JP2676771B2 - Semiconductor laser manufacturing method and semiconductor laser - Google Patents

Semiconductor laser manufacturing method and semiconductor laser

Info

Publication number
JP2676771B2
JP2676771B2 JP63066109A JP6610988A JP2676771B2 JP 2676771 B2 JP2676771 B2 JP 2676771B2 JP 63066109 A JP63066109 A JP 63066109A JP 6610988 A JP6610988 A JP 6610988A JP 2676771 B2 JP2676771 B2 JP 2676771B2
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
semiconductor laser
inp
ingaasp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63066109A
Other languages
Japanese (ja)
Other versions
JPH01238180A (en
Inventor
建彌 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63066109A priority Critical patent/JP2676771B2/en
Publication of JPH01238180A publication Critical patent/JPH01238180A/en
Application granted granted Critical
Publication of JP2676771B2 publication Critical patent/JP2676771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1231Grating growth or overgrowth details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 [概要] 回折格子を備えた半導体レーザの新規な製造方法と構
造に関し、 高精度な回折格子を形成し、且つ、それを利用して面
発光形レーザ素子を形成することを目的とし、 異なる組成を有する化合物半導体層を交互に複数積層
し、該化合物半導体層の側面を表出し、該側面を選択エ
ッチングして回折格子を形成する工程が含まれてなるこ
とを特徴とする。
The present invention relates to a novel manufacturing method and structure of a semiconductor laser provided with a diffraction grating, and a highly accurate diffraction grating is formed and a surface emitting laser device is formed by using the diffraction grating. For that purpose, the method further comprises a step of alternately laminating a plurality of compound semiconductor layers having different compositions, exposing a side surface of the compound semiconductor layer, and selectively etching the side surface to form a diffraction grating. And

且つ、交互に積層した異なる組成の化合物半導体層を
選択エッチングして形成した回折格子を基板側面に有
し、該基板の側部に垂直上方向に発光する活性層を設け
た面発光形半導体レーザ素子の構造を具備してなること
を特徴とする。
Further, a surface emitting semiconductor laser having a diffraction grating formed by selectively etching compound semiconductor layers having different compositions, which are alternately laminated, on the side surface of the substrate, and an active layer emitting vertically upward light is provided on the side portion of the substrate. It is characterized by comprising the structure of an element.

[産業上の利用分野] 本発明は半導体レーザの製造方法および半導体レーザ
のうち、特に、回折格子を備えた半導体レーザの新規な
製造方法と構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser manufacturing method and a semiconductor laser, and more particularly to a novel semiconductor laser manufacturing method and structure having a diffraction grating.

半導体レーザ素子は小型,低消費電力,高効率の利点
があり、光通信・光ディスクなどの用途に広く利用され
ているが、そのレーザ素子の一層の改善が望まれてい
る。
The semiconductor laser device has the advantages of small size, low power consumption, and high efficiency, and is widely used for applications such as optical communication and optical discs, but further improvement of the laser device is desired.

[従来の技術と発明が解決しようとする課題] 光通信の発光光源として、光導波路に周期構造をもた
せて波長選択性を有し、単一モードで発振する構造のDF
B型(分布帰還型:Distributed Feed Back)半導体レー
ザやDBR型(分布反射型;Distributed Bragg Reflecto
r)半導体レーザが知られており、第5図(a),
(b)にその従来のレーザ素子の断面図を示している。
[Problems to be Solved by Conventional Techniques and Inventions] As a light emitting source for optical communication, a DF having a structure in which an optical waveguide has a periodic structure to have wavelength selectivity and oscillates in a single mode
B type (Distributed Feedback type) semiconductor laser and DBR type (Distributed Bragg Reflecto type)
r) A semiconductor laser is known and is shown in FIG.
A sectional view of the conventional laser device is shown in FIG.

図において、1はn−InP基板,2はn−InGaAsP光ガイ
ド層,3はInGaAsP活性層,4はp−InPクラッド層,5はp−
InGaAsPコンタクト層,6は+電極,7は−電極で、光ガイ
ド層2は導波路層とも呼ばれ、基板との界面には回折格
子が設けられて、第5図(a)に示すDFB型レーザは全
面に回折格子が設けられ、増幅と帰還を同じ周期で起こ
させる構成で、一方の第5図(b)に示すDBR型レーザ
は端部にのみ回折格子を設けて、ブラック反射を利用し
た構成であ。
In the figure, 1 is an n-InP substrate, 2 is an n-InGaAsP optical guide layer, 3 is an InGaAsP active layer, 4 is a p-InP clad layer, and 5 is a p-
The InGaAsP contact layer, 6 is a + electrode, 7 is a-electrode, the optical guide layer 2 is also called a waveguide layer, a diffraction grating is provided at the interface with the substrate, and the DFB type shown in FIG. The laser has a structure in which a diffraction grating is provided on the entire surface, and amplification and feedback occur at the same cycle. On the other hand, the DBR type laser shown in FIG. 5 (b) uses a black reflection by providing a diffraction grating only at the end. With the configuration.

さて、この回折格子は格子縞状に凹凸を設けたもの
で、例えば、そのピッチは0.2〜0.3μm,深さは数百Å程
度であり、凹凸の形状(幅・深さ)がレーザの発振波長
・強度に深い関わりがあつて、この回折格子の寸法を正
確に制御することが上記の半導体レーザでは非常に重要
である。
By the way, this diffraction grating is provided with irregularities in the form of a grating stripe. For example, the pitch is 0.2 to 0.3 μm, the depth is about several hundred Å, and the irregularity shape (width / depth) is the oscillation wavelength of the laser. Since the intensity is closely related, it is very important for the above-mentioned semiconductor laser to accurately control the size of this diffraction grating.

従来、この回折格子の形成は、基板1面に塗布したレ
ジスト膜を2光束干渉露光法などで露光してパターンニ
ングし、そのレジスト膜マスクによつてエッチングして
格子縞状に凹凸を形成しているが、このような形成方法
で回折格子を精密に制御することは大変難しい。
Conventionally, the diffraction grating is formed by exposing a resist film applied on the surface of the substrate 1 to patterning by exposing the resist film by a two-beam interference exposure method or the like, and etching the resist film mask to form irregularities in a grid stripe pattern. However, it is very difficult to precisely control the diffraction grating by such a forming method.

また、従来のレーザ素子は第5図に示すように、側面
から発光する方式であり、このような構造の半導体レー
ザは電気素子と一緒に搭載して光電子集積回路(OEIC)
を作製する場合、そのIC構成に制約を受けて集積度の向
上が困難である。そのため、LEDのように、上方向に発
光する面発光形のレーザ素子が要望されている。
Also, as shown in FIG. 5, the conventional laser device is of a type that emits light from the side surface, and a semiconductor laser having such a structure is mounted together with an electric device to form an optoelectronic integrated circuit (OEIC).
It is difficult to improve the degree of integration when manufacturing a device due to restrictions on its IC configuration. Therefore, a surface emitting laser element that emits light in an upward direction, such as an LED, has been demanded.

本発明は、このような問題点を解消させて、回折格子
を高精度に形成する方法と、それを利用した面発光形レ
ーザ素子の構造を提案するものである。
The present invention proposes a method for forming a diffraction grating with high accuracy by solving such problems, and a structure of a surface emitting laser device using the method.

[課題を解決するための手段] その目的は、異なる組成を有する化合物半導体層を交
互に複数積層し、該化合物半導体層の側面を表出し、該
側面を選択エッチングして回折格子を形成する工程が含
まれる製造方法によつて達成される。
[Means for Solving the Problem] The purpose is to form a diffraction grating by alternately stacking a plurality of compound semiconductor layers having different compositions, exposing the side surfaces of the compound semiconductor layers, and selectively etching the side surfaces. Is achieved by a manufacturing method including.

また、面発光形レーザ素子としては、交互に積層した
異なる組成の化合物半導体層を選択エッチングして形成
した回折格子を基板側面に有し、該基板の側部に垂直上
方向に発光する活性層を設けた面発光形半導体レーザ素
子の構造を具備していることを特徴とする。
Further, the surface emitting laser device has an active layer which has a diffraction grating formed by selectively etching compound semiconductor layers of different compositions, which are alternately stacked, on the side surface of the substrate, and emits light vertically upward on the side portion of the substrate. It has a structure of a surface-emitting type semiconductor laser device provided with.

[作用] 即ち、本発明は、異なる組成を有する化合物半導体層
を交互に複数積層し、その側面を選択エッチングして回
折格子を形成する。そうすれば、正確な寸法で結晶成長
できて、且つ、それを選択エッチングすると、高精度な
回折格子が形成できる。
[Operation] That is, according to the present invention, a plurality of compound semiconductor layers having different compositions are alternately laminated and the side surfaces thereof are selectively etched to form a diffraction grating. Then, crystals can be grown with accurate dimensions, and if they are selectively etched, a highly accurate diffraction grating can be formed.

更に、このような回折格子を側面に設ければ、面発光
形の半導体レーザを形成することも容易である。
Further, if such a diffraction grating is provided on the side surface, it is easy to form a surface emitting semiconductor laser.

[実施例] 以下、図面を参照して実施例によつて具体的に説明す
る。
[Examples] Hereinafter, examples will be specifically described with reference to the drawings.

第1図(a)〜(c)は本発明にかかる形成方法を示
しており、最初に、第1図(a)に示すように、InP基
板10上に、MOCVD(有機金属気相成長)法によつて、そ
れぞれ2500Åの厚みをもつたInP層11とInGaAsP層12とを
数十層ずつ交互に成長する(図には5層ずつしか示して
いない)。
FIGS. 1A to 1C show a forming method according to the present invention. First, as shown in FIG. 1A, MOCVD (metal organic chemical vapor deposition) is performed on an InP substrate 10. By the method, several tens of InP layers 11 and InGaAsP layers 12 each having a thickness of 2500 Å are alternately grown (only five layers are shown in the figure).

次いで、第1図(b)に示すように、研磨して傾斜面
を表出させた後、塩酸液でエッチングすると、InP層11
がエッチングされて、InGaAsP層12がエッチングされな
い選択エッチングがおこなわれ、正確なピッチ0.25μm
の回折格子13が形成される。
Then, as shown in FIG. 1 (b), after polishing to expose the inclined surface, etching with a hydrochloric acid solution was performed to form the InP layer 11
And the InGaAsP layer 12 is not etched, and selective etching is performed to obtain an accurate pitch of 0.25 μm.
The diffraction grating 13 is formed.

また、第1図(c)に示すように、第1図(a)に示
すInP層11とInGaAsP層12とを積層した基板を形成した
後、側面を垂直に除去(例えば、塩酸と硫酸でエッチン
グする)して、露出部を上記と同様に塩酸液によつて選
択エッチングすると、InP層11がエッチングされて凹部
になり、InGaAsP層12がエッチングされずに凸部になつ
たピッチ0.25μmの垂直な回折格子14が形成される。ま
た、InGaAsP層12を凹部にして、InP層11を凸部にする回
折格子も形成でき、その場合の選択エッチングには硫酸
液を用いる。
Further, as shown in FIG. 1 (c), after forming a substrate in which the InP layer 11 and the InGaAsP layer 12 shown in FIG. 1 (a) are laminated, the side surfaces are removed vertically (for example, with hydrochloric acid and sulfuric acid). Then, the exposed portion is selectively etched with a hydrochloric acid solution in the same manner as described above, and the InP layer 11 is etched to form a concave portion, and the InGaAsP layer 12 is not etched to a convex portion with a pitch of 0.25 μm. A vertical diffraction grating 14 is formed. Further, a diffraction grating having the InGaAsP layer 12 as a concave portion and the InP layer 11 as a convex portion can also be formed, and a sulfuric acid solution is used for selective etching in that case.

次に、第2図(a),(b)は本発明にかかる形成方
法の他の例を示しており、第2図(a)に示すように、
傾斜側面をもつ凹凸状の半絶縁性InP基板20上に、MOCVD
法によつて、それぞれ一定厚みのInP層21とInGaAsP層22
とを数十層ずつ交互に成長し、次いで、第2図(b)に
示すように、水平に研磨して積層部分の傾斜面を表出さ
せ、その面を上記と同様に選択エッチングする。そうす
ると、高精度で水平な回折格子23を形成できて、第5図
に示すようなレーザ素子の形成に利用することができ
る、 上記のような本発明にかかる回折格子の形成方法、回
折格子のピッチが正確であつて、発振波長・発振強度の
制御性が良くなり、レーザ素子の性能向上を図ることが
できる。
Next, FIGS. 2 (a) and 2 (b) show another example of the forming method according to the present invention. As shown in FIG. 2 (a),
MOCVD is performed on the uneven semi-insulating InP substrate 20 having inclined side surfaces.
The InP layer 21 and the InGaAsP layer 22 each having a certain thickness by
And tens of layers are alternately grown, and then, as shown in FIG. 2B, horizontal polishing is performed to expose the inclined surface of the laminated portion, and the surface is selectively etched in the same manner as described above. Then, a highly accurate horizontal diffraction grating 23 can be formed, which can be utilized for forming a laser element as shown in FIG. 5. The method for forming a diffraction grating according to the present invention as described above, and the diffraction grating The pitch is accurate, the controllability of the oscillation wavelength and the oscillation intensity is improved, and the performance of the laser element can be improved.

次の第3図(a),(b)は上記の回折格子の形成方
法を利用した本発明にかかる面発光形レーザ素子の構造
を示しており、第3図(a)は斜視図,第3図(b)は
そのAA断面図である。図において、30は半絶縁性InP基
板,31は回折格子を垂直側面に形成したInP層とInGaAsP
層との積層部,32はn−InP層,33はn−InGaAsP光ガイド
層,34はInGaAsP活性層,35はp−InPクラッド層,36はp
−InGaAsPコンタクト層,37は半絶縁性InP層,38は電極,3
9は−電極である。
Next, FIGS. 3 (a) and 3 (b) show the structure of a surface emitting laser device according to the present invention utilizing the above-described method of forming a diffraction grating, and FIG. 3 (a) is a perspective view and FIG. FIG. 3B is a sectional view taken along the line AA. In the figure, 30 is a semi-insulating InP substrate, 31 is an InP layer with a diffraction grating formed on the vertical side surface and InGaAsP.
32, n-InP layer, 33, n-InGaAsP optical guide layer, 34, InGaAsP active layer, 35, p-InP clad layer, 36, p
-InGaAsP contact layer, 37 semi-insulating InP layer, 38 electrode, 3
9-is an electrode.

次に、第4図(a)〜(e)はそのレーザ素子の形成
工程順図を示しており、その概要を説明する。
Next, FIGS. 4 (a) to 4 (e) show a sequence of steps for forming the laser element, and the outline thereof will be described.

第4図(a)参照;(001)面方位をもつ半絶縁性InP基
板30上に、高抵抗なInP層とInGaAsP層との積層部31を成
長し、更に、n−InP層32(膜厚40μm程度)を成長す
る。成長法はMOCVD法によつておこない、使用ガスはト
リメチルインジウム(TMI),トリメチルガリウム(TM
G),ホスフィン(PH3),アルシン(AsH3)などを用
い、成長時間は約300分を要する。
See FIG. 4 (a); a stacked portion 31 of a high-resistance InP layer and an InGaAsP layer is grown on a semi-insulating InP substrate 30 having a (001) plane orientation, and an n-InP layer 32 (film) is formed. Thickness of about 40 μm). The growth method is MOCVD, and the gases used are trimethylindium (TMI) and trimethylgallium (TM).
G), phosphine (PH 3 ) and arsine (AsH 3 ) are used, and the growth time is about 300 minutes.

第4図(b)参照;次いで、幅100μmのSiO2マスク41
を設けて、両側を薄めた塩酸(HCl)液でメサ状にエッ
チングし、サイドエッチングしてSiO2マスクの下に庇部
分を形成し、且つ、積層部31の側面に回折格子40を形成
する。
See FIG. 4 (b); then, a SiO 2 mask 41 having a width of 100 μm.
Is provided, and both sides are thinly etched with a hydrochloric acid (HCl) solution in a mesa shape, and side etching is performed to form an eaves portion under the SiO 2 mask, and a diffraction grating 40 is formed on a side surface of the laminated portion 31. .

第4図(c)参照;次いで、両側のSiO2マスク41の下に
n−InGaAsP光ガイド層33(膜厚1μm,λ=1.2μm),I
nGaAsP活性層34(膜厚02μm,λ=1.35μm)p−InPク
ラッド層35(膜厚1.5μm)p−InGaAsPコンタクト層36
(膜厚0.5μm,λ=1.35μm)を順次に成長する。
See FIG. 4 (c); then, under the SiO 2 masks 41 on both sides, the n-InGaAsP optical guide layer 33 (film thickness 1 μm, λ = 1.2 μm), I
nGaAsP active layer 34 (film thickness 02 μm, λ = 1.35 μm) p-InP clad layer 35 (film thickness 1.5 μm) p-InGaAsP contact layer 36
(Film thickness 0.5 μm, λ = 1.35 μm) are grown in sequence.

第4図(d)参照;次いで、SiO2マスク41を除去し、新
たなSiO2マスク42(点線で示す;マスク41とは直角方向
のマスク)を設け、公知の方法によつて両側をメサエッ
チングして、そこに半絶縁性InP層37(電流阻止層)を
成長させて埋没する。なお、本図および次図は平面図を
示している。
4D. Next, the SiO 2 mask 41 is removed, a new SiO 2 mask 42 (shown by a dotted line; a mask in a direction perpendicular to the mask 41) is provided, and both sides of the mesa are formed by a known method. By etching, a semi-insulating InP layer 37 (current blocking layer) is grown and buried therein. In addition, this figure and the following figures show plan views.

第4図(e)参照;次いで、片方のコンタクト層36より
光ガイド層33までを研磨除去し、一方のコンタクト層36
から光ガイド層33までを残存させて、+電極38,−電極3
9を形成して完成させる。
See FIG. 4 (e); next, the contact layer 36 up to the optical guide layer 33 is removed by polishing, and one contact layer 36 is removed.
From the light guide layer 33 to the + electrode 38, − electrode 3
Form 9 to complete.

このように構成すると、垂直上向きに発光する面発光
形のDBR型レーザ素子になり、OEICなどの高集積化に役
立てることができる。
With this structure, the surface emitting DBR laser device emits vertically upward, and can be used for high integration of OEICs and the like.

[発明の効果] 以上の説明から明らかなように、本発明によれば精密
な回折格子が形成できてレーザ素子は高性能化され、ま
た、面発光形のレーザ素子を容易に形成できる効果があ
る。
[Effects of the Invention] As is apparent from the above description, according to the present invention, it is possible to form a precise diffraction grating, improve the performance of a laser device, and easily form a surface emitting laser device. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(c)は本発明にかかる形成方法を示す
図、 第2図(a),(b)は本発明にかかる形成方法の他の
例を示す図、 第3図(a),(b)は本発明にかかるレーザ素子を示
す図、 第4図(a)〜(e)は第3図のレーザ素子の形成工程
順図、 第5図(a),(b)は従来のレーザ素子の断面図であ
る。 図において、 10,20,30はInP基板、 11,21はInP層、 12,22はInGaAsP層、 13,14,23,40は回折格子、 31はInP層とInGaAsP層との積層部、 32はn−InP層、 33はn−InGaAsP光ガイド層、 34はInGaAsP活性層、 35はP−InPクラッド層、 36はp−InGaAsPコンタクト層、 37は半絶縁性InP層、 38は+電極、 39は−電極 を示している。
1 (a) to 1 (c) are diagrams showing a forming method according to the present invention, FIGS. 2 (a) and 2 (b) are diagrams showing another example of the forming method according to the present invention, and FIG. FIGS. 4 (a) and 4 (b) are diagrams showing a laser element according to the present invention, FIGS. 4 (a) to 4 (e) are flow charts of forming steps of the laser element shown in FIG. 3, and FIGS. 5 (a) and 5 (b). FIG. 4 is a sectional view of a conventional laser device. In the figure, 10,20,30 are InP substrates, 11,21 are InP layers, 12,22 are InGaAsP layers, 13,14,23,40 are diffraction gratings, 31 is a laminated portion of InP layers and InGaAsP layers, 32 Is an n-InP layer, 33 is an n-InGaAsP optical guide layer, 34 is an InGaAsP active layer, 35 is a P-InP cladding layer, 36 is a p-InGaAsP contact layer, 37 is a semi-insulating InP layer, 38 is a + electrode, 39 indicates a negative electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異なる組成を有する化合物半導体層を交互
に複数積層し、該化合物半導体層の側面を表出し、該側
面を選択エッチングして回折格子を形成する工程が含ま
れてなることを特徴とする半導体レーザの製造方法。
1. A step of forming a diffraction grating by alternately stacking a plurality of compound semiconductor layers having different compositions, exposing a side surface of the compound semiconductor layer, and selectively etching the side surface to form a diffraction grating. And a method for manufacturing a semiconductor laser.
【請求項2】交互に積層した異なる組成の化合物半導体
層を選択エッチングして形成した回折格子を基板側面に
有し、該基板の側部に垂直上方向に発光する活性層を設
けた面発光形半導体レーザ素子の構造を具備してなるこ
とを特徴とする半導体レーザ。
2. A surface emitting device having a diffraction grating formed by selectively etching compound semiconductor layers of different compositions, which are alternately laminated, on a side surface of the substrate, and an active layer which emits light vertically upward is provided on a side portion of the substrate. A semiconductor laser having a structure of a semiconductor laser device.
JP63066109A 1988-03-18 1988-03-18 Semiconductor laser manufacturing method and semiconductor laser Expired - Fee Related JP2676771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066109A JP2676771B2 (en) 1988-03-18 1988-03-18 Semiconductor laser manufacturing method and semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066109A JP2676771B2 (en) 1988-03-18 1988-03-18 Semiconductor laser manufacturing method and semiconductor laser

Publications (2)

Publication Number Publication Date
JPH01238180A JPH01238180A (en) 1989-09-22
JP2676771B2 true JP2676771B2 (en) 1997-11-17

Family

ID=13306393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066109A Expired - Fee Related JP2676771B2 (en) 1988-03-18 1988-03-18 Semiconductor laser manufacturing method and semiconductor laser

Country Status (1)

Country Link
JP (1) JP2676771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546134B2 (en) * 1993-05-28 1996-10-23 日本電気株式会社 Semiconductor laser
US6517734B1 (en) * 2000-07-13 2003-02-11 Network Photonics, Inc. Grating fabrication process using combined crystalline-dependent and crystalline-independent etching

Also Published As

Publication number Publication date
JPH01238180A (en) 1989-09-22

Similar Documents

Publication Publication Date Title
US6291256B1 (en) Method of manufacturing non-regrowth distributed feedback ridge semiconductor
JP5440304B2 (en) Optical semiconductor device and manufacturing method thereof
JP5190115B2 (en) Multi-cavity etch facet DFB laser
JPH11274637A (en) Transverse coupling distribution feedback ridge semiconductor laser and manufacture thereof
WO1992007401A1 (en) Distributed feedback semiconductor laser
JP3191784B2 (en) Method of manufacturing diffraction grating and method of manufacturing semiconductor laser
JP5904571B2 (en) Edge-emitting semiconductor laser device
JPH09214067A (en) Multiwavelength laser beam emitting element, and wavelength multiplexing method
GB2124024A (en) Semiconductor laser and manufacturing method therefor
JP2676771B2 (en) Semiconductor laser manufacturing method and semiconductor laser
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
US4837775A (en) Electro-optic device having a laterally varying region
JPH1197789A (en) Semiconductor laser
JPS63213383A (en) Semiconductor laser
JPH0724324B2 (en) Semiconductor laser chip and manufacturing method thereof
JPH06132610A (en) Semiconductor laser array element and manufacture thereof
US5027368A (en) Semiconductor laser device
JPS6342876B2 (en)
EP0390077A2 (en) Laser diode and method for fabricating of the same
JP2953449B2 (en) Optical semiconductor device and method of manufacturing the same
JP2552504B2 (en) Semiconductor laser array device
JPH0722216B2 (en) Semiconductor laser
JPH04356001A (en) Production of diffraction grating
JPH051992B2 (en)
JP5445272B2 (en) Method for manufacturing optical semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees