JPH04316387A - Surface light emitting laser - Google Patents

Surface light emitting laser

Info

Publication number
JPH04316387A
JPH04316387A JP10831391A JP10831391A JPH04316387A JP H04316387 A JPH04316387 A JP H04316387A JP 10831391 A JP10831391 A JP 10831391A JP 10831391 A JP10831391 A JP 10831391A JP H04316387 A JPH04316387 A JP H04316387A
Authority
JP
Japan
Prior art keywords
layer
emitting laser
quantum
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10831391A
Other languages
Japanese (ja)
Inventor
Taketaka Kohama
小濱剛孝
Yoshinori Nakano
中野好典
Takashi Tadokoro
田所貴志
Tokuro Omachi
大町督郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10831391A priority Critical patent/JPH04316387A/en
Publication of JPH04316387A publication Critical patent/JPH04316387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a surface light emitting laser having a low threshold value and a high efficiency. CONSTITUTION:A surface light emitting laser in which a first light reflecting layer 2, a cavity layer 3 containing an active layer therein, a second reflecting layer 5 are sequentially laminated on a main surface of a semiconductor substrate 1 to constitute an optical resonator by the first and second layers, wherein the active layer is formed of one quantum fine wire or quantum box 4 in which one side is formed in length for forming a quantum level.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体基板の主面上に
第一の光反射層、活性層を内部に含むキャビティー層、
第二の反射層で構成される面発光レーザに対して、前記
キャビティー層中の活性層を一辺が量子準位を形成させ
る長さからなる1個の量子細線もしくは量子箱を有する
ことにより、従来技術のものと比較して、極めて低いし
きい値で、かつ高効率の面発光レーザに関するものであ
る。
[Industrial Application Field] The present invention provides a first light reflecting layer on the main surface of a semiconductor substrate, a cavity layer containing an active layer therein,
For a surface-emitting laser configured with a second reflective layer, the active layer in the cavity layer has one quantum wire or quantum box with one side having a length that forms a quantum level, The present invention relates to a surface emitting laser with an extremely low threshold and high efficiency compared to those of the prior art.

【0002】0002

【従来の技術】通常、GaAsに代表される III−
V 族化合物半導体レーザは、基板に対して平行な方向
に光共振器を形成し、光共振器の端面(通常はへき開面
)よりレーザ光を取り出している。この場合、その構造
上の問題から2次元的にウェハ面上にレーザを高密度に
集積するのは非常に困難であった。すなわち個々のレー
ザは光共振器の長さが 100〜300 μm と長い
ので、ウェハ内に単位面積あたりに集積できるレーザの
個数には限界があり、またレーザ光は基板に対して平行
に出射するので、基板に垂直な方向に光を取り出すには
レーザ部分とは、別に45゜反射ミラーを構成しなけれ
ばならないという欠点があった。これに対してレーザ光
を成長基板に対して垂直に取り出す、いわゆる面発光レ
ーザは、その構造から容易に高密度に2次元集積するこ
とが可能である。しかも前記面発光レーザは通常のレー
ザと比較して体積が微小であるので、1mAを下まわる
低しきい値を有するレーザが実現可能となっている。前
記面発光レーザに限定すれば、面発光レーザの直径を小
さくすればするほど、前記活性層内部の注入電流密度が
増大し、より低いしきい値を持つレーザが期待できる。
[Prior Art] Generally, III-
In a group V compound semiconductor laser, an optical resonator is formed in a direction parallel to a substrate, and laser light is extracted from an end face (usually a cleavage plane) of the optical resonator. In this case, it is extremely difficult to two-dimensionally integrate lasers at high density on the wafer surface due to structural problems. In other words, each laser has a long optical cavity of 100 to 300 μm in length, so there is a limit to the number of lasers that can be integrated per unit area within a wafer, and the laser light is emitted parallel to the substrate. Therefore, in order to extract light in a direction perpendicular to the substrate, a 45° reflection mirror must be constructed separately from the laser portion. On the other hand, so-called surface-emitting lasers, which emit laser light perpendicular to the growth substrate, can be easily two-dimensionally integrated at high density due to their structure. Moreover, since the volume of the surface emitting laser is smaller than that of a normal laser, it is possible to realize a laser having a low threshold value of less than 1 mA. Limiting the scope to the surface emitting laser, the smaller the diameter of the surface emitting laser, the higher the injection current density inside the active layer, and a laser with a lower threshold value can be expected.

【0003】成長技術および加工技術の急速な進歩によ
り、膜厚方向のみならず、他の2軸方向への制御につい
ても興味が注がれ、量子細線、量子箱を実現しようとす
る試みが続いている。すなわち、従来の量子井戸を量子
細線もしくは量子箱にすることにより電子の自由度が減
少され、電子の状態密度は、より尖鋭化される。レーザ
においては前記量子細線もしくは量子箱を用いることに
より、利得スペクトルが非常に狭くなり、注入されたキ
ャリアのレーザ発振波長における利得への寄与が非常に
大きくなり、その結果、レーザ発振に必要な電流しきい
値が大幅に減少することが計算されている。また、前記
量子細線および量子箱は、温度の上昇にともないフェル
ミーディラック分布が広がっても、前述したように状態
密度が極めて狭いので、そこには状態密度が存在せず、
温度変化に伴うキャリア分布の変化は極めて小さい。し
きい値電流の温度変化率は、キャリア分布の温度変化に
起因するので、しきい値の温度依存性は大幅に改善され
る。また変調周波数または量子雑音特性の改善も期待さ
れている。
[0003] Due to rapid advances in growth and processing technologies, interest has been focused not only on the control in the film thickness direction but also in other two-axis directions, and attempts to realize quantum wires and quantum boxes continue. ing. That is, by replacing a conventional quantum well with a quantum wire or a quantum box, the degree of freedom of electrons is reduced, and the density of states of electrons is sharpened. In a laser, by using the quantum wire or quantum box, the gain spectrum becomes extremely narrow, and the contribution of the injected carriers to the gain at the laser oscillation wavelength becomes extremely large, and as a result, the current required for laser oscillation becomes It has been calculated that the threshold is significantly reduced. In addition, in the quantum wire and quantum box, even if the Fermi-Dirac distribution expands as the temperature rises, the density of states is extremely narrow as described above, so there is no density of states,
Changes in carrier distribution due to temperature changes are extremely small. Since the temperature change rate of the threshold current is caused by the temperature change of the carrier distribution, the temperature dependence of the threshold value is significantly improved. Improvements in modulation frequency or quantum noise characteristics are also expected.

【0004】しかしながら通常のレーザの場合、活性層
に量子細線および量子箱を実際に作製するに当たって、
共振器の方向(通常数 100μm )に多数個作製し
なければならないが、この場合素子のばらつきは、少く
とも10%以下に抑えなれけばならない。このため現在
に至るまで、量子細線または量子箱の効果が現れたレー
ザ作製の実現には至っていない。
However, in the case of ordinary lasers, when actually producing quantum wires and quantum boxes in the active layer,
A large number of elements must be manufactured in the direction of the resonator (usually several 100 μm), but in this case the variation in elements must be suppressed to at least 10% or less. For this reason, to date, it has not been possible to produce a laser that exhibits the effects of quantum wires or quantum boxes.

【0005】[0005]

【発明が解決しようとする課題】本発明は、低しきい値
で高効率の面発光レーザを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface emitting laser with a low threshold value and high efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は、半導体基板の
主面上に、第一の光反射層、活性層を内部に含むキャビ
ティー層、第二の光反射層の順で積層することによって
、前記第一と第二の光反射層で光共振器を構成して、前
記活性層から放出された光をレーザ発振させる面発光レ
ーザにおいて、前記活性層を一辺が量子準位を形成させ
る長さからなる1個の量子細線もしくは量子箱により構
成する。
[Means for Solving the Problems] The present invention includes stacking a first light-reflecting layer, a cavity layer containing an active layer inside, and a second light-reflecting layer in this order on the main surface of a semiconductor substrate. In the surface emitting laser in which the first and second light reflecting layers constitute an optical resonator and the light emitted from the active layer is oscillated, one side of the active layer forms a quantum level. It consists of a single quantum wire or a quantum box.

【0007】[0007]

【実施例】以下、キャビティー層としてAlGaAs、
当該AlGaAsの中心に活性層として一辺10nmの
GaAs量子箱を用いた面発光レーザの場合について説
明する。なお実施例は一つの例示であって、本発明の精
神を逸脱しない範囲で、種々の変更または改良を行い得
ることは言うまでもない。
[Example] Below, the cavity layer is made of AlGaAs,
A case of a surface emitting laser using a GaAs quantum box with a side of 10 nm as an active layer at the center of the AlGaAs will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the invention.

【0008】図1は本発明の一実施例の構造図である。 まず、最初にn型GaAs基板1の上にMOCVD 結
晶成長法を用いて、第一の光反射層として各層の光学膜
厚が発振波長のλ/4n(nは屈折率)からなる29.
5対のn−AlAs/GaAs 反射層2を形成した。 次にキャビティー層を形成するために、まず光学膜が発
振波長のλ/2nからなるアンドープAl0.3Ga0
.7As層、10nmアンドープGaAs層を形成する
。続いて、EB露光を用いて一辺が10nmの正方形パ
ターンを露光し、その後、塩素を用いた ECRドライ
エッチングにより前記正方形パターン以外のGaAs層
をエッチングした後、硫酸系による化学エッチングによ
りスライトエッチングを行い、GaAsからなる量子箱
4を形成する。 引き続いて MOCVD法を用いて前記GaAs正方形
パターンをアンドープAl0.3Ga0.7As層で埋
め込み成長を行い、全体で光学膜厚が発振波長のλ/n
からなるアンドープAl0.3Ga0.7As層3を形
成する。続いて、前記アンドープAl0.3Ga0.7
As層3の上に第二の光反射層として各層の光学膜厚が
発振波長のλ/4n(nは屈折率)からなる20.5対
のp−AlAs/GaAs 反射層5を形成する。最後
にレジストパターンニングにより前記GaAs活性層が
中心に来るように一辺が2μm の正方形のマスクを形
成する。そしてマスク外部を塩素を用いた ECRエッ
チングを用いてGaAs基板までエッチングし、ポリイ
ミドによる平坦化後、前記素子上部にAnZnNi/A
u の p電極6、前記素子下部にAnZnNi/Au
 のn電極7を形成し完了する。
FIG. 1 is a structural diagram of one embodiment of the present invention. First, a MOCVD crystal growth method is used on an n-type GaAs substrate 1 to form a first light reflecting layer, each layer having an optical thickness of λ/4n (n is the refractive index) of the oscillation wavelength.
Five pairs of n-AlAs/GaAs reflective layers 2 were formed. Next, in order to form a cavity layer, first the optical film is made of undoped Al0.3Ga0 consisting of λ/2n of the oscillation wavelength.
.. A 7As layer and a 10 nm undoped GaAs layer are formed. Next, a square pattern with a side of 10 nm was exposed using EB exposure, and then the GaAs layer other than the square pattern was etched by ECR dry etching using chlorine, and then light etching was performed by chemical etching using sulfuric acid. , a quantum box 4 made of GaAs is formed. Subsequently, the GaAs square pattern was filled with an undoped Al0.3Ga0.7As layer using the MOCVD method, and the total optical film thickness was λ/n of the oscillation wavelength.
An undoped Al0.3Ga0.7As layer 3 is formed. Subsequently, the undoped Al0.3Ga0.7
On the As layer 3, 20.5 pairs of p-AlAs/GaAs reflective layers 5 are formed as a second light reflective layer, each layer having an optical thickness of λ/4n (n is the refractive index) of the oscillation wavelength. Finally, a square mask with sides of 2 μm is formed by resist patterning so that the GaAs active layer is centered. Then, the outside of the mask was etched down to the GaAs substrate using ECR etching using chlorine, and after planarization with polyimide, AnZnNi/A was etched on the top of the element.
p electrode 6 of u, AnZnNi/Au at the bottom of the element
The n-electrode 7 is formed and completed.

【0009】前記のように構成した面発光レーザに対し
て、電流を注入しI−L特性を調べたところ、従来より
極めて低いしきい値である0.5mA においてI−L
曲線が立ち上がり、レーザ発振に至ることが確認された
。また、発振スペクトルは前記半導体反射層で構成され
るエタロンにより決定される波長であり、半値幅も1n
m以下と分光器の分解能の限界以下であり、通常の面発
光レーザと遜色がなかった。
When current was injected into the surface emitting laser constructed as described above and the I-L characteristics were investigated, the I-L characteristics were found to be low at 0.5 mA, which is a much lower threshold than conventional ones.
It was confirmed that the curve rose and laser oscillation occurred. Furthermore, the oscillation spectrum has a wavelength determined by the etalon composed of the semiconductor reflective layer, and the half-width is also 1n.
m or less, which is below the resolution limit of a spectrometer, and is comparable to a normal surface-emitting laser.

【0010】以上は、活性層に量子箱を用いた場合であ
るが、活性層に量子細線を用いてもも同様の結果が得ら
れた。
The above is a case where a quantum box is used in the active layer, but similar results were obtained when a quantum wire was used in the active layer.

【0011】以上の実施例では、キャビティーとしてA
lGaAs、前記AlGaAsの中心に活性層として幅
10nmのGaAs量子箱を用いた面発光レーザの場合
を例に取り説明したが、他の発振波長を有する面発光レ
ーザの場合でも同様の効果が得られる。例えばInP基
板上に活性層としてInGaAsP の量子箱もしくは
量子細線を用いた面発光レーザの場合でも上記効果が得
られることは容易に類推できる。
In the above embodiments, A is used as the cavity.
The explanation has been given using a surface emitting laser using a GaAs quantum box with a width of 10 nm as an active layer in the center of AlGaAs, but similar effects can be obtained with surface emitting lasers having other oscillation wavelengths. . For example, it can be easily inferred that the above effect can be obtained even in the case of a surface emitting laser using an InGaAsP quantum box or quantum wire as an active layer on an InP substrate.

【0012】0012

【発明の効果】以上説明したように、本発明の面発光レ
ーザは、半導体基板の主面上に前記第一の光反射層を形
成し、前記第一の光反射層上に、キャビティー層の中心
に1個の量子細線もしくは量子箱を含むキャビティー層
を形成した後、前記キャビティー層上に第二の光反射層
を形成したことにより、従来技術のものと比較して、極
めて低しきい値で高効率の面発光レーザが実現できた。 このため、光交換、光ニューラルネットワーク、光情報
処理用の光源としての利用が可能になる等、経済的効果
は大である。
As explained above, in the surface emitting laser of the present invention, the first light reflecting layer is formed on the main surface of the semiconductor substrate, and the cavity layer is formed on the first light reflecting layer. By forming a cavity layer containing one quantum wire or quantum box at the center of the optical fiber, and then forming a second light-reflecting layer on the cavity layer, the light emission rate is extremely low compared to that of the conventional technology. We have achieved a highly efficient surface-emitting laser at the threshold value. Therefore, it has great economic effects, such as being able to be used as a light source for optical exchange, optical neural networks, and optical information processing.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の構造図である。FIG. 1 is a structural diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  n型GaAs基板 2  29.5対のn−AlAs/GaAs 反射層3
  アンドープAl0.3Ga0.7As層4  アン
ドープGaAsからなる量子箱5  20.5対のp−
AlAs/GaAs 反射層6  AuZnNi/Au
 のp電極 7  AuGeNi/Au のn電極 8  ポリイミド
1 n-type GaAs substrate 2 29.5 pairs of n-AlAs/GaAs reflective layers 3
Undoped Al0.3Ga0.7As layer 4 Quantum box 5 made of undoped GaAs 20.5 pairs of p-
AlAs/GaAs reflective layer 6 AuZnNi/Au
P electrode 7 AuGeNi/Au N electrode 8 Polyimide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の主面上に、第一の光反射
層、活性層を内部に含むキャビティー層、第二の光反射
層の順で積層することによって、前記第一と第二の光反
射層で光共振器を構成して、前記活性層から放出された
光をレーザー発振させる面発光レーザであって、前記活
性層は一辺が量子準位を形成させる長さからなる1個の
量子細線もしくは量子箱から構成されていることを特徴
とする面発光レーザ。
1. By stacking a first light-reflecting layer, a cavity layer containing an active layer inside, and a second light-reflecting layer in this order on the main surface of a semiconductor substrate, the first and second light-reflecting layers are stacked in this order. A surface emitting laser in which an optical resonator is configured with a light reflecting layer and oscillates light emitted from the active layer, the active layer having one side having a length to form a quantum level. A surface emitting laser characterized in that it is composed of a quantum wire or a quantum box.
【請求項2】  請求項1に記載の面発光レーザにおい
て、前記キャビティー層がレーザ発振波長もしくはその
半分に相当する膜厚を有し、前記活性層は前記キャビテ
ィー層の中間に構成されていることを特徴とする面発光
レーザ。
2. The surface emitting laser according to claim 1, wherein the cavity layer has a thickness corresponding to a laser oscillation wavelength or a half thereof, and the active layer is formed in the middle of the cavity layer. A surface emitting laser characterized by:
JP10831391A 1991-04-15 1991-04-15 Surface light emitting laser Pending JPH04316387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10831391A JPH04316387A (en) 1991-04-15 1991-04-15 Surface light emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10831391A JPH04316387A (en) 1991-04-15 1991-04-15 Surface light emitting laser

Publications (1)

Publication Number Publication Date
JPH04316387A true JPH04316387A (en) 1992-11-06

Family

ID=14481546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10831391A Pending JPH04316387A (en) 1991-04-15 1991-04-15 Surface light emitting laser

Country Status (1)

Country Link
JP (1) JPH04316387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148679A (en) * 1995-11-29 1997-06-06 Nec Corp Semiconductor light emitting device
US8741450B2 (en) 2002-03-22 2014-06-03 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US8785003B2 (en) 2010-03-05 2014-07-22 Idemtisu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20140231769A1 (en) * 2013-02-15 2014-08-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148679A (en) * 1995-11-29 1997-06-06 Nec Corp Semiconductor light emitting device
US8741450B2 (en) 2002-03-22 2014-06-03 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US8785003B2 (en) 2010-03-05 2014-07-22 Idemtisu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20140231769A1 (en) * 2013-02-15 2014-08-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device

Similar Documents

Publication Publication Date Title
US6320893B1 (en) Surface emitting semiconductor laser
US8824517B2 (en) Surface-emission laser devices, surface-emission laser array having the same, electrophotographic system and optical communication system
JP4621393B2 (en) Surface emitting semiconductor laser and method for manufacturing surface emitting semiconductor laser
JP3753216B2 (en) Semiconductor laser device
JPH0669585A (en) Surface emitting semiconductor laser and its manufacture
JPH10284806A (en) Vertical resonator laser having photonic band structure
JPH06291406A (en) Surface emitting semiconductor laser
JP4141172B2 (en) Surface emitting semiconductor laser device manufacturing method, surface emitting semiconductor laser device, and optical transmission system
JP4919628B2 (en) Surface emitting laser, surface emitting laser array, optical writing system, and optical transmission system
US7154927B2 (en) Surface emitting semiconductor laser and communication system using the same
JP5190038B2 (en) Surface emitting laser
US6846685B2 (en) Vertical-cavity surface-emitting semiconductor laser
JP5006242B2 (en) Surface emitting semiconductor laser device
JP4602692B2 (en) Surface emitting laser and optical transmission system
JPH11330609A (en) Surface-emission laser with monitor and manufacture thereof
JPH06252504A (en) Surface-emission laser and manufacture thereof
JPH04316387A (en) Surface light emitting laser
JPH06188518A (en) Variable wavelength surface emission laser
US6829274B2 (en) Surface emitting semiconductor laser device
WO2003034559A1 (en) Vertically integrated high power surface emitting semiconductor laser device and method of producing the same
US6567454B1 (en) Coupled-resonator vertical-cavity lasers with two active gain regions
JP2004128524A (en) Manufacturing method for surface emitting semiconductor laser device
JP2003008142A (en) Surface light emitting semiconductor laser device
JP4026085B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same