JPS6235256B2 - - Google Patents

Info

Publication number
JPS6235256B2
JPS6235256B2 JP54012494A JP1249479A JPS6235256B2 JP S6235256 B2 JPS6235256 B2 JP S6235256B2 JP 54012494 A JP54012494 A JP 54012494A JP 1249479 A JP1249479 A JP 1249479A JP S6235256 B2 JPS6235256 B2 JP S6235256B2
Authority
JP
Japan
Prior art keywords
porcelain
semiconductor
mol
capacitance
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54012494A
Other languages
Japanese (ja)
Other versions
JPS55105321A (en
Inventor
Yasunobu Yoneda
Norimitsu Kito
Hiroyuki Ura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP1249479A priority Critical patent/JPS55105321A/en
Publication of JPS55105321A publication Critical patent/JPS55105321A/en
Publication of JPS6235256B2 publication Critical patent/JPS6235256B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸バリウム系の還元型半導体コ
ンデンサ用磁器組成物に関するものである。 一般に半導体磁器コンデンサは磁器の粒界を利
用した粒界型および磁器表面を利用した堰層型な
らびに還元型(再酸化型ともいう)に大別され、
その使用目的、用途に応じてその製造方法は多岐
にわたつている。 還元型半導体磁器コンデンサは通常誘電体磁器
を還元雰囲気中にて熱処理して得られた半導体磁
器に電極用銀ペーストを塗布し、熱処理を行なう
ことにより得られるが、この熱処理によつて半導
体磁器と銀電極の間に薄い誘電体層が形成され、
コンデンサの容量、絶縁抵抗、破壊電圧などの電
気特性がこの薄い誘電体層の性状に依存する。 還元型半導体磁器コンデンサは単位面積当りの
容量を大きくすると誘電体層が薄くなり、必然的
に破壊電圧は低下し、逆に破壊電圧を高くしよう
とすると誘電体層が厚くなり、単位面積当りの容
量が低下するという性質を有している。またこの
誘電体層の容量温度特性は、還元型半導体磁器コ
ンデンサの容量温度特性としてあらわれ、還元前
の誘電体磁器の温度特性曲線と極めて類似してい
る。すなわち、この薄い誘電体層は還元によつて
得られた半導体磁器の表面が電極形成時の熱処理
により再び酸化されて形成されたものと推定さ
れ、誘電体磁器の温度特性あるいは誘電率により
大きく左右されるものである。また半導体磁器表
面を薄く均質に誘電体層化するためには誘電体磁
器表面が均質で、なおかつ数μm以下の粒子より
なることが必要である。 このように温度に対する容量の変化が少なく、
高い破壊電圧を有し併せて大容量の還元型半導体
磁器コンデンサを得るためには誘電率が大きく温
度に対する誘電率の変化が少なく、なおかつ磁器
表面が数μm以下の均質な小粒子よりなる誘電体
磁器であること、銀電極を還元磁器表面に形成さ
せる際の熱処理温度で磁器表面層を容易に薄く、
均質な誘電体層を形成させ得ることなどを充す半
導体磁器が得られなければならない。 従来から還元型半導体磁器コンデンサ用の半導
体磁器は特許公報や文献などに多く示され、また
実用化されているが、半導体磁器は単位面積当り
容量(μF/cm2)を大きくすれば破壊電圧値が小
さくなるという欠点があり、使用上の制約があつ
た。これは半導体磁器表面に誘電体層を形成する
コンデンサの破壊電圧および容量は形成される誘
電体層の厚みに関係し、厚みが薄いと容量は大き
くなるが破壊電圧は低くなり、破壊電圧値を高く
するために誘電体層の厚みを大きくした場合、容
量は小さくなるという欠点があつた。また還元型
半導体磁器コンデンサの場合、半導体磁器表面の
誘電体層の誘電率は還元前の焼結磁器とほぼ同一
であるために厚みを大きくして破壊電圧値を上
げ、なおかつ大容量を得ようとすると当然磁器の
誘電率を大きくしなければならないが、誘電率を
大きくすると温度特性が極端に悪くなるものであ
つた。 本発明は上記の欠点を除去し、大容量でしかも
破壊電圧値が高く、かつ印加電圧に対する容量の
変化も極めて小さく、さらに温度特性が優れてい
るという利点を有し、使用範囲の拡大がはかれる
もので、誘電特性の優れた還元型半導体コンデン
サ用磁器組成物を提供するものである。 すなわち、本発明はBaTiO3とNd2O30.1〜3.0モ
ル%、Bi2O30.1〜1.0モル%、Nb2O50.2〜2.0モル
%、ZrO20.5〜15.0モル%の組成物100モル%に対
し、Mn化合物(酸化マンガン、シユウ酸マンガ
ン、炭酸マンガン)をMnに換算して0.01〜0.3wt
%と3.0wt%以下のSiO2を添加して原料混合物を
調整し、板状、円筒状などの形状に形成し、空気
雰囲気中にて焼成して誘電体磁器を得、次いで還
元雰囲気中で加熱して半導体化する。このように
して得られた還元型半導体磁器表面に銀電極を付
与し、再び酸化性雰囲気中で加熱して半導体磁器
表面と銀電極の間に酸化性薄層を形成して半導体
磁器コンデンサを得たものである。 本発明の還元型半導体コンデンサ用磁器組成物
は、従来の半導体磁器に比較して結晶粒径が極め
て小さく、かつ均一であること、さらに磁器内部
の空孔が少ないもので、従来の誘電体磁器のよう
に結晶粒径を小さくすると容量の温度特性は良く
なるが、誘電率が小さくなり、したがつて大容量
のものを得ようとすると半導体磁器表面の誘電体
層は一層薄くなり、破壊電圧値は低くなる。これ
に対して本発明の還元型半導体コンデンサ用磁器
組成物により得られる半導体磁器は、結晶粒径が
小さいにもかかわらず誘電率が5000以上と極めて
大きく、かつ温度特性においても優れているこ
と、さらに還元型半導体磁器コンデンサの磁器に
要求される還元されやすいこと、酸化反応つまり
誘電体層が表面に均一に形成されることの条件を
満足するものである。 以下、本発明を実施例に基づき詳細に説明す
る。 試料の作成に当つて、第1表に記載のごとく
BaTiO3、Nd2O3、Nb2O5、Bi2O3、ZrO2
MnCO3、およびSiO2を各々所要の組成となるよ
う秤量しこれらをポリポツトにて約16時間湿式混
合する。混合後脱水乾燥し、ポリビニルアルコー
ルなどの有機バインダーを約2.5wt%添加して整
粒し、1000Kg/cm2の圧力で直径12.0mm、厚み0.6
mmの円板に成形する。次いで成形された円板を
1280〜1360℃で2時間焼成する。 このようにして得られた誘電体磁器を850℃の
還元雰囲気中で30分間熱処理して半導体磁器を得
る。この半導体磁器に電極用銀ペーストを塗布
し、700〜900℃の酸化雰囲気中で30分間熱処理を
行ない還元型半導体磁器コンデンサを製作した。
上記方法により製作したコンデンサの静電容量、
tanδ、絶縁抵抗、破壊電圧、電圧依存性の測定
結果を第1表に示す。なお、試料測定に際し、静
電容量とtanδは周波数1KHz、電圧1Vrmsで、
絶縁抵抗は25VDCの電圧を60秒印加後測定し
た。また破壊電圧はDC昇圧式で求め、静電容量
については還元温度、銀焼温度によつて変化する
ため、第1表記載の値は還元温度を一定とし、銀
焼温度を変えて面積容量を0.1μF/cm2と一定に
し、他の特性との比較を容易にした。さらに電圧
依存性における(C−C25/C×100)%値は25V
DC の電圧を60秒間印加したときの静電容量をC25
して容量変化値を求めた。
The present invention relates to a barium titanate-based ceramic composition for reduced type semiconductor capacitors. Semiconductor porcelain capacitors are generally divided into two types: a grain boundary type that uses the grain boundaries of porcelain, a weir layer type that uses the surface of porcelain, and a reduced type (also called a reoxidation type).
There are a wide variety of manufacturing methods depending on the purpose and application. Reduced semiconductor porcelain capacitors are usually obtained by heat-treating dielectric porcelain in a reducing atmosphere, applying a silver paste for electrodes to the semiconductor porcelain, and then heat-treating it. A thin dielectric layer is formed between the silver electrodes,
The electrical properties of a capacitor, such as capacitance, insulation resistance, and breakdown voltage, depend on the properties of this thin dielectric layer. In reduction type semiconductor ceramic capacitors, when the capacitance per unit area is increased, the dielectric layer becomes thinner and the breakdown voltage inevitably decreases.On the other hand, when trying to increase the breakdown voltage, the dielectric layer becomes thicker and the dielectric layer becomes thinner. It has the property of decreasing capacity. Further, the capacitance-temperature characteristic of this dielectric layer appears as the capacitance-temperature characteristic of the reduced semiconductor ceramic capacitor, and is extremely similar to the temperature characteristic curve of the dielectric ceramic before reduction. In other words, it is presumed that this thin dielectric layer was formed when the surface of the semiconductor ceramic obtained by reduction was oxidized again during the heat treatment during electrode formation, and it is largely influenced by the temperature characteristics or dielectric constant of the dielectric ceramic. It is something that will be done. Furthermore, in order to form a thin and uniform dielectric layer on the semiconductor ceramic surface, it is necessary that the dielectric ceramic surface be homogeneous and composed of particles of several μm or less. In this way, the change in capacity due to temperature is small,
In order to obtain a reduced semiconductor ceramic capacitor that has a high breakdown voltage and a large capacity, a dielectric material that has a large dielectric constant and little change in dielectric constant with respect to temperature, and whose ceramic surface is made of homogeneous small particles of several μm or less is required. Being made of porcelain, the porcelain surface layer can be easily thinned at the heat treatment temperature used to form silver electrodes on the reduced porcelain surface.
It is necessary to obtain semiconductor porcelain that satisfies the following requirements, including the ability to form a homogeneous dielectric layer. Semiconductor porcelains for use in reduction type semiconductor porcelain capacitors have been widely disclosed in patent publications and literature, and have been put into practical use, but semiconductor porcelains have a breakdown voltage value that increases by increasing the capacitance per unit area (μF/cm 2 ). It has the disadvantage that it is small, which limits its use. This is because the breakdown voltage and capacity of a capacitor that forms a dielectric layer on the surface of semiconductor ceramics are related to the thickness of the dielectric layer that is formed, and the thinner the thickness, the larger the capacitance, but the lower the breakdown voltage. If the thickness of the dielectric layer is increased in order to increase the capacitance, there is a drawback that the capacitance becomes smaller. In the case of reduced semiconductor porcelain capacitors, the dielectric constant of the dielectric layer on the surface of the semiconductor porcelain is almost the same as that of the sintered porcelain before reduction, so it is necessary to increase the thickness to increase the breakdown voltage value and obtain a large capacity. This naturally requires increasing the dielectric constant of the porcelain, but increasing the dielectric constant results in extremely poor temperature characteristics. The present invention eliminates the above-mentioned drawbacks, has a large capacity, has a high breakdown voltage value, has an extremely small change in capacitance with applied voltage, and has excellent temperature characteristics, and can be used in an expanded range of applications. The present invention provides a ceramic composition for reduced semiconductor capacitors with excellent dielectric properties. That is, the present invention uses 100 mol of a composition containing BaTiO3 and 0.1-3.0 mol% of Nd2O3 , 0.1-1.0 mol% of Bi2O3 , 0.2-2.0 mol% of Nb2O5 , and 0.5-15.0 mol% of ZrO2 . %, Mn compounds (manganese oxide, manganese oxalate, manganese carbonate) are converted to Mn and are 0.01 to 0.3wt.
% and 3.0wt% or less of SiO 2 is added to adjust the raw material mixture, formed into a shape such as a plate or cylinder, and fired in an air atmosphere to obtain dielectric porcelain, and then in a reducing atmosphere. It is heated to become a semiconductor. A silver electrode is applied to the surface of the reduced semiconductor porcelain obtained in this way, and heated again in an oxidizing atmosphere to form an oxidizing thin layer between the surface of the semiconductor porcelain and the silver electrode, thereby obtaining a semiconductor porcelain capacitor. It is something that The ceramic composition for reduced semiconductor capacitors of the present invention has an extremely small and uniform crystal grain size compared to conventional semiconductor porcelain, and has fewer pores inside the porcelain, compared to conventional dielectric porcelain. If the crystal grain size is made smaller, the temperature characteristics of the capacitance will improve, but the dielectric constant will become smaller, so if you try to obtain a large capacitance, the dielectric layer on the surface of the semiconductor ceramic will become even thinner, and the breakdown voltage will increase. The value will be lower. On the other hand, the semiconductor ceramic obtained from the ceramic composition for a reduced semiconductor capacitor of the present invention has an extremely large dielectric constant of 5000 or more despite having a small crystal grain size, and also has excellent temperature characteristics. Furthermore, it satisfies the conditions required for the ceramic of a reduced type semiconductor ceramic capacitor, that it be easily reduced and that a dielectric layer be uniformly formed on the surface of the oxidation reaction. Hereinafter, the present invention will be explained in detail based on examples. When preparing the sample, as described in Table 1.
BaTiO3 , Nd2O3 , Nb2O5 , Bi2O3 , ZrO2 ,
MnCO 3 and SiO 2 are each weighed to have the required composition, and wet mixed in a polypot for about 16 hours. After mixing, it is dehydrated and dried, and approximately 2.5wt% of an organic binder such as polyvinyl alcohol is added to the powder, which is sized to a diameter of 12.0mm and a thickness of 0.6mm using a pressure of 1000Kg/ cm2 .
Form into a mm disk. Then the formed disc is
Bake at 1280-1360℃ for 2 hours. The dielectric ceramic thus obtained is heat treated in a reducing atmosphere at 850° C. for 30 minutes to obtain semiconductor ceramic. Silver paste for electrodes was applied to this semiconductor ceramic, and heat treatment was performed for 30 minutes in an oxidizing atmosphere at 700 to 900°C to produce a reduced semiconductor ceramic capacitor.
The capacitance of the capacitor manufactured by the above method,
Table 1 shows the measurement results of tan δ, insulation resistance, breakdown voltage, and voltage dependence. In addition, when measuring the sample, the capacitance and tanδ were set at a frequency of 1KHz and a voltage of 1Vrms.
Insulation resistance was measured after applying a voltage of 25 VDC for 60 seconds. In addition, the breakdown voltage is determined using the DC step-up method, and the capacitance changes depending on the reduction temperature and silver firing temperature. It was kept constant at 0.1 μF/cm 2 to facilitate comparison with other characteristics. Furthermore, the (C 0 - C 25 /C 0 ×100)% value in voltage dependence is 25V
The capacitance change value was determined by setting the capacitance when a DC voltage was applied for 60 seconds as C 25 .

【表】 第1表において試料番号2〜4、7、8、11、
12、15、16、19、20、22〜24は本発明に係るもの
であり、試料番号1、5、6、9、10、13、14、
17、18、21、25は比較のために示した本発明の範
囲外のものである。 第1表から明らかなように本発明の還元型半導
体コンデンサ用磁器組成物における組成限度の範
囲は、 (1) Nd2O3が0.1モル%未満では、tanδが極めて
高く、また3.0モル%を越えると容量の電圧依
存性が大きく、かつ温度による変化が大きくな
る。 (2) Bi2O3が0.1モル%未満では電圧依存性とtan
δが大きく、また1.0モル%を越えると磁器の
焼結が困難となり、絶縁縁抵抗および破壊電圧
の低いものとなる。 (3) Nb2O3が0.2モル%未満ではtanδが高く、容
量の電圧依存性が高く、また2.0モル%を越え
るとtanδが高いばかりでなく絶縁抵抗、破壊
電圧とも低く極めて不適なものとなる。 (4) ZrO2が0.5モル%未満ではtanδが高く、絶縁
抵抗、破壊電圧も低い。また15.0モル%を越え
ると磁器の焼結が不充分となり破壊電圧が低
い。 (5) さらにMnの添加が0.01wt%未満では、絶縁
抵抗、破壊電圧が低く、かつtanδが高い。ま
た0.3wt%を越えると絶縁抵抗、破壊電圧が低
く、かつ容量の電圧依存性が大きい。 (6) また、SiO2の添加は磁器の焼結温度を低く
するものであるが、3.0wt%を越える範囲では
融着が起り不適当。 によるものである。 さらに本発明の還元型半導体コンデンサ用磁器
組成物と従来例を比較した結果を第2表に示す。
なお第2表の本発明品は、BaTiO395.6モル%、
Nb2O30.8モル%、Nb2O50.6モル%、Bi2O30.8モ
ル%、ZrO22.2モル%に対して、MnCO3をMnに
換算して0.048wt%、0.3wt%のSiO2を添加含有し
たものであり、また従来品はBaTiO3―Bi2O3
ZrO2系からなる還元型半導体コンデンサであ
る。
[Table] In Table 1, sample numbers 2 to 4, 7, 8, 11,
12, 15, 16, 19, 20, 22-24 are related to the present invention, and sample numbers 1, 5, 6, 9, 10, 13, 14,
17, 18, 21, and 25 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, the range of composition limits for the ceramic composition for reduced type semiconductor capacitors of the present invention is as follows: (1) If Nd 2 O 3 is less than 0.1 mol%, tan δ is extremely high; If this value is exceeded, the voltage dependence of the capacitance becomes large and the change due to temperature becomes large. (2) When Bi 2 O 3 is less than 0.1 mol%, voltage dependence and tan
If δ is large and exceeds 1.0 mol %, it becomes difficult to sinter the porcelain, resulting in low insulation edge resistance and breakdown voltage. (3) If Nb 2 O 3 is less than 0.2 mol%, the tan δ will be high and the voltage dependence of the capacitance will be high; if it exceeds 2.0 mol %, the tan δ will not only be high but also the insulation resistance and breakdown voltage will be low, making it extremely unsuitable. Become. (4) When ZrO 2 is less than 0.5 mol%, tan δ is high, and insulation resistance and breakdown voltage are also low. Moreover, if it exceeds 15.0 mol%, the sintering of the porcelain will be insufficient and the breakdown voltage will be low. (5) Furthermore, when the addition of Mn is less than 0.01 wt%, insulation resistance and breakdown voltage are low, and tanδ is high. Moreover, if it exceeds 0.3 wt%, insulation resistance and breakdown voltage will be low, and the voltage dependence of capacitance will be large. (6) In addition, although the addition of SiO 2 lowers the sintering temperature of porcelain, it is inappropriate if it exceeds 3.0wt% as fusion occurs. This is due to Furthermore, Table 2 shows the results of a comparison between the ceramic composition for a reduced type semiconductor capacitor of the present invention and a conventional example.
The products of the present invention shown in Table 2 contain 95.6 mol% BaTiO 3 ,
Nb 2 O 3 0.8 mol %, Nb 2 O 5 0.6 mol %, Bi 2 O 3 0.8 mol %, ZrO 2 2.2 mol %, MnCO 3 converted to Mn, 0.048 wt %, 0.3 wt % SiO 2 , and the conventional product contains BaTiO 3 ―Bi 2 O 3
This is a reduction type semiconductor capacitor made of ZrO 2 system.

【表】 第2表によれば本発明の還元型半導体コンデン
サ用磁器組成物がtanδ、絶縁抵抗、破壊電圧と
電気諸特性に優れていることがわかる。これは焼
結磁器の結晶粒径が第2表でもわかるように微小
であり、かつ均一であることが見掛比重、空孔率
に表われている。さらに焼結磁器の誘電率が5000
以上と高いにもかかわらず、容量の温度特性が−
25〜+85℃の温度範囲で20℃における容量に対し
てその変化率が±30%以内と良好であるなどの優
れた特性を有したものである。また第3表は上記
実施例の試料番号3と同等の磁器組成物において
焼結温度を変えて得た試料の電気特性を確認した
結果を示し焼結温度による容量の温度特性は良好
であることがわかる。したがつて焼結磁器の誘電
率の温度特性と還元型半導体コンデンサの温度特
性が全く同一であることから、温度特性に対する
工程管理が容易である。
Table 2 shows that the ceramic composition for reduced semiconductor capacitors of the present invention is excellent in tan δ, insulation resistance, breakdown voltage, and various electrical properties. This is because the crystal grain size of the sintered porcelain is minute, as shown in Table 2, and is uniform, which is reflected in the apparent specific gravity and porosity. Furthermore, the dielectric constant of sintered porcelain is 5000.
Despite the above, the temperature characteristics of the capacitance are -
It has excellent properties such as a change rate of the capacity at 20°C within ±30% in the temperature range of 25 to +85°C. Furthermore, Table 3 shows the results of checking the electrical properties of samples obtained by changing the sintering temperature using the same porcelain composition as Sample No. 3 of the above example, and shows that the temperature characteristics of the capacity depending on the sintering temperature are good. I understand. Therefore, since the temperature characteristics of the dielectric constant of the sintered porcelain and the temperature characteristics of the reduced semiconductor capacitor are exactly the same, process control regarding the temperature characteristics is easy.

【表】 以上述べたように本発明にかかるBaTiO3
Nd2O3、Bi2O3、Nb2O5、ZrO2の基本組成にMn、
SiO2を添加することを特徴とした還元型半導体
コンデンサ用磁器組成物の焼結磁器を還元性雰囲
気で加熱し、半導体化した半導体磁器に銀ペース
トを塗布し、銀焼付して半導体磁器表面に誘電体
層を形成することによつて得られた還元型半導体
磁器コンデンサは従来品に比較して高い絶縁抵
抗、破壊電圧と低誘電損失をもち、さらに高い電
圧下における容量の変化が少なく高電圧下での使
用を著しく拡大したものである。また容量の温度
特性の安定性、耐熱、衝撃性に優れているので、
極めて容易にかつ安定に製造することができるも
ので工業的価値大なるものである。
[Table] As described above, BaTiO 3 according to the present invention,
The basic composition of Nd 2 O 3 , Bi 2 O 3 , Nb 2 O 5 , and ZrO 2 includes Mn,
Sintered porcelain of a ceramic composition for reduced semiconductor capacitors characterized by the addition of SiO 2 is heated in a reducing atmosphere, a silver paste is applied to the semiconducting semiconductor porcelain, and silver is baked on the surface of the semiconductor porcelain. Reduced semiconductor ceramic capacitors obtained by forming a dielectric layer have higher insulation resistance, breakdown voltage, and lower dielectric loss than conventional products, and also exhibit less change in capacitance under high voltages. This is a significant expansion of the usage below. In addition, it has excellent stability of capacitance temperature characteristics, heat resistance, and impact resistance.
It can be produced extremely easily and stably and has great industrial value.

Claims (1)

【特許請求の範囲】 1 Nd2O3 0.1〜3.0モル% Bi2O3 0.1〜1.0モル% Nb2O5 0.2〜2.0モル% ZrO2 0.5〜15.0モル% とBaTiO3とからなる組成物100モル%に対し0.01
〜0.3wt%のMnと3.0wt%以下のSiO2を添加含有
せしめてなる還元型半導体コンデンサ用磁器組成
物。
[Claims] 1 Composition 100 consisting of 1 Nd 2 O 3 0.1-3.0 mol% Bi 2 O 3 0.1-1.0 mol% Nb 2 O 5 0.2-2.0 mol% ZrO 2 0.5-15.0 mol% and BaTiO 3 0.01 for mole%
A ceramic composition for a reduced semiconductor capacitor, which additionally contains up to 0.3 wt% Mn and 3.0 wt% or less SiO 2 .
JP1249479A 1979-02-05 1979-02-05 Reduced semiconductor capacitor porcelain composition Granted JPS55105321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249479A JPS55105321A (en) 1979-02-05 1979-02-05 Reduced semiconductor capacitor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249479A JPS55105321A (en) 1979-02-05 1979-02-05 Reduced semiconductor capacitor porcelain composition

Publications (2)

Publication Number Publication Date
JPS55105321A JPS55105321A (en) 1980-08-12
JPS6235256B2 true JPS6235256B2 (en) 1987-07-31

Family

ID=11806928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249479A Granted JPS55105321A (en) 1979-02-05 1979-02-05 Reduced semiconductor capacitor porcelain composition

Country Status (1)

Country Link
JP (1) JPS55105321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740310A1 (en) * 1995-04-26 1996-10-30 Murata Manufacturing Co., Ltd. Dielectric ceramic compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740310A1 (en) * 1995-04-26 1996-10-30 Murata Manufacturing Co., Ltd. Dielectric ceramic compositions

Also Published As

Publication number Publication date
JPS55105321A (en) 1980-08-12

Similar Documents

Publication Publication Date Title
JPS597665B2 (en) High dielectric constant porcelain composition
JPS6053408B2 (en) Reduced semiconductor ceramic composition
JPS6235256B2 (en)
JPS6128619B2 (en)
JPS6115529B2 (en)
JPS6120504B2 (en)
JPH0477698B2 (en)
JPH07267732A (en) Dielectric porcelain composition
JPS6230483B2 (en)
JPS6230482B2 (en)
JPS6053407B2 (en) Reduced semiconductor ceramic composition
JPS6128209B2 (en)
JPS6128620B2 (en)
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JPS6128208B2 (en)
JPS6211444B2 (en)
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPS6258128B2 (en)
JPH0757536A (en) Dielectric material for ceramic capacitor
JPH0536308A (en) High permittivity dielectric ceramic composition
JPS6211443B2 (en)
JPS6134206B2 (en)
JPS6230481B2 (en)
JPS6258129B2 (en)
JPS6346925B2 (en)