JP2004128524A - Manufacturing method for surface emitting semiconductor laser device - Google Patents

Manufacturing method for surface emitting semiconductor laser device Download PDF

Info

Publication number
JP2004128524A
JP2004128524A JP2004021526A JP2004021526A JP2004128524A JP 2004128524 A JP2004128524 A JP 2004128524A JP 2004021526 A JP2004021526 A JP 2004021526A JP 2004021526 A JP2004021526 A JP 2004021526A JP 2004128524 A JP2004128524 A JP 2004128524A
Authority
JP
Japan
Prior art keywords
layer
light
semiconductor
reflective film
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004021526A
Other languages
Japanese (ja)
Other versions
JP3876886B2 (en
Inventor
Atsushi Sakurai
櫻井 淳
Akira Sakamoto
坂本 朗
Hideo Nakayama
中山 秀生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004021526A priority Critical patent/JP3876886B2/en
Publication of JP2004128524A publication Critical patent/JP2004128524A/en
Application granted granted Critical
Publication of JP3876886B2 publication Critical patent/JP3876886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface emitting semiconductor laser device capable of controlling the polarization plane, without influencing the light output characteristic. <P>SOLUTION: On a semiconductor substrate, sequentially laminated a lower semiconductor multilayer reflecting layer, a lower spacer layer, an active layer, an upper spacer layer, and an upper semiconductor multilayer reflecting film formed so as to intermittently include Al<SB>x</SB>Ga<SB>1-x</SB>A<SB>s</SB>layers sequentially so that<SB>x</SB>becomes gradually smaller toward a light emitting port direction. A semiconductor column having a prescribed shape is formed so as to expose the Al<SB>x</SB>Ga<SB>1-x</SB>A<SB>s</SB>layers on the sectional face. Then, a water vapor-containing gas is brought into contact with the Al<SB>x</SB>Ga<SB>1-x</SB>A<SB>s</SB>layers exposed from the sectional face or the circumference of the semiconductor column, and thereby the Al<SB>x</SB>Ga<SB>1-x</SB>A<SB>s</SB>layers are subjected to oxidation process. At least the upper semiconductor multilayer reflecting films are formed so as to intermittently include the reflecting layers having an opening region with reflectivity different from the circumference region to the light emitted from the active layer, toward the light emitting port direction. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、横モード、偏波面を制御することのできる垂直キャビティの面発光レーザに関する。 The present invention relates to a vertical cavity surface emitting laser capable of controlling a transverse mode and a polarization plane.

 光通信、光コンピュータなどの光源として高密度化された半導体レーザアレイが必要となっている。半導体レーザアレイは複数の半導体レーザを適当なピッチで配列し各々独立に駆動制御して、発光させるものである。従来から広く用いられてきた端面発光型のレーザは、発光効率が高いという利点があったが、同一基板上では一次元の並列化しかできないため、多数の半導体レーザを集積化した半導体レーザアレイを形成するのは困難であった。これに対し、面発光レーザは基板に対して垂直方向に光を出射するため、同一基板上に二次元的に並列化することができ、高精度かつ高密度のマトリックスアレイを得ることができるという利点があり、有望視されている。 半導体 A high-density semiconductor laser array is required as a light source for optical communications, optical computers, and the like. The semiconductor laser array is configured to arrange a plurality of semiconductor lasers at an appropriate pitch, control the driving of each semiconductor laser independently, and emit light. Edge-emitting lasers, which have been widely used in the past, have the advantage of high luminous efficiency.However, since only one-dimensional parallelization is possible on the same substrate, a semiconductor laser array in which many semiconductor lasers are integrated is used. It was difficult to form. On the other hand, surface-emitting lasers emit light in a direction perpendicular to the substrate, so that they can be two-dimensionally parallelized on the same substrate, and a high-precision, high-density matrix array can be obtained. It has advantages and looks promising.

 面発光レーザの一つである垂直共振器型の面発光レーザは、活性層とスペーサ層とからなる中間層と、前記中間層を挟みこむ上下2組の分布帰還型反射膜(Distributed Brug Reflactor)からなり、前記DBRで共振器を形成し、基板に対して垂直方向に光を出射する半導体レーザである。端面発光型レーザにおいては電場ベクトルがxy面内にあるTE(transverse electric mode)モード、磁場ベクトルがxy面内にあるTM(transverse magnetic mode)モードの間の導波損および反射率の差のような偏波決定要因があるが、面発光レーザではその向きは不確定である。面発光レーザの発光面の形状が点対称である場合、個々の素子でランダムな方向を規定して使用する場合が殆どであるため、面発光レーザにおいても偏波を制御することが応用上非常に重要である。 A vertical cavity surface emitting laser, which is one of the surface emitting lasers, includes an intermediate layer including an active layer and a spacer layer, and two sets of upper and lower distributed feedback reflecting films sandwiching the intermediate layer (Distributed Brug Reflactor). And a semiconductor laser that forms a resonator with the DBR and emits light in a direction perpendicular to the substrate. In an edge-emitting laser, the difference between the waveguide loss and the reflectance between the TE (transverse electric mode) mode in which the electric field vector is in the xy plane and the TM (transverse magnetic mode) mode in which the magnetic field vector is in the xy plane. Although there are various factors that determine the polarization, the direction of the surface emitting laser is uncertain. When the shape of the light emitting surface of a surface emitting laser is point symmetric, it is almost impossible to control the polarization of the surface emitting laser because it is almost always the case that individual elements are used by defining a random direction. Is important.

 垂直共振器型面発光レーザにおいて、偏波を制御しようとする試みは幾つかの報告がある。例えば異方形状を有する電極により、異方的な利得を与える利得導波路型面発光レーザの例がある。2つ以上の分割された電極によって発振するレーザAとレーザBとを有し、レーザBへのオン、オフによって2つの偏波方向を任意に制御できるようにしたものである(例えば、特許文献1参照)。その他では、特許文献2に示されているように、光出射部に矩形の高屈折率導波部を設け、その長辺に平行な偏波を通す試みがある。さらに、非特許文献1および、特許文献3では、ポスト形状を任意の一組のポスト側面が平行であり、かつその辺が最も長くなるようにポスト形を作成することで、偏波制御を行うものである。レーザは図4に示す通り、インジウムガリウム砒素(InGaAs)からなる三重量子井戸活性層をガリウム砒素/アルミニウム砒素からなるDBRでサンドイッチした典型的なVCSEL構造である。これに短軸が<110>方向となるように配置された矩形のフォトレジストマスクを形成した後、塩素ガスを用いた反応性イオンビームエッチングにより上部半導体多層反射膜の一部を除去していわゆるポスト形状を形成する。さらに電流狭窄のためこのポスト部の直下を除く活性層をプロトン注入により非活性化(高抵抗化)した後、所定の位置にアノードおよびカソード電極を形成して完成する。また光出射の方向はこの基板の裏面側である。 There have been several reports of attempts to control the polarization of vertical cavity surface emitting lasers. For example, there is an example of a gain waveguide type surface emitting laser in which anisotropic gain is provided by an electrode having an anisotropic shape. It has a laser A and a laser B oscillated by two or more divided electrodes, and two polarization directions can be arbitrarily controlled by turning on and off the laser B (for example, see Patent Document 1). 1). In addition, as disclosed in Patent Document 2, there is an attempt to provide a rectangular high-refractive-index waveguide in a light-emitting section and pass polarized waves parallel to the long sides thereof. Further, in Non-Patent Document 1 and Patent Document 3, polarization control is performed by creating a post shape such that an arbitrary set of post side surfaces is parallel and the sides thereof are the longest. Things. As shown in FIG. 4, the laser has a typical VCSEL structure in which a triple quantum well active layer made of indium gallium arsenide (InGaAs) is sandwiched by a gallium arsenide / aluminum arsenide DBR. After forming a rectangular photoresist mask having a short axis in the <110> direction, a part of the upper semiconductor multilayer reflective film is removed by reactive ion beam etching using chlorine gas. Form a post shape. Further, after the active layer except the portion immediately below the post portion is inactivated (increased in resistance) by proton implantation due to current constriction, an anode and a cathode are formed at predetermined positions to complete the active layer. The direction of light emission is on the back side of this substrate.

 また、偏波面の制御を目的としたものではないが、面発光型レーザの低しきい値化を図るため分布帰還型反射膜中に自然酸化膜を導入し、電流狭窄をおこなった例が非特許文献2に示されている。このレーザもまた図5に示すように、InGaAsからなる三重量子井戸活性層をGaAs/AlAsからなるDBRでサンドイッチした典型的なVCSEL構造である。ただし、p型DBRはGaAs/AlAsの1ペアで、GaAsが上層に位置している、プロセスはまずフォトリソグラフィ技術とエッチング技術とをつかってp型GaAs層を30若しくは60μm形の円形に加工する。続いて露出したp型AlAs層を475℃に加熱した炉の中で約3分間熱処理する。この時、炉の中には窒素をキャリアガスとし、95℃に保たれた水蒸気が導入されている。露出したAlAs層は横方向から徐々に酸化され、最終的には、酸化されずに残った2〜8μm角の領域が形成される。酸化された領域は酸化アルミニウム化合物となり、殆ど電流を通さないから電流狭窄が可能となる。また、面発光レーザのさらなる低しきい値化をはかるため、DBR中に自然酸化膜を複数層導入し電流狭窄をおこなった例が、非特許文献3に示されている。このレーザは図6に示すように、上下のDBRがGaAs/AlAsの積層膜で形成されており、前記DBRをエッチングしてポストを形成した後、露出したAlAs層すべてを400℃に加熱した炉の中で熱処理する。この時、炉の中には窒素をキャリアガスとし、80℃に保たれた水蒸気が導入されている。露出したAlAs層は横方向から徐々に酸化され、最終的には15〜20μm角の領域が酸化されずに残る。酸化された領域は、酸化アルミニウムの化合物となり、殆ど電流を通さないから電流狭窄が可能となる。表面最結合電流がより抑制され、70μAの低しきい値を実現している。
特開平4ー242989号公報 特開平1ー265584号公報 特開平8ー181391号公報 「アプライドフィジクスレターズ(Appl.,Phys.,Lett.)」,第66巻,第8号,1995年,p.908−910, 「アプライドフィジクスレターズ(Appl.,Phys.,Lett.)」,第65巻,第1号,1994年,p.97−99, 「アイイーイーイー フォトニクス テクノロジー レターズ(IEEE,Photon.Technol.Lett.),第7巻,第11号,1995年,p.1234−1236,
Although it is not intended to control the polarization plane, there is an example in which a natural oxide film is introduced into a distributed feedback type reflection film to reduce the threshold of a surface emitting laser and current confinement occurs. It is shown in Patent Document 2. This laser also has a typical VCSEL structure in which a triple quantum well active layer made of InGaAs is sandwiched by a DBR made of GaAs / AlAs, as shown in FIG. However, the p-type DBR is a pair of GaAs / AlAs, and GaAs is located in the upper layer. The process first processes the p-type GaAs layer into a 30 or 60 μm-shaped circle using photolithography and etching. . Subsequently, the exposed p-type AlAs layer is heat-treated for about 3 minutes in a furnace heated to 475 ° C. At this time, steam maintained at 95 ° C. was introduced into the furnace using nitrogen as a carrier gas. The exposed AlAs layer is gradually oxidized from the lateral direction, and finally, a region of 2 to 8 μm square remaining without being oxidized is formed. The oxidized region becomes an aluminum oxide compound and hardly allows current to flow, so that current constriction becomes possible. Non-Patent Document 3 discloses an example in which a plurality of natural oxide films are introduced into a DBR to confine a current in order to further lower the threshold of a surface emitting laser. As shown in FIG. 6, this laser has upper and lower DBRs formed of a laminated film of GaAs / AlAs. After the DBRs are etched to form posts, all exposed AlAs layers are heated to 400 ° C. Heat treatment in At this time, steam maintained at 80 ° C. was introduced into the furnace using nitrogen as a carrier gas. The exposed AlAs layer is gradually oxidized from the lateral direction, and finally a region of 15 to 20 μm square remains without being oxidized. The oxidized region becomes a compound of aluminum oxide and hardly conducts current, so that current confinement is possible. The surface reconnection current is further suppressed, and a low threshold value of 70 μA is realized.
Japanese Patent Application Laid-Open No. Hei 4-242989 JP-A-1-265584 JP-A-8-181391 "Applied Physics Letters (Appl., Phys., Lett.)", Vol. 66, No. 8, 1995, p. 908-910, "Applied Physics Letters (Appl., Phys., Lett.)", Vol. 65, No. 1, 1994, p. 97-99, "IEEE Photonics Technology Letters (IEEE, Photon.Technol. Lett.), Vol. 7, No. 11, 1995, p. 1234-1236.

 しかしながら、特許文献1に示した利得導波型レーザにおいては、光の閉じこめが弱く光は発散しており、電極形状の変化で与えられる利得の異方性は非常に小さい。従って、偏波制御効果も小さいものと考えられる。またレーザAとレーザBの電極をL字型やT字型に配置したものは、偏光制御によってレーザビームが偏向するという欠点があり、十字型のものは偏向はしないものの、偏光制御のために2つのレーザにほぼ同等のしきい値以上の電流を流す必要があり、駆動電力が大きくなるという問題がある上、点対称になり易く、レーザビームを単一横モードに保ちにくいという問題がある。また、特許文献2に示される構造では、高屈折率導波部で効率よく光が閉じこめられるかは疑問であり、従って、導波制御効果も小さいと思われる。また、前述したアプライドフィジクスレターズに示された構造では,DBRの回折損失を利用して偏波面の制御をおこなったとしているが、発光に寄与しなかった電子・正孔再結合をはじめとする損失分は熱となって発生するため、ポスト部の体積が比較的小さいこの素子では放熱性が十分ではなく、光出力特性が制限を受ける。実際この論文の筆者等は短軸方向の形をこれ以上小さくしても電流しきい値は下がらないばかりか、かえって増加してしまったとしている。さらにこの構造ではプロトン注入時の制約から電流狭窄部のアパーチャ径をポスト部の径より小さくするのが難しいという問題に加え、活性領域とプロトン注入領域界面での非発光再結合も無視することができない。従って活性領域へのキャリアの注入効率が高くないため、低しきい値化には限界がある。 However, in the gain-guided laser disclosed in Patent Literature 1, light is weakly confined and light diverges, and the gain anisotropy given by a change in electrode shape is very small. Therefore, it is considered that the polarization control effect is small. Also, the lasers A and B in which the electrodes are arranged in an L-shape or T-shape have the drawback that the laser beam is deflected by the polarization control. It is necessary to pass a current equal to or more than a substantially equal threshold value to the two lasers, so that there is a problem that the driving power is large, and that there is a problem that it is easy to be point-symmetric and it is difficult to keep the laser beam in the single transverse mode. . In the structure disclosed in Patent Document 2, it is questionable whether light is efficiently confined in the high refractive index waveguide, and therefore, it is considered that the waveguide control effect is small. In the structure shown in the above-mentioned Applied Physics Letters, the polarization plane is controlled by using the diffraction loss of the DBR. However, the structure includes the recombination of electrons and holes that did not contribute to the light emission. Since the loss is generated as heat, the element having a relatively small post portion does not have sufficient heat dissipation, and the light output characteristics are limited. In fact, the authors of this paper say that even if the shape in the minor axis direction is further reduced, the current threshold value does not decrease but rather increases. Furthermore, in this structure, it is difficult to make the aperture diameter of the current constriction part smaller than the diameter of the post part due to the restriction at the time of proton injection. In addition, non-radiative recombination at the interface between the active region and the proton injection region is ignored. Can not. Therefore, the efficiency of carrier injection into the active region is not high, and there is a limit to lowering the threshold voltage.

 また、非特許文献1乃至3に示された例では、AlAs層の酸化速度は組成とドーピング濃度が決まれば一意的に決まるはずであるが、酸化速度のばらつきがある。AlAs層が酸化されてAlxyに変化する際に体積変化があり、この影響が酸化の活性化エネルギーに影響するのは自明のことであり、それによると思われる酸化速度のばらつきがあり、電流が通過する領域の径が不揃いになるという傾向があった。 In the examples shown in Non-Patent Documents 1 to 3, the oxidation rate of the AlAs layer should be uniquely determined if the composition and the doping concentration are determined, but the oxidation rate varies. When the AlAs layer is oxidized and changes to Al x O y , there is a volume change, and it is obvious that this influence affects the activation energy of oxidation, and there is a variation in the oxidation rate which is thought to be caused by the change. In addition, there is a tendency that the diameters of the regions through which the current passes become uneven.

 本発明は、前記実情に鑑みてなされたもので、光出力特性に特別の影響を与えることなく、偏波面制御を行うことのできる、面発光型半導体レーザを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface-emitting type semiconductor laser capable of controlling the polarization plane without particularly affecting the optical output characteristics.

 そこで本発明の特徴は、半導体基板上に下部半導体多層反射膜、下部スペーサ層、活性層、上部スペーサ層、少なくとも、光出射口方向に向かうに従ってxが次第に小さくなるように、順次AlxGa1-xAs層を、断続的に含むように形成された上部半導体多層反射膜とを順次積層する工程と、少なくとも下部スペーサ層に達するまでエッチングし、所望の形状の半導体柱を形成する工程と、前記断続的に形成されたAlxGa1-xAs層を、前記半導体柱の外壁から所望の深さまで酸化する選択酸化工程とを含み、少なくとも前記上部半導体多層反射膜が、光出射口方向に向かうに従って活性層からの出射光に対してその周囲の領域と反射率の異なる開口領域を有する反射膜層を断続的に含むように形成したことを特徴とする。 Therefore features of the present invention includes a lower semiconductor multilayer reflection film on a semiconductor substrate, a lower spacer layer, an active layer, an upper spacer layer, at least, so that x becomes gradually smaller toward the light exit direction, sequentially Al x Ga 1 -x As layer, a step of sequentially laminating an upper semiconductor multilayer reflective film formed to include intermittently, and a step of etching at least until reaching the lower spacer layer to form a semiconductor pillar of a desired shape; A selective oxidation step of oxidizing the intermittently formed Al x Ga 1 -x As layer from the outer wall of the semiconductor pillar to a desired depth, at least the upper semiconductor multilayer reflective film is directed in the direction of the light exit port. It is characterized in that a reflection film layer having an opening region having a reflectance different from that of the surrounding region is intermittently included with respect to the light emitted from the active layer as it goes.

 本発明によれば、高効率の電流狭窄効果を有するとともに、光導波路を形成すべく反射率を変化させる部位を有してなる、反射膜層が、光活性領域近傍から出射口まで断続的に設けられているため、均一で制御性よく、再現性の高い実効的導波路を形成することが可能となる。 According to the present invention, the reflective film layer having a high-efficiency current confinement effect and having a portion for changing the reflectance to form an optical waveguide is intermittently provided from the vicinity of the photoactive region to the emission port. Since it is provided, it is possible to form an effective waveguide with uniformity, good controllability, and high reproducibility.

 また、前記反射率の異なる領域を、半導体基板に対して垂直方向からみた断面形状が短辺と長辺とを有してなる矩形をなすように構成すれば、横モードを安定させながら偏波面を効率よく制御することができる。 Further, when the regions having different reflectivities are configured so that the cross-sectional shape viewed from the direction perpendicular to the semiconductor substrate forms a rectangle having a short side and a long side, the polarization mode is stabilized while the transverse mode is stabilized. Can be controlled efficiently.

 さらにこの導波路は発光部と同等の大きさの光の伝搬空間を維持して出射口まで導くため、低しきい値で、活性層からの光の偏波面の安定性が高められる。また発生する熱を比較的体積の大きいメサ構造部に放熱できるため、発熱を抑制し、広い出力範囲にわたって光出力特性を劣化させることなく、偏波面を安定化することが可能となる。 Furthermore, since the waveguide maintains the light propagation space of the same size as the light emitting portion and guides the light to the emission port, the stability of the polarization plane of the light from the active layer is increased at a low threshold. Further, since the generated heat can be dissipated to the mesa structure having a relatively large volume, it is possible to suppress heat generation and stabilize the polarization plane without deteriorating the optical output characteristics over a wide output range.

 さらにまた、光閉じこめ層のアパーチャー径を活性領域から離れるに従って大きくなるようにしているため、光効率の電流狭窄効果を得ることができるとともに、発光部からの光の伝搬空間の平面的な大きさが急激に広がることなく、徐々に上側に開いている形の導波路がDBR内に均一性よく形成され、低しきい値で活性層からの光の偏波面の安定性を高めることが可能となる。 Furthermore, since the aperture diameter of the light confinement layer is increased with distance from the active region, the current confinement effect of light efficiency can be obtained, and the planar size of the light propagation space from the light emitting portion can be obtained. Is not spread rapidly, a waveguide that is gradually open upward is formed in the DBR with good uniformity, and it is possible to increase the stability of the polarization plane of light from the active layer at a low threshold. Become.

 また、これらの光閉じこめ層は、AlAsあるいはAlGaAs層の選択酸化によって容易に形成されるが、酸化による体積変化が大きく、膜厚の厚い層を形成する場合、歪が発生したり、アパーチャー径の寸法精度が低下したりする虞があるが、薄い層を離間して多層に配設し、これを酸化すればよいため、酸化による体積変化に起因する歪の問題もない。また、離間して多層の光閉じこめ層が形成されているため、効果についても、連続的に形成されている状態に近いものとなる。 These optical confinement layers are easily formed by selective oxidation of an AlAs or AlGaAs layer. However, when a layer having a large volume change due to oxidation and a thick film is formed, distortion occurs or an aperture diameter is reduced. Although the dimensional accuracy may be reduced, thin layers may be separated and arranged in multiple layers and oxidized, so that there is no problem of distortion due to volume change due to oxidation. Further, since the multiple optical confinement layers are formed apart from each other, the effect is close to a state where the layers are continuously formed.

 さらに、これらの光閉じこめ層で形成される導波路が異方的となるように配置されているため、導波路の中で導波路断面の長辺で決まる0次のTEモードが最初に支配的になり、この時、導波路断面の短辺と平行な偏波を効率よく得ることができる。すなわち、電流注入領域内でもっとも距離の短い方向に偏波を制御することができることになる。 Furthermore, since the waveguides formed by these light confinement layers are arranged to be anisotropic, the 0th-order TE mode determined by the long side of the waveguide cross section in the waveguide is dominant first. At this time, a polarized wave parallel to the short side of the waveguide section can be efficiently obtained. That is, the polarization can be controlled in the direction of the shortest distance in the current injection region.

 また、光の閉じこめ状態が強いほど出射ビームの広がり角が大きくなるので、互いにアパーチャー径の広がる複数の(酸化アルミニウム層からなる)絶縁性の光閉じこめ層によって電流分布を制御するのみならず、発光部からの光の伝搬空間の平面的な大きさが急激に広がらないような上側に開いている形の導波路がDBR内に制御性よく形成されているため、低しきい値で、活性層からの光の横モードおよび偏波面をより安定化することができる。 Also, since the divergence angle of the emitted beam increases as the light confinement state increases, not only the current distribution is controlled by a plurality of insulating light confinement layers (consisting of an aluminum oxide layer) whose aperture diameters are widened, but also the light emission is controlled. Since the waveguide that is open upward is formed in the DBR with good controllability so that the planar size of the propagation space of light from the part does not suddenly spread, the active layer has a low threshold value. The horizontal mode and the polarization plane of the light from the light source can be further stabilized.

 このように、本発明によれば、偏波面を安定化させることができる。またその方法は簡便で再現性が高く、レーザ特性を劣化させるおそれもない。 Thus, according to the present invention, the polarization plane can be stabilized. In addition, the method is simple, has high reproducibility, and has no possibility of deteriorating laser characteristics.

 また本発明では、通常の水蒸気を用いた選択酸化において、AlxGa1-xAs層はアルミニウム含有量すなわちxが大きくなるほど、酸化速度は増し、酸化されずに残るアパーチャ径は、光出射口方向に向かうに従って次第に大きくなる。従って極めて容易に、上記構成が形成可能となる。 Further, in the present invention, in the selective oxidation using ordinary steam, the oxidation rate increases as the aluminum content, that is, x , of the Al x Ga 1 -x As layer increases, and the aperture diameter remaining without being oxidized increases the light emission port. It gets bigger and bigger as you go. Therefore, the above configuration can be formed very easily.

 本発明によれば、均一で制御性よく、再現性の高い実効的導波路を形成することが可能となる。 According to the present invention, it is possible to form an effective waveguide with uniformity, good controllability, and high reproducibility.

  以下、本発明について、図面を参照しつつ説明する。 Hereinafter, the present invention will be described with reference to the drawings.

 図1は本発明の第1の実施例の面発光型半導体レーザ装置の上面図、その断面図である。 FIG. 1 is a top view and a sectional view of a surface emitting semiconductor laser device according to a first embodiment of the present invention.

 この面発光型半導体レーザ装置は、p型のAl0.9Ga0.1As/Al0.3Ga0.7Asからなる上部多層反射膜8のAl0.9Ga0.1As層が入るべき領域にAlAs層7が飛び飛びの周期で挿入され、このAlAs層7が中心部を残して半導体柱の周囲から選択的に酸化され、電流狭窄機能を具備した光閉じこめ層6と化し、上部多層反射膜8中に断続的な光閉じこめ層を具備したことを特徴とする。すなわち、このレーザ装置は、n型ガリウムヒ素(GaAs)基板1上に形成されたn型Al0.9Ga0.1As/Al0.3Ga0.7As下部半導体多層反射膜2と、アンドープのAl0.6Ga0.4Asからなる下部スペーサ層3と、アンドープのAl0.11Ga0.89量子井戸層とアンドープのAl0.3Ga0.7As障壁層とからなる量子井戸活性層4と、アンドープのAl0.6Ga0.4Asからなる上部スペーサ層5と、p型Al0.9Ga0.1As/Al0.3Ga0.7As上部半導体多層反射膜8と、p型GaAsコンタクト層9とが順次積層せしめられ、活性層4に到達する深さまで、エッチングがなされポスト13を構成している。そして表面にはCr/Auからなるp側電極10が円形の枠状をなすように形成されるとともに、基板裏面にはAu−Ge/Auからなるn側電極11が形成されている。 In this surface-emitting type semiconductor laser device, the AlAs layer 7 has a jumping cycle in a region where the Al 0.9 Ga 0.1 As layer of the upper multilayer reflective film 8 made of p-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As should enter. This AlAs layer 7 is selectively oxidized from the periphery of the semiconductor pillar except for the center portion to form an optical confinement layer 6 having a current confinement function, and an intermittent light confinement layer is formed in the upper multilayer reflective film 8. It is characterized by having. That is, the laser device includes an n-type gallium arsenide (GaAs) n-type formed on the substrate 1 Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As lower semiconductor multilayer reflection film 2, an undoped Al 0.6 Ga 0.4 As A lower spacer layer 3, a quantum well active layer 4 composed of an undoped Al 0.11 Ga 0.89 quantum well layer and an undoped Al 0.3 Ga 0.7 As barrier layer, and an upper spacer layer 5 composed of undoped Al 0.6 Ga 0.4 As. The p-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As upper semiconductor multilayer reflective film 8 and the p-type GaAs contact layer 9 are sequentially laminated, and the post 13 is etched to a depth reaching the active layer 4. Make up. A p-side electrode 10 made of Cr / Au is formed on the front surface so as to form a circular frame, and an n-side electrode 11 made of Au-Ge / Au is formed on the back surface of the substrate.

 ここでn型下部半導体多層反射膜2は、n型Al0.9Ga0.1As層とn型Al0.7Ga0.3AsGaAs層とをそれぞれ膜厚λ/(4nr)(λ:発振波長,nr:媒質の屈折率)で約40.5周期積層することによって形成されたもので、シリコン濃度は 2×1018cm-3である。下部スペーサ層は、アンドープのAl0.6Ga0.4As層から構成され、また、量子井戸活性層は、 アンドープのAl0.11Ga0.89量子井戸層(膜厚8nm×3)とアンドープのAl0.3Ga0.7As障壁層(膜厚5nm×4)との組み合わせ、上部スペーサ層は アンドープAl0.6Ga0.4Asから構成されており、膜厚は全体でλ/nrの整数倍とする。上部半導体多層反射膜8の最下層はp型のAlAs層7となっており、Al0.9Ga0.1As層が入るべき領域にAlAs層7が飛び飛びの周期で挿入され、膜厚λ/(4nr)で、カーボン濃度は 3×1018cm-3である。また、上部半導体多層反射膜8は、 p型Al0.9Ga0.1As層とp型Al0.7Ga0.3AsGaAs層とをそれぞれ膜厚 λ/(4nr) (λ:発振波長,nr:屈折率)で交互に30周期積層することによって形成されたもので、カーボン濃度は3×1018cm-3である。最後にp型コンタクト層9は膜厚5nmで、カーボン濃度は1×1020cm-3である。 Here, the n-type lower semiconductor multilayer reflective film 2 is composed of an n-type Al 0.9 Ga 0.1 As layer and an n-type Al 0.7 Ga 0.3 AsGaAs layer each having a film thickness of λ / (4n r ) (λ: oscillation wavelength, n r : medium Of about 40.5 cycles, and the silicon concentration is 2 × 10 18 cm −3 . The lower spacer layer is composed of an undoped Al 0.6 Ga 0.4 As layer, and the quantum well active layer is an undoped Al 0.11 Ga 0.89 quantum well layer (8 nm × 3 in thickness) and an undoped Al 0.3 Ga 0.7 As barrier. The upper spacer layer is composed of undoped Al 0.6 Ga 0.4 As, and the total thickness is an integral multiple of λ / nr . The lowermost layer of the upper semiconductor multilayer reflection film 8 is a AlAs layer 7 of p-type, AlAs layer 7 is inserted with a period of discrete to the area to Al 0.9 Ga 0.1 As layer enters, the film thickness lambda / (4n r ), The carbon concentration is 3 × 10 18 cm −3 . Further, the upper semiconductor multilayer reflective film 8 is composed of a p-type Al 0.9 Ga 0.1 As layer and a p-type Al 0.7 Ga 0.3 AsGaAs layer each having a thickness of λ / (4n r ) (λ: oscillation wavelength, n r : refractive index). And a carbon concentration of 3 × 10 18 cm −3 . Finally, the p-type contact layer 9 has a thickness of 5 nm and a carbon concentration of 1 × 10 20 cm −3 .

 次にこの面発光半導体レーザの製造工程について説明する。 Next, the manufacturing process of this surface emitting semiconductor laser will be described.

 まず、有機金属気相成長(MOCVD)法により、シリコンドープのn型GaAs(100)基板1上に、n型Al0.9Ga0.1As/Al0.3Ga0.7As下部半導体多層反射膜2と、アンドープのAl0.6Ga0.4Asからなる下部スペーサ層3と、アンドープのAl0.11Ga0.89量子井戸層とアンドープのAl0.3Ga0.7As障壁層とからなる量子井戸活性層4と、アンドープのAl0.6Ga0.4Asからなる上部スペーサ層5と、Al0.9Ga0.1As層が入るべき領域にAlAs層7が飛び飛びの周期で挿入されたp型Al0.9Ga0.1As/Al0.3Ga0.7As上部半導体多層反射膜8と、p型GaAsコンタクト層9とを積層する。 First, an n-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As lower semiconductor multilayer reflective film 2 and an undoped n-type reflective film 2 are formed on a silicon-doped n-type GaAs (100) substrate 1 by metal organic chemical vapor deposition (MOCVD). The lower spacer layer 3 composed of Al 0.6 Ga 0.4 As, the quantum well active layer 4 composed of an undoped Al 0.11 Ga 0.89 quantum well layer and an undoped Al 0.3 Ga 0.7 As barrier layer, and the undoped Al 0.6 Ga 0.4 As An upper spacer layer 5, a p-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As upper semiconductor multilayer reflective film 8 in which an AlAs layer 7 is inserted at intervals in an area where the Al 0.9 Ga 0.1 As layer is to be inserted. A p-type GaAs contact layer 9 is laminated.

 そしてフォトリソグラフィーにより結晶成長層上にレジストマスクを形成し、三塩化ホウ素と塩素ガスをエッチングガスとしてもちいた、反応性イオンエッチングにより、活性層4の表面までエッチングし、直径20μm程度のポスト(半導体柱)13を形成する。 Then, a resist mask is formed on the crystal growth layer by photolithography, and the surface of the active layer 4 is etched by reactive ion etching using boron trichloride and chlorine gas as an etching gas. Column 13 is formed.

 この後、水蒸気下で420℃10分の熱処理を行い、断続的に形成されたAlAs層7は酸化されAl23層6と化す。この時半導体多層反射膜の他の層の酸化速度はAlAsに比べて著しく遅く殆ど酸化しないと考えてよい。 Thereafter, a heat treatment is performed at 420 ° C. for 10 minutes under steam, and the intermittently formed AlAs layer 7 is oxidized into the Al 2 O 3 layer 6. At this time, it can be considered that the oxidation rate of the other layers of the semiconductor multilayer reflective film is significantly slower than that of AlAs and hardly oxidizes.

 次に、必要に応じてポリイミド膜などを塗布し、半導体柱の周りを埋め、表面の平坦化をはかった後、電極を形成する。 (5) Next, a polyimide film or the like is applied as necessary, and the periphery of the semiconductor pillar is buried. After the surface is flattened, an electrode is formed.

 ここで、上部半導体多層反射膜8の周期数を下部半導体多層反射膜2の周期数よりも少なくしているのは、反射率に差をつけて出射光を基板上面から取り出すためである。ドーパントの種類についてはここで用いたものに限定されることなく、n型であればセレン、p型であれば亜鉛やマグネシウムなどを用いることも可能である。周期については光の取り出し方向を基板表面側、裏面側のいずれに取るかで決定され、周期が増えるにつれて反射率は高くなる。上部DBR8とp側電極9との間にSiO,SiN、SiON、ポリイミド等の層間絶縁膜を挿入して、p側電極9と上部半導体多層反射膜8との絶縁をはかるようにしてもよい。 電流経路12はAlAs層7を選択酸化により高抵抗化することで形成され、平面的には円形であり、立体的には円柱となるまた、n型DBRにも同様に、光閉じこめ層を形成してもよい。ここでは、発振波長λ:780nmのレーザ光を取り出すように設計した。 Here, the reason why the number of periods of the upper semiconductor multilayer reflective film 8 is made smaller than the number of periods of the lower semiconductor multilayer reflective film 2 is to make outgoing light from the upper surface of the substrate with a difference in reflectance. The kind of the dopant is not limited to those used here, and selenium may be used for n-type, and zinc or magnesium may be used for p-type. The period is determined depending on whether the light extraction direction is taken on the front surface side or the back surface side, and the reflectance increases as the period increases. An interlayer insulating film such as SiO x , SiN x , SiON, or polyimide may be inserted between the upper DBR 8 and the p-side electrode 9 to insulate the p-side electrode 9 from the upper semiconductor multilayer reflective film 8. Good. The current path 12 is formed by increasing the resistance of the AlAs layer 7 by selective oxidation. The current path 12 has a circular shape in plan view and is a three-dimensional column. Similarly, a light confinement layer is formed in the n-type DBR. May be. Here, it was designed to take out a laser beam having an oscillation wavelength λ: 780 nm.

 この構成によれば、偏波面を制御するために反射率を変化させる領域を活性領域近傍から出射口まで断続的に設けたことにより、高効率の電流狭窄効果に供すると共に、偏波面を制御するために形成される反射率変化領域の大きさを高精度に制御することができ、実効的な導波路が効率よく形成される。また、前記導波路は、発光部と同等の大きさの光の伝搬空間を維持して光を出射口まで導くので低しきい値で活性層からの光の横モード、偏波面の安定性が高められる。また、発生する熱を比較的体積の大きい半導体柱を形成するDBR8に放熱できるため、発熱を抑制し、広い出力範囲にわたって光出力特性を劣化させることなく光の横モード、偏波面を安定化することが可能となる。 According to this configuration, a region for changing the reflectance for controlling the polarization plane is provided intermittently from the vicinity of the active region to the emission port, thereby providing a highly efficient current confinement effect and controlling the polarization plane. Therefore, the size of the reflectivity change region formed can be controlled with high precision, and an effective waveguide is formed efficiently. Further, since the waveguide guides the light to the emission port while maintaining the light propagation space of the same size as the light emitting portion, the transverse mode of the light from the active layer and the stability of the polarization plane at a low threshold value are reduced. Enhanced. Further, since the generated heat can be radiated to the DBR 8 forming the semiconductor pillar having a relatively large volume, the heat generation is suppressed, and the transverse mode and the polarization plane of light are stabilized without deteriorating the optical output characteristics over a wide output range. It becomes possible.

 なお、各半導体層は有機金属気相成長法、分子線エピタキシー(MBE)法などによって形成すれば良い。 Note that each semiconductor layer may be formed by metal organic chemical vapor deposition, molecular beam epitaxy (MBE), or the like.

 このようにして作製された面発光型半導体レーザ装置の動作は、以下に示すごとくである。ここで、p側電極10から注入されたキャリアの通路は断続的に形成された酸化アルミニウム層(反射率変化領域)で規定されており、量子井戸層に注入されたキャリアは電子−正孔再結合により光を放出し、この光は上部と下部の半導体多層反射膜によって反射され、利得が損失を上回ったところでレーザ発振を生ずる。このとき断続的に形成された反射率変化領域で囲まれた領域に導かれ、発振レーザ光は基板表面に設けられた、p側電極10の窓部から出射される。 The operation of the surface-emitting type semiconductor laser device manufactured as described above is as follows. Here, the path of the carrier injected from the p-side electrode 10 is defined by an intermittently formed aluminum oxide layer (reflectance change region), and the carrier injected into the quantum well layer is formed by electron-hole recombination. Light is emitted by the coupling, and the light is reflected by the upper and lower semiconductor multilayer reflective films, and laser oscillation occurs when the gain exceeds the loss. At this time, the laser light is guided to a region surrounded by the intermittently formed reflectance change region, and the oscillation laser light is emitted from the window of the p-side electrode 10 provided on the substrate surface.

 なお、ポストの形状およびアパーチャの形状、各電極の形状および大きさについても、これに限定されることなく、適宜変更可能である。 The shape of the post, the shape of the aperture, and the shape and size of each electrode are not limited thereto, and can be appropriately changed.

 例えば本発明の第2の実施例として図2に示すように、ポストを四角柱で構成し、アパーチャを、短軸と長軸との比が5:6から1:6の矩形となるようにしてもよい。これにより、より良好に偏波制御を行うことが可能となる。図2は本発明の第2の実施例の面発光型半導体レーザ装置の上面図、そのX軸方向断面図およびY軸方向断面図である。 For example, as shown in FIG. 2 as a second embodiment of the present invention, the post is formed of a square pole, and the aperture is formed as a rectangle having a ratio of the short axis to the long axis of 5: 6 to 1: 6. You may. Thereby, it is possible to perform better polarization control. FIG. 2 is a top view, a cross-sectional view in the X-axis direction, and a cross-sectional view in the Y-axis direction of a surface emitting semiconductor laser device of a second embodiment of the present invention.

 次に本発明の第3の実施例の面発光型半導体レーザ装置について、図面を参照しつつ説明する。図3は本発明の第3の実施例の面発光型半導体レーザ装置の上面図、そのX軸方向断面図およびY軸方向断面図である。 Next, a surface emitting semiconductor laser device according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a top view, a sectional view in the X-axis direction and a sectional view in the Y-axis direction of a surface emitting semiconductor laser device according to a third embodiment of the present invention.

 前記第1および第2の実施例では、断続的に形成された酸化アルミニウム層(反射率変化領域)のアパーチャー径は、一定にしたが、この例では図3に示すように、光出射方向に向かって次第に広がるように形成したことを特徴とする。他の構成については、前記第1および第2の実施例とまったく同様に形成されている。 In the first and second embodiments, the aperture diameter of the intermittently formed aluminum oxide layer (reflectance change region) is fixed, but in this example, as shown in FIG. It is characterized by being formed so as to gradually spread toward it. Other configurations are formed in exactly the same manner as in the first and second embodiments.

 この面発光型半導体レーザ装置は、p型のAl0.9Ga0.1As/Al0.3Ga0.7Asからなる上部多層反射膜28のAl0.9Ga0.1As層が入るべき領域にAlxGa1-xAs(x=0.96〜1)層27が飛び飛びの周期で挿入され、このAlxGa1-xAs層27が中心部を残して半導体柱の周囲から選択的に酸化され、電流狭窄機能を具備した光閉じこめ層26と化し、上部多層反射膜8中に断続的な光閉じこめ層を具備したことを特徴とする。ここでAlxGa1-xAs(x=0.96〜1)層27は、光出射口方向に向かうに従ってxは次第に小さくなり、アパーチャ径は、光出射口方向に向かうに従って次第に大きくなっている。 This surface-emitting type semiconductor laser device has a structure in which Al x Ga 1 -x As (P x Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As) is formed in a region where the Al 0.9 Ga 0.1 As layer of the upper multilayer reflective film 28 is to enter. x = 0.96-1) The layer 27 is inserted at a discrete interval, and the Al x Ga 1 -x As layer 27 is selectively oxidized from the periphery of the semiconductor pillar except for the center, and has a current confinement function. A light confinement layer 26 is formed, and an intermittent light confinement layer is provided in the upper multilayer reflective film 8. Here, in the Al x Ga 1 -x As (x = 0.96 to 1) layer 27, x gradually decreases toward the light exit port, and the aperture diameter gradually increases toward the light exit port. I have.

 すなわち、このレーザ装置は、n型ガリウムヒ素(GaAs)基板21上に形成されたn型Al0.9Ga0.1As/Al0.3Ga0.7As下部半導体多層反射膜22と、アンドープのAl0.6Ga0.4Asからなる下部スペーサ層23と、アンドープのAl0.11Ga0.89量子井戸層とアンドープのAl0.3Ga0.7As障壁層とからなる量子井戸活性層24と、アンドープのAl0.6Ga0.4Asからなる上部スペーサ層25と、p型Al0.9Ga0.1As/Al0.3Ga0.7As上部半導体多層反射膜28と、p型GaAsコンタクト層29とが順次積層せしめられ、活性層24に到達する深さまで、エッチングがなされポスト33を構成している。そして表面にはCr/Auからなるp側電極30が矩形の枠状をなすように形成されるとともに、基板裏面にはAu−Ge/Auからなるn側電極31が形成されている。 That is, this laser device comprises an n-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As lower semiconductor multilayer reflective film 22 formed on an n-type gallium arsenide (GaAs) substrate 21 and an undoped Al 0.6 Ga 0.4 As. A lower spacer layer 23 composed of an undoped Al 0.11 Ga 0.89 quantum well layer and an undoped Al 0.3 Ga 0.7 As barrier layer; and an upper spacer layer 25 composed of undoped Al 0.6 Ga 0.4 As. The p-type Al 0.9 Ga 0.1 As / Al 0.3 Ga 0.7 As upper semiconductor multilayer reflective film 28 and the p-type GaAs contact layer 29 are sequentially laminated, and the post 33 is etched to a depth reaching the active layer 24. Make up. A p-side electrode 30 made of Cr / Au is formed on the front surface so as to form a rectangular frame, and an n-side electrode 31 made of Au-Ge / Au is formed on the back surface of the substrate.

 ここでAlxGa1-xAs(x=0.96〜1)層27は、光出射口方向に向かうに従ってxは次第に小さくなるように形成されており、これに選択酸化が施されアパーチャを残して酸化アルミニウム層が形成される。この方法では、通常の水蒸気を用いた選択酸化により、アルミニウム含有量すなわちxが大きくなるほど、酸化速度は増し、酸化されずに残るアパーチャ径は、光出射口方向に向かうに従って次第に大きくなっている。実際には短軸と長軸との比が5:6から1:6の矩形である。そして、立体的には上側に開いている型となる。 Here, the Al x Ga 1 -x As (x = 0.96 to 1) layer 27 is formed so that x gradually decreases toward the light exit port, and selective oxidation is performed on this to form an aperture. An aluminum oxide layer is formed while leaving. In this method, the oxidation rate increases as the aluminum content, that is, x, increases by ordinary selective oxidation using water vapor, and the diameter of the aperture remaining without being oxidized gradually increases toward the light emission port. Actually, it is a rectangle having a ratio of the short axis to the long axis of 5: 6 to 1: 6. Then, it becomes a mold that is opened upward in three dimensions.

 ここでn型下部半導体多層反射膜22、下部スペーサ層23、量子井戸活性層24、上部スペーサ層25、上部半導体多層反射膜28は、前記第1および第2の実施例と同様の組成を有している。 Here, the n-type lower semiconductor multilayer reflection film 22, the lower spacer layer 23, the quantum well active layer 24, the upper spacer layer 25, and the upper semiconductor multilayer reflection film 28 have the same composition as in the first and second embodiments. are doing.

 ここでも、発振波長λ:780nmのレーザ光を取り出すように設計した。この構成によれば、偏波面を制御するために反射率を変化させる領域を活性領域近傍から出射口まで断続的に設けたことにより、高効率の電流狭窄効果に供すると共に、偏波面を制御するために形成される反射率変化領域の大きさを高精度に制御することができ、実効的な導波路が効率よく形成される。また、前記導波路は、発光部からの光の伝搬空間の平面的な大きさが急激に広がることなく徐々にDBR8内で上に向かって開いている導波路がDBR内に均一性よく形成され、低しきい値で、活性層からの光の横モード、偏波面の安定性を高めることができる。また、発生する熱を比較的体積の大きい半導体柱を形成するDBR8に放熱できるため、発熱を抑制し、広い出力範囲にわたって光出力特性を劣化させることなく光の横モード、偏波面を安定化することが可能となる。 Again, it was designed so that a laser beam having an oscillation wavelength λ: 780 nm was extracted. According to this configuration, a region for changing the reflectance for controlling the polarization plane is provided intermittently from the vicinity of the active region to the emission port, thereby providing a highly efficient current confinement effect and controlling the polarization plane. Therefore, the size of the reflectivity change region formed can be controlled with high precision, and an effective waveguide is formed efficiently. Further, in the waveguide, a waveguide which is gradually upwardly opened in the DBR 8 without abruptly increasing the planar size of the propagation space of light from the light emitting portion is formed with high uniformity in the DBR. With a low threshold value, the stability of the transverse mode of light from the active layer and the polarization plane can be improved. Further, since the generated heat can be radiated to the DBR 8 forming the semiconductor pillar having a relatively large volume, the heat generation is suppressed, and the transverse mode and the polarization plane of light are stabilized without deteriorating the optical output characteristics over a wide output range. It becomes possible.

 なおBB軸方向に沿った偏波を得たい場合には、p側電極をAA軸方向に長くした矩形形状をなすように形成すればよい。 If it is desired to obtain polarized waves along the BB axis direction, the p-side electrode may be formed in a rectangular shape elongated in the AA axis direction.

 なお、この例では、BB軸方向の電流分布が狭くなるように構成されているためBB軸方向に偏波した光を得ることができる。 In this example, since the current distribution in the BB axis direction is narrowed, light polarized in the BB axis direction can be obtained.

 なお、前記実施例では、量子井戸活性層を構成する材料としてGaAs/AlGaAs系半導体を用いたが、これに限定されることなく、例えば量子井戸活性層にGaAs/InGaAs系あるいは、InP/InGaAsP系半導体を用いることも可能である。なお、本発明の構成要件を満足する範囲内で他の方法によっても実現可能であることはいうまでもない。 In the above embodiment, a GaAs / AlGaAs-based semiconductor is used as a material constituting the quantum well active layer. However, the present invention is not limited to this. For example, a GaAs / InGaAs-based or InP / InGaAsP-based semiconductor may be used for the quantum well active layer. Semiconductors can also be used. Needless to say, the present invention can be realized by another method as long as the constituent features of the present invention are satisfied.

 以上説明してきたように、本発明によれば、高効率の電流狭窄効果を有するとともに、光導波路を形成すべく反射率を変化させる部位を有してなる、反射膜層が、光活性領域近傍から出射口まで断続的に設けられているため、均一で制御性よく、再現性の高い実効的導波路を形成することが可能となる。 As described above, according to the present invention, a reflective film layer having a high-efficiency current confinement effect and having a portion for changing the reflectivity to form an optical waveguide is provided near the photoactive region. Since it is provided intermittently from to the emission port, it is possible to form an effective waveguide with uniformity, good controllability, and high reproducibility.

 また、前記反射率の異なる領域を、半導体基板に対して垂直方向からみた断面形状が短辺と長辺とを有してなる矩形をなすように構成すれば、横モードを安定させながら偏波面を効率よく制御することができる。 Further, when the regions having different reflectivities are configured so that the cross-sectional shape viewed from the direction perpendicular to the semiconductor substrate forms a rectangle having a short side and a long side, the polarization mode is stabilized while the transverse mode is stabilized. Can be controlled efficiently.

 さらにこの導波路は発光部と同等の大きさの光の伝搬空間を維持して出射口まで導くため、低しきい値で、活性層からの光の偏波面の安定性が高められる。また発生する熱を比較的体積の大きいメサ構造部に放熱できるため、発熱を抑制し、広い出力範囲にわたって光出力特性を劣化させることなく、偏波面を安定化することが可能となる。 Furthermore, since the waveguide maintains the light propagation space of the same size as the light emitting portion and guides the light to the emission port, the stability of the polarization plane of the light from the active layer is increased at a low threshold. Further, since the generated heat can be dissipated to the mesa structure having a relatively large volume, it is possible to suppress heat generation and stabilize the polarization plane without deteriorating the optical output characteristics over a wide output range.

 さらにまた、光閉じこめ層のアパーチャー径を活性領域から離れるに従って大きくなるようにしているため、低抵抗で高効率の電流狭窄効果を得ることができるとともに、発光部からの光の伝搬空間の平面的な大きさが急激に広がることなく、徐々に上側に開いている形の導波路がDBR内に均一性よく形成され、低しきい値で活性層からの光の偏波面の安定性を高めることが可能となる。 Furthermore, since the aperture diameter of the light confinement layer is increased as the distance from the active region is increased, a high-efficiency current confinement effect with low resistance can be obtained, and the planar shape of the light propagation space from the light emitting portion can be obtained. A waveguide whose shape gradually expands upward without increasing its size rapidly is formed in the DBR with good uniformity, and the stability of the polarization plane of light from the active layer at low threshold is improved. Becomes possible.

本発明の第1の実施例の面発光型半導体レーザ装置を示す図FIG. 1 is a diagram showing a surface emitting semiconductor laser device according to a first embodiment of the present invention. 本発明の第2の実施例の面発光型半導体レーザ装置を示す図FIG. 3 is a diagram showing a surface emitting semiconductor laser device according to a second embodiment of the present invention. 本発明の第3の実施例の面発光型半導体レーザ装置を示す図FIG. 5 is a diagram showing a surface emitting semiconductor laser device according to a third embodiment of the present invention. 従来例の面発光型半導体レーザ装置を示す図FIG. 1 is a diagram showing a conventional surface-emitting type semiconductor laser device. 従来例の実施例の面発光型半導体レーザ装置を示す図FIG. 1 is a diagram showing a surface-emitting type semiconductor laser device according to a conventional example. 従来例の実施例の面発光型半導体レーザ装置を示す図FIG. 1 is a diagram showing a surface-emitting type semiconductor laser device according to a conventional example.

符号の説明Explanation of reference numerals

 1 n型ガリウムひ素(GaAs)基板
 2 n型下部半導体多層反射膜
 3 下部スペーサ層
 4 活性層
 5 上部スペーサ層
 6 AlAs層
 8 上部半導体多層反射膜
 9 p型GaAsコンタクト層
 10 p側電極
 11 n側電極
 12 電流通路
 13 ポスト
 21 n型ガリウムひ素(GaAs)基板
 22 n型下部半導体多層反射膜
 23 下部スペーサ層
 24 活性層
 25 上部スペーサ層
 26 AlxGa1-xAs層
 28 上部半導体多層反射膜
 29 p型GaAsコンタクト層
 30 p側電極
 31 n側電極
 32 電流通路
 33 ポスト
REFERENCE SIGNS LIST 1 n-type gallium arsenide (GaAs) substrate 2 n-type lower semiconductor multilayer reflective film 3 lower spacer layer 4 active layer 5 upper spacer layer 6 AlAs layer 8 upper semiconductor multilayer reflective film 9 p-type GaAs contact layer 10 p-side electrode 11 n side Electrode 12 Current path 13 Post 21 n-type gallium arsenide (GaAs) substrate 22 n-type lower semiconductor multilayer reflective film 23 lower spacer layer 24 active layer 25 upper spacer layer 26 Al x Ga 1-x As layer 28 upper semiconductor multilayer reflective film 29 p-type GaAs contact layer 30 p-side electrode 31 n-side electrode 32 current path 33 post

Claims (1)

 半導体基板上に下部半導体多層反射膜、下部スペーサ層、活性層、上部スペーサ層、少なくとも、光出射口方向に向かうに従ってxが次第に小さくなるように、順次AlxGa1-xAs層を、断続的に含むように形成された上部半導体多層反射膜とを順次積層する工程と、
 前記AlxGa1-xAs層を断面に露呈せしめるように、所望の形状の半導体柱を形成する工程と、
 前記半導体柱の断面または周囲から露呈する前記AlxGa1-xAs層に水蒸気を含むガスを接触せしめ前記AlxGa1-xAs層を酸化する酸化工程とを含み、
 少なくとも前記上部半導体多層反射膜が、光出射口方向に向かうに従って活性層からの出射光に対してその周囲の領域と反射率の異なる開口領域を有する反射膜層を断続的に含むように形成したことを特徴とする面発光型半導体レーザ装置の製造方法。
On the semiconductor substrate, a lower semiconductor multilayer reflective film, a lower spacer layer, an active layer, an upper spacer layer, and at least an Al x Ga 1-x As layer intermittently arranged in such a manner that x gradually decreases toward the light exit port. Sequentially stacking the upper semiconductor multilayer reflective film formed so as to include the
Forming a semiconductor pillar of a desired shape so as to expose the Al x Ga 1-x As layer in a cross section;
Oxidizing the Al x Ga 1-x As layer by contacting a gas containing water vapor with the Al x Ga 1-x As layer exposed from the cross section or the periphery of the semiconductor pillar,
At least the upper semiconductor multilayer reflective film is formed so as to intermittently include a reflective film layer having an opening region having a reflectance different from that of a surrounding region with respect to light emitted from the active layer toward the light emission port. A method for manufacturing a surface-emitting type semiconductor laser device, comprising:
JP2004021526A 2004-01-29 2004-01-29 Manufacturing method of surface emitting semiconductor laser device Expired - Fee Related JP3876886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021526A JP3876886B2 (en) 2004-01-29 2004-01-29 Manufacturing method of surface emitting semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021526A JP3876886B2 (en) 2004-01-29 2004-01-29 Manufacturing method of surface emitting semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02512097A Division JP3546628B2 (en) 1997-02-07 1997-02-07 Surface-emitting type semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2004128524A true JP2004128524A (en) 2004-04-22
JP3876886B2 JP3876886B2 (en) 2007-02-07

Family

ID=32291466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021526A Expired - Fee Related JP3876886B2 (en) 2004-01-29 2004-01-29 Manufacturing method of surface emitting semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3876886B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353647A (en) * 2004-06-08 2005-12-22 Fuji Xerox Co Ltd Vertical cavity surface emitting laser diode
JP2006319270A (en) * 2005-05-16 2006-11-24 Sumitomo Electric Ind Ltd Surface-emitting semiconductor element and manufacturing method thereof
KR100795994B1 (en) 2006-10-17 2008-01-21 주식회사 와이텔포토닉스 Single-mode vertical cavity surface emitting lasers and method for manufacturing thereof
WO2009102048A1 (en) * 2008-02-12 2009-08-20 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP2009283888A (en) * 2008-02-12 2009-12-03 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP2010010645A (en) * 2008-05-27 2010-01-14 Ricoh Co Ltd Surface light-emitting laser element, surface light-emitting laser array, optical scanning device, and image forming apparatus
CN115336126A (en) * 2020-03-16 2022-11-11 国际商业机器公司 Enhanced semiconductor laser with spontaneous emission blocking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350194A (en) * 1993-06-01 1994-12-22 Motorola Inc Longitudinal type cavity surface emmission laser with high efficiency and its preparation
JPH08181391A (en) * 1994-10-24 1996-07-12 Nec Corp Surface emitting laser, surface emitting laser array, and optical information processing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350194A (en) * 1993-06-01 1994-12-22 Motorola Inc Longitudinal type cavity surface emmission laser with high efficiency and its preparation
JPH08181391A (en) * 1994-10-24 1996-07-12 Nec Corp Surface emitting laser, surface emitting laser array, and optical information processing equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353647A (en) * 2004-06-08 2005-12-22 Fuji Xerox Co Ltd Vertical cavity surface emitting laser diode
US7995636B2 (en) 2004-06-08 2011-08-09 Fuji Xerox Co., Ltd. Semiconductor laser apparatus and manufacturing method thereof
JP2006319270A (en) * 2005-05-16 2006-11-24 Sumitomo Electric Ind Ltd Surface-emitting semiconductor element and manufacturing method thereof
JP4677825B2 (en) * 2005-05-16 2011-04-27 住友電気工業株式会社 Manufacturing method of surface emitting semiconductor element and surface emitting semiconductor element
KR100795994B1 (en) 2006-10-17 2008-01-21 주식회사 와이텔포토닉스 Single-mode vertical cavity surface emitting lasers and method for manufacturing thereof
WO2009102048A1 (en) * 2008-02-12 2009-08-20 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP2009283888A (en) * 2008-02-12 2009-12-03 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
US8594146B2 (en) 2008-02-12 2013-11-26 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP2010010645A (en) * 2008-05-27 2010-01-14 Ricoh Co Ltd Surface light-emitting laser element, surface light-emitting laser array, optical scanning device, and image forming apparatus
CN115336126A (en) * 2020-03-16 2022-11-11 国际商业机器公司 Enhanced semiconductor laser with spontaneous emission blocking

Also Published As

Publication number Publication date
JP3876886B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US6320893B1 (en) Surface emitting semiconductor laser
US7244629B2 (en) Vertical cavity surface emitting laser diode and method for manufacturing the same
US6795478B2 (en) VCSEL with antiguide current confinement layer
JP4184769B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP4602701B2 (en) Surface emitting laser and optical transmission system
JP2001237497A (en) Passive semiconductor structure and manufacturing method therefor
JP2001237410A (en) Optoelectronic integrated circuit and its manufacturing method
JP2001251017A (en) Semiconductor structure and its manufacturing method
Yoshikawa et al. Polarization-controlled single-mode VCSEL
JP2002164621A (en) Plane emission semiconductor laser element
US20030007531A1 (en) Polarization controlled VCSELs using an asymmetric current confining aperture
JP2004538621A (en) Vertical cavity surface emitting laser and method of manufacturing the same
JP4141172B2 (en) Surface emitting semiconductor laser device manufacturing method, surface emitting semiconductor laser device, and optical transmission system
JP3799667B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
US20020126720A1 (en) Device structure and method for fabricating semiconductor lasers
JPH11307882A (en) Surface light-emitting semiconductor laser, laser array thereof, and manufacture thereof
Oh et al. Single-mode operation in an antiguided vertical-cavity surface-emitting laser using a low-temperature grown AlGaAs dielectric aperture
JP4602692B2 (en) Surface emitting laser and optical transmission system
JP3876886B2 (en) Manufacturing method of surface emitting semiconductor laser device
Cheng et al. Lasing characteristics of high-performance narrow-stripe InGaAs-GaAs quantum-well lasers confined by AlAs native oxide
Bond et al. Design of low-loss single-mode vertical-cavity surface-emitting lasers
JP3546628B2 (en) Surface-emitting type semiconductor laser device
JP2011029493A (en) Surface emitting laser
WO2021142962A1 (en) High-contrast grating vertical-cavity surface-emitting laser and manufacturing method therefor
JP2000277852A (en) Surface emitting semiconductor laser and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees