JPS6235561B2 - - Google Patents
Info
- Publication number
- JPS6235561B2 JPS6235561B2 JP580180A JP580180A JPS6235561B2 JP S6235561 B2 JPS6235561 B2 JP S6235561B2 JP 580180 A JP580180 A JP 580180A JP 580180 A JP580180 A JP 580180A JP S6235561 B2 JPS6235561 B2 JP S6235561B2
- Authority
- JP
- Japan
- Prior art keywords
- steam temperature
- output
- reheat steam
- opening degree
- function generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010248 power generation Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】
本発明は汽力発電設備のボイラ再熱蒸気温度制
御方式に係り、特にボイラ起動時にも自動運転が
可能なようにしたボイラ再熱蒸気温度制御方式に
関する。
御方式に係り、特にボイラ起動時にも自動運転が
可能なようにしたボイラ再熱蒸気温度制御方式に
関する。
第1図は、汽力発電設備の概要を示す図であ
る。第1図において、給水ポンプ104から圧送
された給水は、節炭器105で加熱され、ドラム
103へ送られる。ここで給水は火炉101の水
管でバーナ102により熱せられ、蒸気となる。
この蒸気はドラム103から取出され、一次過熱
器106で加熱され、さらに減温器109を介し
て二次過熱器107で加熱され、高圧タービン1
10へ導かれる。高圧タービン110で仕事をし
た蒸気は、減温器111を介して再熱器108に
導かれ、ここで再び加熱されて低圧タービン11
2に供給される。
る。第1図において、給水ポンプ104から圧送
された給水は、節炭器105で加熱され、ドラム
103へ送られる。ここで給水は火炉101の水
管でバーナ102により熱せられ、蒸気となる。
この蒸気はドラム103から取出され、一次過熱
器106で加熱され、さらに減温器109を介し
て二次過熱器107で加熱され、高圧タービン1
10へ導かれる。高圧タービン110で仕事をし
た蒸気は、減温器111を介して再熱器108に
導かれ、ここで再び加熱されて低圧タービン11
2に供給される。
一方、火炉101内で燃焼用空気116ととも
に燃焼された後のガスは、二次過熱器107、再
熱器108、一次過熱器106、節炭器105を
通り、煙突113へと流れるが、その一部はガス
再循環フアン(以下GRFと略記する)115で
昇圧されて、火炉ホツプ117より火炉101に
注入される。この再循環ガスを増加させると、火
炉101のガス量が増加し、接触加熱面の多い再
熱器108の熱吸収量が増加し、再熱器108の
出力である再熱蒸気の温度が上昇する。逆に再循
環ガスを減少させると再熱蒸気温度が下降する。
この再循環ガス量はGRF入口ダンパ114の開
度により制御される。すなわち、GRF入口ダン
パ114により再熱蒸気温度の制御が行なわれ、
本発明はこの制御方式に関するものである。
に燃焼された後のガスは、二次過熱器107、再
熱器108、一次過熱器106、節炭器105を
通り、煙突113へと流れるが、その一部はガス
再循環フアン(以下GRFと略記する)115で
昇圧されて、火炉ホツプ117より火炉101に
注入される。この再循環ガスを増加させると、火
炉101のガス量が増加し、接触加熱面の多い再
熱器108の熱吸収量が増加し、再熱器108の
出力である再熱蒸気の温度が上昇する。逆に再循
環ガスを減少させると再熱蒸気温度が下降する。
この再循環ガス量はGRF入口ダンパ114の開
度により制御される。すなわち、GRF入口ダン
パ114により再熱蒸気温度の制御が行なわれ、
本発明はこの制御方式に関するものである。
第2図は、従来のボイラ再熱蒸気温度制御方式
の系統図である。第2図において、再熱蒸気温度
検出用サーモカプセル1の出力は温度変換器2で
変換されたのち偏差演算器3に入力される。一
方、再熱蒸気温度設定関数発生器4は、第3図の
ような特性によつて(平担部は定格値)、主蒸気
流量Qに対応した再熱蒸気温度Tの設定値を出力
し、この出力は低入力選択器6を介して偏差演算
器3のもう一方の端子に入力される。ただし、第
3図の設定値よりも小さい値としたい時には、設
定器5にその値を設定し、低入力選択器6でこの
値を選択させる。
の系統図である。第2図において、再熱蒸気温度
検出用サーモカプセル1の出力は温度変換器2で
変換されたのち偏差演算器3に入力される。一
方、再熱蒸気温度設定関数発生器4は、第3図の
ような特性によつて(平担部は定格値)、主蒸気
流量Qに対応した再熱蒸気温度Tの設定値を出力
し、この出力は低入力選択器6を介して偏差演算
器3のもう一方の端子に入力される。ただし、第
3図の設定値よりも小さい値としたい時には、設
定器5にその値を設定し、低入力選択器6でこの
値を選択させる。
偏差演算器3は、再熱蒸気温度の測定値と設定
値の偏差を出力し、これが比例積分要素を介して
加算器14の一方の入力に補正信号として加えら
れる。一方、GRF入口ダンパの通常プログラム
関数発生器12は、主蒸気流量Qに応じたダンパ
開度信号(ボイラ静特性によりあらかじめ決定さ
れている)を出力し、これと上記補正信号が加算
器14で加算されて、自動/手動切換器15を介
してGRF入口ダンパ制御器16に加えられ、ダ
ンパ制御が行なわれる。
値の偏差を出力し、これが比例積分要素を介して
加算器14の一方の入力に補正信号として加えら
れる。一方、GRF入口ダンパの通常プログラム
関数発生器12は、主蒸気流量Qに応じたダンパ
開度信号(ボイラ静特性によりあらかじめ決定さ
れている)を出力し、これと上記補正信号が加算
器14で加算されて、自動/手動切換器15を介
してGRF入口ダンパ制御器16に加えられ、ダ
ンパ制御が行なわれる。
しかるに、以上のような従来方式によると、ボ
イラ起動時のボイラ負荷約50%以下において、再
熱蒸気温度のフイードバツク制御ができない。な
ぜなら、これを行なうと、ボイラ内での熱吸収分
布が変わり、そのため主蒸気温度まで変つて安定
性が悪くなるからである。また、ボイラ負荷50%
以上では、再熱蒸気温度設定値を昇温レートに合
せて手動設定しなければならない。従つて、ボイ
ラ起動時は、自動運転が不可能であつた。
イラ起動時のボイラ負荷約50%以下において、再
熱蒸気温度のフイードバツク制御ができない。な
ぜなら、これを行なうと、ボイラ内での熱吸収分
布が変わり、そのため主蒸気温度まで変つて安定
性が悪くなるからである。また、ボイラ負荷50%
以上では、再熱蒸気温度設定値を昇温レートに合
せて手動設定しなければならない。従つて、ボイ
ラ起動時は、自動運転が不可能であつた。
本発明の目的は、上記した従来技術の欠点をな
くし、ボイラ起動時においても、再熱蒸気温度制
御を自動化できるボイラ再熱蒸気温度制御方式を
提供するにある。
くし、ボイラ起動時においても、再熱蒸気温度制
御を自動化できるボイラ再熱蒸気温度制御方式を
提供するにある。
上記の目的を達成するために、本発明において
は、ボイラ起動時にはGRF入口ダンパ開度を
徐々に大きくしていく指令を出力する起動プログ
ラム関数発生器によつてダンパ開度を制御し、ボ
イラ負荷が約50%をこえた時点より以後において
は、昇温率設定手段によつて再熱蒸気温度の設定
値を負荷の上昇に伴つて直線的に上昇させるよう
にし、この設定値を用いて従来と同様に補正信号
を発生させ、この補正信号と通常運転のプログラ
ム関数によつてダンパ開度を制御するように構成
したことを特徴としている。
は、ボイラ起動時にはGRF入口ダンパ開度を
徐々に大きくしていく指令を出力する起動プログ
ラム関数発生器によつてダンパ開度を制御し、ボ
イラ負荷が約50%をこえた時点より以後において
は、昇温率設定手段によつて再熱蒸気温度の設定
値を負荷の上昇に伴つて直線的に上昇させるよう
にし、この設定値を用いて従来と同様に補正信号
を発生させ、この補正信号と通常運転のプログラ
ム関数によつてダンパ開度を制御するように構成
したことを特徴としている。
以下、本発明の詳細を第4図の実施例により説
明する。第4図にて、従来例の第2図と異なるの
は、再熱蒸気温度の変化率設定器8、変化率演算
器9、信号発生器11、起動プログラム関数発生
器13、および起動プログラム制御中リレー7の
接点が挿入されていることである。
明する。第4図にて、従来例の第2図と異なるの
は、再熱蒸気温度の変化率設定器8、変化率演算
器9、信号発生器11、起動プログラム関数発生
器13、および起動プログラム制御中リレー7の
接点が挿入されていることである。
これらのうち、起動プログラム制御中リレー7
は、第5図に示すように、発電機の出力側しや断
器開、すなわち発電機解列F1の条件で動作し、
かつ主蒸気流量50%以上の条件F2でリセツトさ
れる。
は、第5図に示すように、発電機の出力側しや断
器開、すなわち発電機解列F1の条件で動作し、
かつ主蒸気流量50%以上の条件F2でリセツトさ
れる。
従つて、発電機解列、すなわちプラント停止の
状態から起動に入ると、第4図のリレー7の各接
点はa側に接続されており、GRF入口ダンパ開
度は、起動プログラム関数発生器13により制御
される。この起動プログラムの主蒸気流量Qに対
するダンパ開度設定値Dは、第6図の点線PSに
示されており、この特性に従つて負荷約50%まで
の自動起動が行なわれる。なおこの場合、加算器
14のもう一方には信号発生器11の出力が加え
られているが、この出力は負荷0%相当値なので
補正は行なわれない。また、信号発生器の0%出
力は比例積分要素10にも加えられ、この要素1
0の出力も0%になつている。さらに、リレー7
の接点aがオン状態のため、変化率演算器9はそ
の入力に高速に追随する出力を出すので、偏差演
算器3の出力も零となつている。
状態から起動に入ると、第4図のリレー7の各接
点はa側に接続されており、GRF入口ダンパ開
度は、起動プログラム関数発生器13により制御
される。この起動プログラムの主蒸気流量Qに対
するダンパ開度設定値Dは、第6図の点線PSに
示されており、この特性に従つて負荷約50%まで
の自動起動が行なわれる。なおこの場合、加算器
14のもう一方には信号発生器11の出力が加え
られているが、この出力は負荷0%相当値なので
補正は行なわれない。また、信号発生器の0%出
力は比例積分要素10にも加えられ、この要素1
0の出力も0%になつている。さらに、リレー7
の接点aがオン状態のため、変化率演算器9はそ
の入力に高速に追随する出力を出すので、偏差演
算器3の出力も零となつている。
以上のように自動起動が開始され、負荷が約50
%をこえると、リレー7はリセツトされ、その接
点aはオフ、接点bがオンする。そうすると、第
3図の特性をもつ関数発生器4の出力、または設
定器5の設定値のいずれか小さい方が変化率演算
器9に入力され、この入力値になるまで変化率設
定器8により設定されたレートにより負荷ととも
に上昇する値が変化率演算器9から出力される。
この設定出力と再熱蒸気温度測定値との偏差は、
比例積分要素10を介して補正信号として加算器
14に加えられる。
%をこえると、リレー7はリセツトされ、その接
点aはオフ、接点bがオンする。そうすると、第
3図の特性をもつ関数発生器4の出力、または設
定器5の設定値のいずれか小さい方が変化率演算
器9に入力され、この入力値になるまで変化率設
定器8により設定されたレートにより負荷ととも
に上昇する値が変化率演算器9から出力される。
この設定出力と再熱蒸気温度測定値との偏差は、
比例積分要素10を介して補正信号として加算器
14に加えられる。
一方、通常運転のプログラム関数発生器12
は、第6図の実線PDの特性を持つており、この
出力が上記の補正信号と加算器14で加算され、
GRF入口ダンパ制御器16に加えられ、ダンパ
開度の制御が行なわれる。
は、第6図の実線PDの特性を持つており、この
出力が上記の補正信号と加算器14で加算され、
GRF入口ダンパ制御器16に加えられ、ダンパ
開度の制御が行なわれる。
第7図は、以上に説明した第4図の実施例にお
ける、プラント起動時の特性例を示す図である。
時刻t1において発電機が併入されると、発電機は
初負荷L0をとり、その後時刻t2でGRFが起動され
る。この時点から負荷Lが約50%になる時刻t3ま
での間は、第6図の点線PSの特性をもつた起動
プログラム関数発生器13の出力によりダンパ開
度Dは徐々に大きくなり、再熱蒸気温度を上昇さ
せる。この間、再熱蒸気温度設定値TS(第4図
の変化率演算器9の出力)はその計測値TMに追
随している。
ける、プラント起動時の特性例を示す図である。
時刻t1において発電機が併入されると、発電機は
初負荷L0をとり、その後時刻t2でGRFが起動され
る。この時点から負荷Lが約50%になる時刻t3ま
での間は、第6図の点線PSの特性をもつた起動
プログラム関数発生器13の出力によりダンパ開
度Dは徐々に大きくなり、再熱蒸気温度を上昇さ
せる。この間、再熱蒸気温度設定値TS(第4図
の変化率演算器9の出力)はその計測値TMに追
随している。
負荷Lが約50%をこえると、再熱蒸気温度の設
定値TSは直線状に上昇し、これと再熱蒸気温度
計測値TMとの偏差にもとづく補正信号と通常運
転プログラム特性PD(第6図)との和によつて
ダンパ開度Dが制御され、第7図のように開度D
は変化する。
定値TSは直線状に上昇し、これと再熱蒸気温度
計測値TMとの偏差にもとづく補正信号と通常運
転プログラム特性PD(第6図)との和によつて
ダンパ開度Dが制御され、第7図のように開度D
は変化する。
以上の説明から明らかなように、本発明によれ
ば、ボイラ起動時より再熱蒸気温度の制御を自動
化でき、そのため常に良好な昇温制御が可能とな
り、また運転員の負担を軽減できるという効果が
ある。
ば、ボイラ起動時より再熱蒸気温度の制御を自動
化でき、そのため常に良好な昇温制御が可能とな
り、また運転員の負担を軽減できるという効果が
ある。
第1図は汽力発電設備の概略を示す図、第2図
は従来のボイラ再熱蒸気温度制御方式を示す系統
図、第3図は再熱蒸気温度設定特性の例を示す
図、第4図は本発明の一実施例を示す図、第5図
は起動プログラム制御中リレーの説明図、第6図
はGRF入口ダンパ開度設定用のプログラム関数
発生器の特性を示す図、第7図は本発明によるプ
ラント起動特性の説明図である。 108……再熱器、114……ダンパ、3……
偏差演算器、7……起動プログラム制御中リレ
ー、8……変化率設定器、9……変化率演算器、
10……比例積分要素、12……通常運転プログ
ラム関数発生器、13……起動プログラム関数発
生器、14……加算器、16……ダンパ制御器。
は従来のボイラ再熱蒸気温度制御方式を示す系統
図、第3図は再熱蒸気温度設定特性の例を示す
図、第4図は本発明の一実施例を示す図、第5図
は起動プログラム制御中リレーの説明図、第6図
はGRF入口ダンパ開度設定用のプログラム関数
発生器の特性を示す図、第7図は本発明によるプ
ラント起動特性の説明図である。 108……再熱器、114……ダンパ、3……
偏差演算器、7……起動プログラム制御中リレ
ー、8……変化率設定器、9……変化率演算器、
10……比例積分要素、12……通常運転プログ
ラム関数発生器、13……起動プログラム関数発
生器、14……加算器、16……ダンパ制御器。
Claims (1)
- 1 ガス再循環フアン入口に設けられたダンパの
開度を変化させることによつて汽力発電設備の再
熱蒸気温度を制御するようにしたボイラ再熱蒸気
温度制御方式において、上記汽力発電設備の発電
機負荷の値に応じた上記ダンパ開度を出力する起
動プログラム関数発生器および通常運転プログラ
ム関数発生器と、あらかじめ設定された値にまで
その出力を直線的に増加させる再熱蒸気温度設定
手段とを備えるとともに、上記発電機負荷が約50
%以下の場合には上記起動プログラム関数発生器
により上記ダンパ開度を制御し、上記発電機負荷
が約50%をこえた場合には、上記再熱蒸気温度設
定手段の出力と再熱蒸気温度の計測値との偏差を
比例積分要素を介して上記通常運転プログラム関
数発生器の出力に加え、該加えた結果によつて上
記ダンパ開度を制御するようにしたことを特徴と
するボイラ再熱蒸気温度制御方式。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP580180A JPS56105203A (en) | 1980-01-23 | 1980-01-23 | Controlling system for boiler reheating steam temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP580180A JPS56105203A (en) | 1980-01-23 | 1980-01-23 | Controlling system for boiler reheating steam temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56105203A JPS56105203A (en) | 1981-08-21 |
JPS6235561B2 true JPS6235561B2 (ja) | 1987-08-03 |
Family
ID=11621174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP580180A Granted JPS56105203A (en) | 1980-01-23 | 1980-01-23 | Controlling system for boiler reheating steam temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56105203A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH068515U (ja) * | 1992-02-26 | 1994-02-04 | 城東化学工業株式会社 | 通気工法用の通気空間形成部材 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124106A (ja) * | 1982-01-21 | 1983-07-23 | 三菱重工業株式会社 | ボイラ再熱蒸気温度制御装置 |
JPS58200907A (ja) * | 1982-05-18 | 1983-11-22 | 株式会社日立製作所 | ボイラの再熱蒸気温度制御装置 |
JP2764813B2 (ja) * | 1988-12-10 | 1998-06-11 | バブコツク日立株式会社 | ボイラ起動制御装置 |
-
1980
- 1980-01-23 JP JP580180A patent/JPS56105203A/ja active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH068515U (ja) * | 1992-02-26 | 1994-02-04 | 城東化学工業株式会社 | 通気工法用の通気空間形成部材 |
Also Published As
Publication number | Publication date |
---|---|
JPS56105203A (en) | 1981-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1218699A (en) | Heat recovery steam generator outlet temperature control system for a combined cycle power plant | |
US20080302102A1 (en) | Steam Temperature Control in a Boiler System Using Reheater Variables | |
US3894396A (en) | Control system for a power producing unit | |
US3922859A (en) | Control system for a power producing unit | |
US4638630A (en) | Cooldown control system for a combined cycle electrical power generation plant | |
JPS6235561B2 (ja) | ||
JP3948115B2 (ja) | コークス乾式消火設備の蒸気タービン運転方法 | |
JP3641518B2 (ja) | コンバインドサイクルプラントの蒸気温度制御方法及び装置 | |
JPS6149487B2 (ja) | ||
JP2019173697A (ja) | コンバインドサイクル発電プラント及びその運転方法 | |
JPH03290006A (ja) | 複合サイクルプラントのガスタービン制御装置 | |
JP6775070B1 (ja) | 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法 | |
JPH01212802A (ja) | ボイラの蒸気温度制御装置 | |
Qiu et al. | Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control | |
JP2645707B2 (ja) | ボイラ自動制御装置 | |
JP2549190B2 (ja) | 複合発電プラント制御装置 | |
JP2686260B2 (ja) | 貫流ボイラの運転方法 | |
JPS6242123B2 (ja) | ||
JPS63687B2 (ja) | ||
JPS6246103A (ja) | ボイラ自動制御装置 | |
JPH02130202A (ja) | コンバインドプラント | |
JPH05272358A (ja) | 発電設備の制御装置 | |
JPH09236202A (ja) | ボイラ燃料制御装置及び方法 | |
JPS6020643B2 (ja) | ボイラ蒸気温度制御方式 | |
CN118836435A (en) | Pressure stabilizing method for auxiliary steam system after main fuel tripping of thermal power plant |