスト膜
の下面に塩酸が侵食して、基板がエツチングされる。
Figure 1(e) shows that when a diffraction grating is transferred to an InP substrate using an aqueous solution of hydrochloric acid, the InGaAsP layer serves as a mask in the area where the InGaAsP layer is, and
Because the AsP layer has extremely good adhesion to the substrate, the InGaAsP layer prevents etching of the substrate by etching with hydrochloric acid.On the other hand, the resist serves as a mask in the areas where the InGaAsP layer is not present, so the bottom surface of the resist film is The substrate is etched by the hydrochloric acid.

この結果、マスクの種類によって基板のエツチング形状
が異なり、第1の回折格子24と第2の回折格子25が
InP基板上に形成される。
As a result, the etched shape of the substrate differs depending on the type of mask, and the first diffraction grating 24 and the second diffraction grating 25 are formed on the InP substrate.

第1図(flはこのようにして形成された異なる形状の
回折格子であって、マスクに用いたレジスト膜と、In
GaAsP層を除去することにより、異なる回折格子が
形成できる。
FIG.
By removing the GaAsP layer, different diffraction gratings can be formed.

[発明の効果] 以上、詳細に説明したように、本発明による半導体レー
ザの製造方法は、同一基板表面に容易、且つ正確に回折
格子を形成することができ、高品質の半導体レーザが供
し得るという効果大なるものがある。
[Effects of the Invention] As described in detail above, the method for manufacturing a semiconductor laser according to the present invention can easily and accurately form a diffraction grating on the same substrate surface, and can provide a high-quality semiconductor laser. There is a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜第1図(f)は本発明による半導体レー
ザの製造方法を説明するための模式要部断面図、第2図
は、DFBレーザの模式要部断面図、第3図(a)〜第
3図(d)は、従来の回折格子の形成方法を示す模式要
部断面図、 図において、 21はInP基板、   22はInGaAsP層、2
3はレジスト膜、   24は第1の回折格子25は第
2の回折格子、 をそれぞれ示している。
1(al) to 1(f) are schematic cross-sectional views of main parts for explaining the manufacturing method of a semiconductor laser according to the present invention, FIG. 2 is a schematic cross-sectional view of main parts of a DFB laser, and FIG. a) to FIG. 3(d) are schematic cross-sectional views of main parts showing a conventional method of forming a diffraction grating. In the figures, 21 is an InP substrate, 22 is an InGaAsP layer, and 2
3 is a resist film, 24 is a first diffraction grating 25, and a second diffraction grating.

Claims (1)

【特許請求の範囲】 半導体基板(21)の第1の回折格子の形成領域上に、
薄膜(22)を形成し、該半導体基板(21)および薄
膜(22)上にレジスト膜(23)を被着して該レジス
ト膜(23)を一定のピッチを有するストライプ状にパ
ターニングし、第1の回折格子の形成領域上のレジスト
膜をマスクにして薄膜とのエッチングを行って、第1の
回折格子の形状を有する薄膜によるマスクのパターンを
形成し、 該レジスト膜及び薄膜をマスクにして、前記基板(21
)のエッチングを行うことにより基板上に第1の回折格
子(24)と、それとピッチが異なる第2の回折格子(
25)を形成することを特徴とする半導体レーザの製造
方法。
[Claims] On the first diffraction grating formation region of the semiconductor substrate (21),
A thin film (22) is formed, a resist film (23) is deposited on the semiconductor substrate (21) and the thin film (22), and the resist film (23) is patterned into stripes having a constant pitch. Using the resist film on the formation area of the first diffraction grating as a mask, perform etching with the thin film to form a mask pattern of the thin film having the shape of the first diffraction grating, and using the resist film and the thin film as a mask. , the substrate (21
), a first diffraction grating (24) and a second diffraction grating (24) having a different pitch are formed on the substrate.
25) A method for manufacturing a semiconductor laser, characterized by forming.
JP60176200A 1985-08-09 1985-08-09 Manufacture of semiconductor laser Pending JPS6235691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176200A JPS6235691A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176200A JPS6235691A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6235691A true JPS6235691A (en) 1987-02-16

Family

ID=16009371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176200A Pending JPS6235691A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6235691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058042A (en) * 2008-09-03 2010-03-18 Kinki Univ Solar thermal distillation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058042A (en) * 2008-09-03 2010-03-18 Kinki Univ Solar thermal distillation apparatus

Similar Documents

Publication Publication Date Title
JPS61156003A (en) Production of diffraction grating
CA2023510C (en) Single wavelength oscillating semiconductor laser device and method for manufacturing diffraction grating
JPS61190368A (en) Formation of fine pattern
JP2738623B2 (en) Method of forming diffraction grating
JPS6235691A (en) Manufacture of semiconductor laser
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JP2700312B2 (en) Distributed feedback semiconductor laser device
JP2735589B2 (en) Manufacturing method of diffraction grating
JPS60127776A (en) Semiconductor light emitting device
JP2676771B2 (en) Semiconductor laser manufacturing method and semiconductor laser
JPH0462194B2 (en)
JPS60136278A (en) Pattern formation
JP2527833B2 (en) Method of manufacturing diffraction grating
JPH0642583B2 (en) Semiconductor laser device
JPS62266889A (en) Semiconductor light emitting device
JPH04356001A (en) Production of diffraction grating
JPS624386A (en) Manufacture of compound semiconductor device
JPS63263788A (en) Semiconductor laser
JPS61134096A (en) Distributed feedback type semiconductor laser
JP2004063505A (en) Distributed feedback type semiconductor laser and method of manufacturing the same
JPS61212803A (en) Manufacture of diffraction grating
JPS62165392A (en) Manufacture of diffraction grating
JPS62139503A (en) Production of diffraction grating
JPS6032383A (en) Manufacture of periodic structure
JPS6423591A (en) Manufacture of distributed bragg reflection type semiconductor laser