JPH0722216B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0722216B2
JPH0722216B2 JP4016586A JP4016586A JPH0722216B2 JP H0722216 B2 JPH0722216 B2 JP H0722216B2 JP 4016586 A JP4016586 A JP 4016586A JP 4016586 A JP4016586 A JP 4016586A JP H0722216 B2 JPH0722216 B2 JP H0722216B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
substrate
diffraction grating
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4016586A
Other languages
Japanese (ja)
Other versions
JPS62199085A (en
Inventor
行一 今仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP4016586A priority Critical patent/JPH0722216B2/en
Publication of JPS62199085A publication Critical patent/JPS62199085A/en
Publication of JPH0722216B2 publication Critical patent/JPH0722216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 発明の要約 多層膜成長の容易な分子線エピキタシー法を用いて円柱
状の二重異種接合発光部の周囲をブラッグの一次反射条
件をみたすように2種の混晶で埋込んだ反射鏡不要な動
的単一モード面発光半導体レーザ。
DETAILED DESCRIPTION OF THE INVENTION By using a molecular beam epitaxy method that facilitates the growth of a multilayer film, two kinds of mixed crystals are formed around a cylindrical double dissimilar junction light emitting part so as to satisfy the Bragg first reflection condition. A dynamic single-mode surface-emitting semiconductor laser that does not require an embedded reflector.

発明の背景 技術分野 この発明は,たとえば光情報処理や光通信の光源として
用いることのできる半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser that can be used, for example, as a light source for optical information processing or optical communication.

従来技術とその問題点 従来の半導体レーザは,端面での反射を必要とするファ
ブリ・ペロー型共振器をもつものであったが,この半導
体レーザの出力光を駆動電流直接変調方式によって変調
すると発振スペクトルが拡がり,高速変調は不可能であ
った。
Conventional technology and its problems Conventional semiconductor lasers have a Fabry-Perot resonator that requires reflection at the end face. When the output light of this semiconductor laser is modulated by the drive current direct modulation method, it oscillates. The spectrum was wide, and high-speed modulation was impossible.

そのため高速変調時においても単一発振スペクトルを保
持するいわゆる動的単一モードレーザとして,たとえば
第3図に示すような分布帰還形の半導体レーザが盛んに
研究され,かつ一部では光通信の光源として採用される
に至っている。
Therefore, as a so-called dynamic single-mode laser that retains a single oscillation spectrum even during high-speed modulation, for example, a distributed feedback semiconductor laser as shown in FIG. 3 has been actively studied, and in some cases, a light source for optical communication. Has been adopted as.

第3図はレーザ共振器の共振方向に平行にその中央部を
断面して模式的に示すものであり,21はn−GaAs基板,22
はn−AlxGa1-xAsクラッド層,23はAlyGa1-yAs活性層,24
はp−AlzGa1-zAs導波層,25はp−AlwGa1-wAsクラッド
層である。
FIG. 3 is a cross-sectional view of the central portion of the laser resonator, which is parallel to the resonance direction of the laser resonator.
Is an n-Al x Ga 1-x As clad layer, 23 is an Al y Ga 1-y As active layer, 24
Is a p-Al z Ga 1-z As waveguide layer, and 25 is a p-Al w Ga 1-w As cladding layer.

この分布帰還形半導体レーザは,基板21上に,クラッド
層22,活性層23,導波層24を平坦に成長させた後,エッチ
ング・マスクとしてのフォトレジストを導波層24上に塗
布し,それを紫外線レーザ光の干渉縞を用いて回折格子
パターンに露光し,現像したあと,エッチングによって
導波層24上に回折格子を形成し,さらに2回目の結晶成
長によってその上にクラッド層25を積層することによっ
て製造される。
In this distributed feedback semiconductor laser, a clad layer 22, an active layer 23, and a waveguide layer 24 are grown flat on a substrate 21, and then a photoresist as an etching mask is coated on the waveguide layer 24. It is exposed to a diffraction grating pattern using interference fringes of ultraviolet laser light, developed, and then a diffraction grating is formed on the waveguide layer 24 by etching, and the cladding layer 25 is further formed thereon by the second crystal growth. It is manufactured by laminating.

このような半導体レーザに電流を流すと,活性層23にお
いて電子−正孔の再結合が起り,これによって発光した
光は導波層24に導入され,回折格子によってブラッグ反
射を受けレーザ発振光C2となって外部に出射される。ブ
ラッグ反射によるレーザ光は2波長発振するため,第3
図に示すように導波層24の回折格子のピッチを1箇所に
おいて結晶内の光の波長の1/4だけずらし(位相シフ
ト),単一発振スペクトルを得るようにしている。
When a current is applied to such a semiconductor laser, electron-hole recombination occurs in the active layer 23, and the light emitted by this is introduced into the waveguide layer 24 and Bragg reflection is caused by the diffraction grating to generate laser oscillation light C2. And is emitted to the outside. Since the laser light due to Bragg reflection oscillates two wavelengths,
As shown in the figure, the pitch of the diffraction grating of the waveguide layer 24 is shifted by one quarter of the wavelength of the light in the crystal (phase shift) at one location to obtain a single oscillation spectrum.

しかしながら,このような構造の分布帰還形半導体レー
ザでは,回折格子を干渉露光方式によって形成している
ので,その分解能があまり高くなく,そのためにブラッ
グ反射効率が高い1次の回折格子(格子ピッチが結晶内
波長の1/2)を得ることが困難であり,2次,3次等高次の
回折格子を用いざるを得ないこと,エッチングによって
格子を作成しているため深い回折格子が得られないこ
と,2回目の成長中に回折格子が損傷を受けやすいこと等
の理由により,高い反射効率を得られないという欠点が
あった。また,回折格子のピッチを上述のように一部に
おいてシフトさせるために2回のエッチング工程を必要
としたり,横モードの安定化を図るために埋込み構造等
を採用すると3回の結晶成長を必要とする等,製作工程
が複雑であるという欠点もあった。
However, in the distributed feedback semiconductor laser having such a structure, since the diffraction grating is formed by the interference exposure method, the resolution is not so high, and therefore the first-order diffraction grating (having a grating pitch of high Bragg reflection efficiency is It is difficult to obtain 1/2 of the wavelength in the crystal, and it is unavoidable to use diffraction gratings of the 2nd order, 3rd order, etc., and a deep diffraction grating can be obtained because the grating is created by etching. There is a drawback that high reflection efficiency cannot be obtained due to the fact that the diffraction grating is easily damaged during the second growth. Also, two etching steps are required to partially shift the pitch of the diffraction grating as described above, and three times of crystal growth is required if a buried structure or the like is used to stabilize the transverse mode. There is also a drawback that the manufacturing process is complicated.

発明の概要 発明の目的 この発明は,1次のブラック回折を起こさせることが可能
であり,しかも製作が比較的容易な半導体レーザを提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor laser capable of causing first-order black diffraction and relatively easy to manufacture.

発明の構成と効果 この発明による半導体レーザは,III−V族半導体基板上
に,p型クラッド層,活性層,n型クラッド層よりなる二重
異種接合発光部が柱状にかつ基板に対して垂直に形成さ
れ,この柱状発光部の周囲に,異なる屈折率をもちかつ
発光波長の1/4に相当する厚さを有する2種の混晶層が
交互に積層されてなる多層膜埋込層が設けられ,この多
層膜埋込層が回折格子として作用することによってブラ
ック反射形面発光動作を行なうことを特徴とする。
Structure and Effect of the Invention A semiconductor laser according to the present invention comprises a group III-V semiconductor substrate on which a double heterojunction light-emitting portion composed of a p-type cladding layer, an active layer and an n-type cladding layer is columnar and perpendicular to the substrate. And a multi-layered embedded layer formed by alternately laminating two kinds of mixed crystal layers having different refractive indexes and having a thickness corresponding to 1/4 of the emission wavelength around the columnar light emitting portion. It is characterized in that a black reflection type surface emission operation is performed by the provision of the multilayer embedded layer acting as a diffraction grating.

柱状発光部は,基板上に二重異種接合構造を作製し,中
央部分は柱状の残すように,周囲部分を基板に達するま
でエッチングすることにより作製することができる。柱
状発光部の周囲に設けられる多層埋込層は分子線エピタ
キシー法などを用いてつくることが可能である。活性層
での発光波長をλ,多層膜埋込層の2種の混晶の屈折率
をそれぞれnA,nBとすると,基板上に活性層の中央付近
の高さまで2種の薄層をλ/(4nA),λ/(4nB)の厚
さに交互に積層成長させ,次に位相シフトのための層を
λ/(2nA)の厚さに1層成長させ,引きつづき上記2
種の層をλ/(4nB),λ/(4nA)の厚さに交互に成長
させればよい。
The columnar light emitting portion can be produced by forming a double dissimilar junction structure on the substrate and etching the peripheral portion until reaching the substrate so that the central portion remains columnar. The multi-layered embedding layer provided around the columnar light emitting portion can be formed using a molecular beam epitaxy method or the like. Letting λ be the emission wavelength in the active layer and n A and n B be the refractive indices of the two mixed crystals of the multilayer embedded layer, two thin layers can be formed on the substrate up to the height near the center of the active layer. The layers for λ / (4n A ) and λ / (4n B ) are alternately grown in layers, and then the layer for phase shift is grown for one layer to the thickness of λ / (2n A ). Two
The seed layers may be grown alternately to a thickness of λ / (4n B ) and λ / (4n A ).

分子線エピキタシー法など最近の結晶成長法を用いると
薄層の厚さをきわめて厳密に制御できるために1次回折
格子として作用する多層膜埋込層を高精度に作製するこ
とが可能であるとともに,位相シフト層の作製も容易で
ある。また,結晶成長は2回ですむので製造工程も比較
的簡素となる。
When a recent crystal growth method such as a molecular beam epitaxy method is used, the thickness of the thin layer can be controlled extremely strictly, so that it is possible to manufacture a multi-layer embedded layer that acts as a first-order diffraction grating with high accuracy. The phase shift layer is easy to fabricate. Also, since the crystal growth only needs to be performed twice, the manufacturing process is relatively simple.

実施例の説明 第1図は,この発明による半導体レーザの概観を斜視的
に示すものである。この図および半導体レーザの断面を
示す第2図(D)を参照して,n−GaAs基板1の中央部に
柱状の発光部2があり,その周囲がAlw1Ga1-w1AsとAlw2
Ga1-w2Asの多層薄膜よりなる埋込層3で囲まれている。
発光部2は活性層12とその上下のクラッド層11,13とか
らなる。基板1の下面にはn側電極5が,多層膜埋込層
3の上面には円形孔6aをもつp側電極6が同じく円形孔
をもつ絶縁膜4を介して,それぞれ形成されている。電
極6の一部は上部クラッド層13に接している。発光部2
で発光したレーザ光C1は,円形孔6aから外部に出射す
る。
Description of Embodiments FIG. 1 is a perspective view showing an overview of a semiconductor laser according to the present invention. Referring to this figure and FIG. 2D showing the cross section of the semiconductor laser, there is a columnar light emitting portion 2 in the center of the n-GaAs substrate 1, and the periphery thereof is Al w1 Ga 1 -w1 As and Al w2.
It is surrounded by a buried layer 3 formed of a multi-layered thin film of Ga 1 -w 2 As.
The light emitting portion 2 is composed of an active layer 12 and cladding layers 11 and 13 above and below the active layer 12. An n-side electrode 5 is formed on the lower surface of the substrate 1, and a p-side electrode 6 having a circular hole 6a is formed on the upper surface of the multilayer film burying layer 3 via an insulating film 4 having the same circular hole. A part of the electrode 6 is in contact with the upper cladding layer 13. Light emitting part 2
The laser light C1 emitted at is emitted from the circular hole 6a to the outside.

このような半導体レーザは次のようにして作製される。
第2図は製造工程を示すものである。この図を参照し
て,まず第2図(A)に示すように,n−GaAs基板1上に
n−AlxGa1-xAsクラッド層11(厚さ1.5μm程度),Aly
Ga1-yAs活性層12(厚さ4μm程度),p−AlzGa1-zAsク
ラッド層13(厚さ1μm程度)を多層成長させる。そし
て,円形または正方形の,たとえばSi3N4等よりなる絶
縁体エッチング・マスク15を上部クラッド層13の中央部
上につける。その大きさは発振スポットを規定するので
10〜20μm程度の径とする。
Such a semiconductor laser is manufactured as follows.
FIG. 2 shows the manufacturing process. Referring to this figure, first, as shown in FIG. 2 (A), an n-Al x Ga 1-x As clad layer 11 (thickness: about 1.5 μm) and Al y are formed on the n-GaAs substrate 1.
The Ga 1-y As active layer 12 (thickness: about 4 μm) and the p-Al z Ga 1-z As clad layer 13 (thickness: about 1 μm) are grown in multiple layers. Then, a circular or square insulator etching mask 15 made of, for example, Si 3 N 4 is applied on the central portion of the upper cladding layer 13. Since its size defines the oscillation spot,
The diameter is about 10 to 20 μm.

次に第2図(B)に示すように,化学エッチングまたは
ドライ・エッチングによってGaAs基板1に到達するまで
マスクされた場所以外の部分を除去する。その結果円柱
状または角柱状の二重異種接合構造の発光部2が基板1
上に残る。この柱状構造発光部2の側面は基板1に対し
て垂直であるようにする。
Next, as shown in FIG. 2 (B), a portion other than the masked portion is removed by chemical etching or dry etching until the GaAs substrate 1 is reached. As a result, the light emitting portion 2 having a cylindrical or prismatic double dissimilar junction structure is formed on the substrate 1.
Remain on top. The side surface of the columnar structure light emitting portion 2 is perpendicular to the substrate 1.

この後,分子線エピタキシャル成長法を用いて,第2図
(C)に示すように,発光部2の周囲に混晶Alw1Ga1-w1
As(Aと略記)およびAlw2Ga1-w2As(Bと略記)を活性
層12の高さの中央付近までそれぞれλ/(4nA),λ/
(4nA)の厚さで交互に成長させる。次にAをλ/(2
nA)の厚さに一層成長させ(A1で示す),続いてその上
にB,Aをλ/(4nB),λ/(4nA)の厚さで交互に成長
させ,柱状の二重異種接合構造の発光部2を完全に埋め
込む。ここでλは活性層12での発光波長,nA,nBは混晶
A,Bの屈折率である。
Then, by using the molecular beam epitaxial growth method, as shown in FIG. 2 (C), a mixed crystal Al w1 Ga 1-w1 is formed around the light emitting portion 2.
As (abbreviated as A) and Al w2 Ga 1-w2 As (abbreviated as B) up to near the center of the height of the active layer 12 are respectively λ / (4n A ), λ /
Alternating growth with a thickness of (4n A ). Next, let A be λ / (2
n A ) to a further thickness (indicated by A1), and then B and A are alternately grown to a thickness of λ / (4n B ), λ / (4n A ). The light emitting portion 2 having a heavy heterojunction structure is completely embedded. Where λ is the emission wavelength in the active layer 12 and n A and n B are mixed crystals.
The refractive index of A and B.

上述の埋込み成長法として分子線エピタキシャル法を用
いたことにより柱状部分2の側面と埋込み層3の各層は
完全に垂直となる。
By using the molecular beam epitaxial method as the above-mentioned buried growth method, the side surface of the columnar portion 2 and each layer of the buried layer 3 are completely vertical.

上述の埋込み成長において,エッチング・マスク15を残
したまま成長を行うと,マスク15上に符号16で示すよう
に多結晶または非晶質のAlGaAsが,またマスク15を除去
後,埋込み成長を行なうと符号16の部分には多層膜3と
同一の多層膜がそれぞれ成長するが,これらはこの埋込
み成長工程終了後,エッチング等により容易に除去でき
る。もちろんマスク15も除去する。
In the above-mentioned buried growth, if the growth is carried out with the etching mask 15 left, polycrystalline or amorphous AlGaAs is shown on the mask 15 as shown by numeral 16, and after the mask 15 is removed, the buried growth is carried out. The same multi-layer film as the multi-layer film 3 grows in the portions indicated by 16 and 16, but these can be easily removed by etching or the like after the completion of the embedding growth step. Of course, the mask 15 is also removed.

最後に,第2図(D)に示すように柱状発光部2の中央
にこの柱状部分の径より小さい径の穴をもつ絶縁膜2を
上部クラッド層13および多層膜3の両方にわたって形成
し,さらにその径より小さい径の穴6aをもつp側電極6
を,および基板1の下面全面にn側電極5をつけて工程
を終了する。
Finally, as shown in FIG. 2D, an insulating film 2 having a hole having a diameter smaller than the diameter of the columnar portion is formed in the center of the columnar light emitting portion 2 over both the upper cladding layer 13 and the multilayer film 3, Further, the p-side electrode 6 having a hole 6a having a diameter smaller than that diameter
And the n-side electrode 5 is attached to the entire lower surface of the substrate 1 to complete the process.

この半導体レーザの動作は次のように行なわれる。すな
わち電極6から注入された正孔そよび電極5から注入さ
れた電子が活性層12において再結合発光し,それが多層
膜3の多層構造によりブラッグ反射し,表面よりレーザ
発振光C1として射出される。
The operation of this semiconductor laser is performed as follows. That is, the holes injected from the electrode 6 and the electrons injected from the electrode 5 recombine and emit light in the active layer 12, which is Bragg-reflected by the multilayer structure of the multilayer film 3 and emitted from the surface as laser oscillation light C1. It

以上のp型,n型はすべて反転させてもよいことはいうま
でもない。また上記実施例ではAlGaAs/GaAs系のレーザ
について説明したが,この発明は基板1およびクラッド
層11,13をすべてInP,活性層12をGaξIn1−ξAsη
1−η′埋込み層3をGaα1In1−α1As1−β1
β1とGaα2In1−α2As1−β2β2の多層膜とし
たをGaInAsP/InPにも適用できる。
It goes without saying that all of the above p-type and n-type may be inverted. Although the AlGaAs / GaAs-based laser has been described in the above embodiment, the present invention uses the substrate 1 and the cladding layers 11 and 13 as InP, and the active layer 12 as Ga ξ In 1-ξ As η P.
1- η'embedded layer 3 is Ga α1 In 1-α1 As 1-β1 P
The multilayer film of β1 and Ga α2 In 1-α2 As 1-β2 P β2 can be applied to GaInAsP / InP.

以上のような実施例の構成,製造法をとったことによ
り, (1)1次の回折条件をみたすブラッグ反射型レーザが
容易に製造できること (2)完全単一モードを得るための回折格子の1/4波長
の位相シフトが容易であること (3)深い回折格子であることから反射効率が高いこと (4)結晶成長回数が2回で埋込み型レーザが作製でき
ること (5)柱状加工を基板に到達するまで施したことによ
り,再成長面がGaAsであり再成長が容易であること 等の効果がある。
By adopting the configuration and manufacturing method of the above-described embodiment, (1) a Bragg reflection type laser satisfying the first-order diffraction condition can be easily manufactured (2) a diffraction grating for obtaining a perfect single mode 1/4 wavelength phase shift is easy (3) Reflection efficiency is high because it is a deep diffraction grating (4) Embedded laser can be manufactured with two crystal growth cycles (5) Columnar processing on substrate Since the regrowth surface is GaAs, the regrowth is easy because the regrowth surface is GaAs.

【図面の簡単な説明】[Brief description of drawings]

第1図は,この発明の実施例を示すもので半導体レーザ
の構造を模式的に示す斜視図である。 第2図は,半導体レーザの製造工程を順を追って説明す
るための工程図である。 第3図は従来例を示す断面図である。 1…基板,2…柱状発光部,3…多層膜埋込層,11…n型ク
ラッド層,12…活性層,13…p型クラッド層。
FIG. 1 shows an embodiment of the present invention and is a perspective view schematically showing the structure of a semiconductor laser. FIG. 2 is a process drawing for sequentially explaining the manufacturing process of the semiconductor laser. FIG. 3 is a sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Columnar light-emitting part, 3 ... Multilayer film burying layer, 11 ... N-type clad layer, 12 ... Active layer, 13 ... P-type clad layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】III−V族半導体基板上に,p型クラッド
層,活性層,n型クラッド層よりなる二重異種接合発光部
が柱状にかつ基板に対して垂直に形成され,この柱状発
光部の周囲に,異なる屈折率をもちかつ発光波長の1/4
に相当する厚さを有する2種の混晶層が交互に積層され
てなる多層膜埋込層が設けられ,この多層膜埋込層が回
折格子として作用することによってブラック反射形面発
光動作を行なう半導体レーザ。
1. A double heterojunction light emitting portion comprising a p-type clad layer, an active layer, and an n-type clad layer is formed on a III-V semiconductor substrate in a columnar shape and perpendicular to the substrate. With different refractive index around the area and 1/4 of emission wavelength
Is provided with a multi-layer embedding layer in which two kinds of mixed crystal layers having a thickness corresponding to are alternately laminated, and the multi-layer embedding layer acts as a diffraction grating to perform a black reflection type surface emitting operation. Semiconductor laser to perform.
【請求項2】多層膜埋込層に位相シフト層が含まれてい
る,特許請求の範囲第(1)項に記載の半導体レーザ。
2. A semiconductor laser according to claim 1, wherein the multi-layered buried layer includes a phase shift layer.
JP4016586A 1986-02-27 1986-02-27 Semiconductor laser Expired - Lifetime JPH0722216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016586A JPH0722216B2 (en) 1986-02-27 1986-02-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016586A JPH0722216B2 (en) 1986-02-27 1986-02-27 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62199085A JPS62199085A (en) 1987-09-02
JPH0722216B2 true JPH0722216B2 (en) 1995-03-08

Family

ID=12573151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016586A Expired - Lifetime JPH0722216B2 (en) 1986-02-27 1986-02-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0722216B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164949A (en) * 1991-09-09 1992-11-17 Motorola, Inc. Vertical cavity surface emitting laser with lateral injection
US5170407A (en) * 1991-10-11 1992-12-08 At&T Bell Laboratories Elimination of heterojunction band discontinuities
FR2699337B1 (en) * 1992-12-15 1995-06-09 Deveaud Pledran Benoit LASER WITH VERTICAL CAVITY OF LOW RESISTIVITY.
US6463088B1 (en) * 2000-07-07 2002-10-08 Lucent Technologies Inc. Mesa geometry semiconductor light emitter having chalcogenide dielectric coating

Also Published As

Publication number Publication date
JPS62199085A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
US8340148B2 (en) Surface-emission laser devices, surface-emission laser array having the same, electrophotographic system and optical communication system
EP1182758B1 (en) Multi-wavelength surface emitting laser and method for manufacturing the same
US5963576A (en) Annular waveguide vertical cavity surface emitting laser and method of fabrication
WO2011096040A1 (en) Semiconductor laser element, method of manufacturing semiconductor laser element, and optical module
JPH0653619A (en) Compound semiconductor device and its manufacture
US20240136803A1 (en) Multi-wavelength vcsel array and method of fabrication
JP4919628B2 (en) Surface emitting laser, surface emitting laser array, optical writing system, and optical transmission system
US5373173A (en) Apparatus for semiconductor laser
US5602866A (en) Semiconductor laser
JP4748646B2 (en) Photonic crystal laser and optical transmission system
US6061485A (en) Method for wavelength division multiplexing utilizing donut mode vertical cavity surface emitting lasers
JPH0722216B2 (en) Semiconductor laser
US20060109884A1 (en) Distributed feedback semiconductor laser and method for manufacturing the same
JP3971600B2 (en) Laser diode
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP3240636B2 (en) Surface emitting semiconductor laser
US5309472A (en) Semiconductor device and a method for producing the same
WO2023012925A1 (en) Semiconductor optical device and method for producing same
JPH04316387A (en) Surface light emitting laser
JPH06152047A (en) Surface emitting semiconductor laser device
KR100319926B1 (en) Gallium nitride-based laser diode with grating and fabricating method thereof
JPH11307874A (en) Optical isolator, distributed feedback laser and optical integrated element
JP3274710B2 (en) Distributed feedback semiconductor laser device and method of manufacturing distributed feedback semiconductor laser device
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof