JPS6115529B2 - - Google Patents

Info

Publication number
JPS6115529B2
JPS6115529B2 JP53033780A JP3378078A JPS6115529B2 JP S6115529 B2 JPS6115529 B2 JP S6115529B2 JP 53033780 A JP53033780 A JP 53033780A JP 3378078 A JP3378078 A JP 3378078A JP S6115529 B2 JPS6115529 B2 JP S6115529B2
Authority
JP
Japan
Prior art keywords
porcelain
semiconductor
breakdown voltage
capacitance
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53033780A
Other languages
Japanese (ja)
Other versions
JPS54125500A (en
Inventor
Yasunobu Yoneda
Norimitsu Kito
Hiroyuki Ura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP3378078A priority Critical patent/JPS54125500A/en
Publication of JPS54125500A publication Critical patent/JPS54125500A/en
Publication of JPS6115529B2 publication Critical patent/JPS6115529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸バリウム系の還元型半導体磁
器組成物に関するものである。 一般に半導体磁器コンデンサは磁器の粒界を利
用した粒界型および磁器表面を利用した堰層型な
らびに還元型(再酸化型ともいう)に大別され、
その使用目的、用途に応じてその製造方法は多岐
にわたつている。 還元型半導体磁器コンデンサは通常誘電体磁器
を還元雰囲気中にて熱処理して得られた半導体磁
器に電極用銀ペーストを塗布し、熱処理を行なう
ことにより得られるが、この熱処理によつて半導
体磁器と銀電極の間に薄い誘電体層が形成され
る。コンデンサの容量および絶縁抵抗、破壊電圧
等の電気特性はこの薄い誘電体層の性状に依存す
る。還元型半導体磁器コンデンサは単位面積当り
の容量を大きくすると誘電体層が薄くなり、必然
的に波壊電圧は低下し、逆に破壊電圧を高くしよ
うとすると誘電体層が厚くなり、単位面積当りの
容量が低下するという性質を有している。またこ
の誘電体層の容量の温度特性は還元型半導体磁器
コンデンサの容量の温度特性としてあらわれ、還
元前の誘電体磁器の温度特性曲線と極めて類似し
ている。すなわち、この薄い誘電体層は還元によ
つて得られた半導体磁器の表面が電極形成時の熱
処理により再び酸化されて形成されたものと推定
され、誘電体磁器の温度特性あるいは誘電率によ
り大きく左右されるものである。また半導体磁器
表面を薄く均質に誘電体層化するためには誘電体
磁器表面が均質で、なおかつ数μm以下の粒子よ
りなることが必要である。 このように温度に対する容量の変化が少なく、
高い破壊電圧を有し、併せて大容量の還元型半導
体磁器コンデンサを得るためには誘電率が大き
く、温度に対する誘電率の変化が少なく、なおか
つ磁器表面が数μm以下の均質な小粒子よりなる
誘電体磁器であること、銀電極を還元磁器表面に
形成させる際の熱処理温度で磁器表面層を容易に
薄く、かつ均質な誘電体層を形成させ得ることな
どを充す半導体磁器が得られなければならない。 従来から還元型半導体磁器コンデンサ用の半導
体磁器は特許公報や文献などに多く示され、また
実用化されているが、半導体磁器コンデンサは単
位面積当りの容量(μF/cm2)を大きくすれば破
壊電圧値が小さくなるという欠点があり、使用上
の制約があつた。 これは半導体磁器表面に誘電体層を形成するコ
ンデンサの破壊電圧および容量は形成される誘電
体層の厚みに関係し、厚みが薄いと容量は大きく
なるが破壊電圧は小さくなり、破壊電圧値を大き
くするために誘電体層の厚みを大きくした場合、
容量は小さくなるという欠点があつた。また還元
型半導体磁器コンデンサの場合、半導体磁器表面
の誘電体層の誘電率は還元前の焼結磁器とほぼ同
一であるため厚みを大きくし、破壊電圧値を上
げ、なおかつ大容量を得ようとすると当然磁器の
誘電率を大きくしなければならないが、誘電率を
大きくすると温度特性が極端に悪くなる。 本発明は上記の欠点を除去し、大容量でしかも
破壊電圧値が高く、かつ印加電圧に対する容量の
変化も極めて小さく、さらに温度特性が優れてい
るという利点を有し、使用範囲の拡大がはかれる
もので、誘電特性の優れた還元型半導体磁器組成
物を提供するものである。 すなわち、本発明はBaTiO399.3〜78.0モル
%、CeO20.1〜5.0モル%、Bi2O30.1〜2.0モル
%、ZrO20.5〜15.0モル%の組成物に0.01〜0.3wt
%のMnと3.0wt%以下のSiO2を添加して原料混合
物を調整し板状に成形して焼成する。このように
して得た磁器を還元雰囲気中で加熱し、半導体化
し、この磁器表面に電極を付与し、再び酸化性雰
囲気で加熱して半導体磁器表面と銀電極間に酸化
性薄層を形成し、半導体磁器コンデンサを得たも
のである。 本発明の還元型半導体磁器組成物は従来の半導
体磁器に比較して結晶粒径が極めて小さく、かつ
均一であること、さらに磁器内部の空孔が少ない
もので、従来の誘電体磁器のように結晶粒径を小
さくすると容量温度特性は良くなるが、誘電率が
小さくなり、したがつて大容量のものを得ようと
すると半導体磁器表面の誘電体層は一層薄くなり
破壊電圧値は低くなる。これに対し本発明の還元
型半導体磁器組成物により得られる半導体磁器
は、結晶粒径が小さいにもかかわらず誘電率が
5000以上と極めて大きく、かつ温度特性において
も優れていること、さらに還元型半導体磁器コン
デンサの磁器に要求される環元され易いこと、酸
化反応つまり誘電体層が表面に均一に形成される
ことの条件を満足するものである。 以下、本発明を実施例について詳細に説明す
る。 試料の作成に当つて第1表に記載のごとく
BaTiO3、CeO2、Bi2O3、ZrO2MnCO3およびSiO2
を各々所要の組成となるよう秤量し、これらをポ
リポツトにて約16時間湿式混合する。混合後脱水
乾燥し、ポリビニールアルコールなどの有機バイ
ンダーを約2.5wt%添加して整粒し、1000Kg/cm2
圧力で直径12.0mm、厚み0.6mmの円板に成形す
る。次いで成形された円板を1280〜1360℃で2時
間焼成する。このようにして得られた誘電体磁器
を850℃の還元雰囲気中で30分間熱処理して半導
体磁器を得る。この半導体磁器に電極用銀ペース
トを塗布し、700〜900℃の酸化雰囲気中で30分間
熱処理を行ない還元型半導体磁器コンデンサを製
作した。 上記方法により製作したコンデンサの静電容
量、tanδ、絶縁抵抗、破壊電圧、電圧依存性の
測定結果を第1表に示す。 なお、試料測定に際し、静電容量とtanδは周
波数1kHz、電圧1Vrm9で絶縁抵抗は25VDCの電
圧を60秒印加後測定した。また破壊電圧はDC昇
圧式で求め、静電容量については還元温度、銀焼
温度によつて変化するため第1表記載の値は還元
温度を一定とし、銀焼温度を変えて面積容量を
0.1μF/cm2と一定にし、他の特性との比較を容易
にした。さらに電圧依存性における(Co−C25/C
o× 100)%値は25VDCの電圧を60秒間印加したとき
の容量変化値である。
The present invention relates to a reduced type semiconductor ceramic composition based on barium titanate. Semiconductor porcelain capacitors are generally divided into two types: a grain boundary type that uses the grain boundaries of porcelain, a weir layer type that uses the surface of porcelain, and a reduced type (also called a reoxidation type).
There are a wide variety of manufacturing methods depending on the purpose and application. Reduced semiconductor porcelain capacitors are usually obtained by heat-treating dielectric porcelain in a reducing atmosphere, applying a silver paste for electrodes to the semiconductor porcelain, and then heat-treating it. A thin dielectric layer is formed between the silver electrodes. The capacitance, insulation resistance, breakdown voltage, and other electrical properties of the capacitor depend on the properties of this thin dielectric layer. In reduction type semiconductor ceramic capacitors, when the capacitance per unit area is increased, the dielectric layer becomes thinner and the wave breakdown voltage inevitably decreases.On the other hand, when trying to increase the breakdown voltage, the dielectric layer becomes thicker and the dielectric layer becomes thinner. It has the property of decreasing the capacity of . Further, the temperature characteristic of the capacitance of this dielectric layer appears as the temperature characteristic of the capacitance of the reduced semiconductor ceramic capacitor, and is extremely similar to the temperature characteristic curve of the dielectric ceramic before reduction. In other words, it is presumed that this thin dielectric layer was formed when the surface of the semiconductor ceramic obtained by reduction was oxidized again during the heat treatment during electrode formation, and it is largely influenced by the temperature characteristics or dielectric constant of the dielectric ceramic. It is something that will be done. Furthermore, in order to form a thin and uniform dielectric layer on the semiconductor ceramic surface, it is necessary that the dielectric ceramic surface be homogeneous and composed of particles of several μm or less. In this way, the change in capacity due to temperature is small,
In order to obtain a reduced semiconductor ceramic capacitor that has a high breakdown voltage and a large capacity, it is necessary to have a large dielectric constant, a small change in dielectric constant with respect to temperature, and a ceramic surface consisting of homogeneous small particles of several micrometers or less. Semiconductor porcelain must be obtained that satisfies the following requirements: it is a dielectric porcelain, and the porcelain surface layer can be easily made thin and a homogeneous dielectric layer can be formed at the heat treatment temperature used when forming silver electrodes on the surface of the reduced porcelain. Must be. Semiconductor porcelain for reduction type semiconductor porcelain capacitors has been widely disclosed in patent publications and literature, and has been put into practical use, but semiconductor porcelain capacitors can be destroyed if the capacitance per unit area (μF/cm 2 ) is increased. This had the disadvantage that the voltage value was small, which placed restrictions on its use. This is because the breakdown voltage and capacitance of a capacitor that forms a dielectric layer on the surface of semiconductor ceramics are related to the thickness of the dielectric layer that is formed.The thinner the thickness, the larger the capacitance, but the smaller the breakdown voltage. If the thickness of the dielectric layer is increased to increase the
The drawback was that the capacity was small. In the case of reduced semiconductor porcelain capacitors, the dielectric constant of the dielectric layer on the surface of the semiconductor porcelain is almost the same as that of sintered porcelain before reduction, so it is necessary to increase the thickness, increase the breakdown voltage value, and obtain large capacity. Naturally, then, the dielectric constant of the porcelain must be increased, but increasing the dielectric constant causes extremely poor temperature characteristics. The present invention eliminates the above-mentioned drawbacks, has a large capacity, has a high breakdown voltage value, has an extremely small change in capacitance with applied voltage, and has excellent temperature characteristics, and can be used in an expanded range of applications. The present invention provides a reduced semiconductor ceramic composition with excellent dielectric properties. That is, the present invention applies 0.01 to 0.3 wt to a composition containing 99.3 to 78.0 mol% of BaTiO3, 0.1 to 5.0 mol% of CeO2 , 0.1 to 2.0 mol% of Bi2O3 , and 0.5 to 15.0 mol% of ZrO2.
% Mn and 3.0wt% or less SiO 2 are added to prepare the raw material mixture, which is formed into a plate shape and fired. The porcelain thus obtained is heated in a reducing atmosphere to become a semiconductor, an electrode is applied to the surface of this porcelain, and the porcelain is heated again in an oxidizing atmosphere to form an oxidizing thin layer between the semiconductor porcelain surface and the silver electrode. , a semiconductor ceramic capacitor was obtained. The reduced semiconductor porcelain composition of the present invention has an extremely small and uniform crystal grain size compared to conventional semiconductor porcelain, and has fewer pores inside the porcelain, so it has a much smaller and more uniform crystal grain size than conventional semiconductor porcelain. Decreasing the crystal grain size improves the capacitance-temperature characteristics, but decreases the dielectric constant, and therefore, when attempting to obtain a large capacity, the dielectric layer on the surface of the semiconductor ceramic becomes thinner, resulting in a lower breakdown voltage value. On the other hand, the semiconductor ceramic obtained from the reduced semiconductor ceramic composition of the present invention has a low dielectric constant despite having a small crystal grain size.
It is extremely large (more than 5000), has excellent temperature characteristics, and is easy to undergo ring formation, which is required for the ceramics of reduced semiconductor ceramic capacitors. It satisfies the conditions. Hereinafter, the present invention will be described in detail with reference to examples. When preparing the sample, as described in Table 1.
BaTiO3 , CeO2 , Bi2O3 , ZrO2MnCO3 and SiO2
Weigh each to give the desired composition, and wet mix them in a polypot for about 16 hours. After mixing, the mixture is dehydrated and dried, and about 2.5 wt% of an organic binder such as polyvinyl alcohol is added, the particles are sized, and the mixture is formed into a disc with a diameter of 12.0 mm and a thickness of 0.6 mm under a pressure of 1000 Kg/cm 2 . The formed disc is then fired at 1280-1360°C for 2 hours. The dielectric ceramic thus obtained is heat treated in a reducing atmosphere at 850° C. for 30 minutes to obtain semiconductor ceramic. Silver paste for electrodes was applied to this semiconductor porcelain, and heat treatment was performed for 30 minutes in an oxidizing atmosphere at 700 to 900°C to produce a reduced semiconductor porcelain capacitor. Table 1 shows the measurement results of capacitance, tan δ, insulation resistance, breakdown voltage, and voltage dependence of the capacitor manufactured by the above method. When measuring the sample, the capacitance and tan δ were measured at a frequency of 1 kHz and a voltage of 1 Vrm9 , and the insulation resistance was measured after applying a voltage of 25 VDC for 60 seconds. In addition, the breakdown voltage is determined using a DC step-up method, and the capacitance changes depending on the reduction temperature and silver firing temperature.
It was kept constant at 0.1 μF/cm 2 to facilitate comparison with other characteristics. Furthermore, in the voltage dependence (Co-C 25 /C
The 0×100)% value is the capacitance change value when a voltage of 25 VDC is applied for 60 seconds.

【表】 第1表において試料番号2〜4、7、8、11、
12、15、16、19、20は本発明に係るものであり、
試料番号1、5、6、9、10、13、14、17、18、
21は比較のために本発明の範囲外のものである。 第1表から明らかなように本発明の還元型半導
体磁器組成物における組成限定の範囲は、 (1) Bi2O3が0.1モル%未満では容量の電圧依存性
とtanδが大きく、また2.0モル%を越えると磁
器の焼結が困難となり、絶縁抵抗および破壊電
圧の低いものとなる。 (2) CeO2が0.1モル%未満ではtanδと容量の電
圧依存性が高く、かつ絶縁抵抗、破壊電圧が低
い。また5.0モル%を越えると結晶の異常成長
が起り絶縁抵抗、破壊電圧が低くなる。 (3) ZrO2が0.5モル%未満では焼結が不充分で誘
電率が低く、絶縁抵抗、破壊電圧が低く、tan
δが高い。また15モル%を越えると結晶粒径は
大きくなり、磁器内部の空孔が多くあり、絶縁
抵抗、破壊電圧が低い。 (4) SiO2の添加は磁器の焼結温度を低下させる
ものであるが、3.0wt%を越える範囲では磁器
に融着が起り不適。 (5) さらにMnの添加が0.01wt%未満では絶縁抵
抗、破壊電圧が低く、かつtanδが高い。また
0.3wt%を越えると焼結磁器の誘電率が低く、
絶縁抵抗、破壊電圧も低く、容量の電圧依存性
も大きいものである。 さらに本発明の磁器組成物と特許公報や文献な
どに記載されている従来例とを比較した結果を第
2表に示す。
[Table] In Table 1, sample numbers 2 to 4, 7, 8, 11,
12, 15, 16, 19, 20 are related to the present invention,
Sample numbers 1, 5, 6, 9, 10, 13, 14, 17, 18,
21 is outside the scope of the present invention for comparison. As is clear from Table 1, the compositional limitations of the reduced semiconductor ceramic composition of the present invention are as follows: (1) When Bi 2 O 3 is less than 0.1 mol %, the voltage dependence of the capacity and tan δ are large; %, it becomes difficult to sinter the porcelain, resulting in low insulation resistance and breakdown voltage. (2) When CeO 2 is less than 0.1 mol%, the voltage dependence of tan δ and capacitance is high, and the insulation resistance and breakdown voltage are low. Moreover, if it exceeds 5.0 mol%, abnormal growth of crystals will occur, resulting in lower insulation resistance and breakdown voltage. (3) If ZrO 2 is less than 0.5 mol%, sintering is insufficient, the dielectric constant is low, the insulation resistance and breakdown voltage are low, and the tan
δ is high. Moreover, if it exceeds 15 mol%, the crystal grain size becomes large, there are many pores inside the porcelain, and the insulation resistance and breakdown voltage are low. (4) Addition of SiO 2 lowers the sintering temperature of porcelain, but if it exceeds 3.0wt%, fusion may occur in porcelain, making it unsuitable. (5) Furthermore, when the addition of Mn is less than 0.01wt%, insulation resistance and breakdown voltage are low, and tanδ is high. Also
If it exceeds 0.3wt%, the dielectric constant of sintered porcelain will be low;
The insulation resistance and breakdown voltage are low, and the voltage dependence of the capacitance is also large. Furthermore, Table 2 shows the results of a comparison between the porcelain composition of the present invention and conventional examples described in patent publications and literature.

【表】 第2表によれば本発明の還元型半導体磁器組成
物がtanδ、絶縁抵抗、破壊電圧と電気諸特性に
優れていることがわかる。これは焼結磁器の結晶
粒径が第2表でもわかるように微少であり、かつ
均一であることが見掛比重、空孔率に表われてい
る。さらに内部空孔量が少なく、焼結磁器の誘電
率が5000以上と高いにもかかわらず、容量の温度
特性が−25〜+85℃の温度範囲で20℃の容量に対
してその変化率が±30%以内と良好であるなどの
優れた特性を有したものである。また第3表は上
記実施例の試料番号3と同等の組成物において、
焼結温度を変えて得た試料の電気特性を確認した
結果を示し、焼結温度による容量の温度特性は良
好であることがわかる。したがつて、焼結磁器の
誘電率の温度特性と還元型半導体磁器コンデンサ
の温度特性が全く同一であるところから、温度特
性に対する工程管理が容易である。
Table 2 shows that the reduced semiconductor ceramic composition of the present invention is excellent in tan δ, insulation resistance, breakdown voltage, and various electrical properties. This is because the crystal grain size of the sintered porcelain is minute, as shown in Table 2, and is uniform, as reflected in the apparent specific gravity and porosity. Furthermore, although the amount of internal pores is small and the dielectric constant of sintered porcelain is high at over 5000, the temperature characteristic of capacitance is ±20°C in the temperature range of -25 to +85°C. It has excellent properties such as a good value of 30% or less. Table 3 also shows that in a composition equivalent to sample number 3 in the above example,
The results of checking the electrical properties of samples obtained by changing the sintering temperature are shown, and it can be seen that the temperature characteristics of the capacity depending on the sintering temperature are good. Therefore, since the temperature characteristics of the dielectric constant of the sintered porcelain and the temperature characteristics of the reduced semiconductor ceramic capacitor are exactly the same, process control regarding the temperature characteristics is easy.

【表】 以上述べたように本発明にかかるBaTiO3
Bi2O3、CeO2、ZrO2の基本組成にMn、SiO2を添
加することを特徴とした還元型半導体磁器組成物
の焼結磁器を還元雰囲気で加熱し、半導体化した
半導体磁器に銀ペーストを塗布し、銀焼付して半
導体磁器表面に誘電体層を形成することによつて
得られた還元型半導体磁器コンデンサは、従来品
に比較して高い絶縁抵抗、破壊電圧と低誘電損失
をもち、さらに高い電圧下における容量の変化が
少なく、高電圧下の使用を著しく拡大したもので
ある。また容量の温度特性の安定性、耐熱衝撃性
に優れているので、極めて容易に、かつ安定に製
造することができるもので、工業的価値大なるも
のである。
[Table] As described above, BaTiO 3 according to the present invention,
Sintered porcelain of a reduced type semiconductor porcelain composition characterized by adding Mn and SiO 2 to the basic composition of Bi 2 O 3 , CeO 2 , and ZrO 2 is heated in a reducing atmosphere, and silver is added to the semiconducting semiconductor porcelain. Reduced semiconductor ceramic capacitors, which are obtained by applying paste and baking silver to form a dielectric layer on the semiconductor ceramic surface, have higher insulation resistance, breakdown voltage, and lower dielectric loss than conventional products. Furthermore, the capacitance changes little under high voltage, and its use under high voltage has been significantly expanded. Furthermore, since it has excellent stability in capacitance temperature characteristics and thermal shock resistance, it can be manufactured extremely easily and stably, and has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1 BaTiO399.3〜78.0モル%、Bi2O30.1〜2.0モ
ル%、CeO20.1〜5.0モル%、ZrO20.5〜15モル%
の組成物に0.01〜0.3wt%のMnと3.0wt%の以下
のSiO2を添加含有せしめてなる還元型半導体磁
器組成物。
1 BaTiO3 99.3-78.0 mol%, Bi2O3 0.1-2.0 mol%, CeO2 0.1-5.0 mol%, ZrO2 0.5-15 mol%
A reduced semiconductor ceramic composition obtained by adding 0.01 to 0.3 wt% Mn and 3.0 wt% or less SiO 2 to the composition.
JP3378078A 1978-03-23 1978-03-23 Reduction type semiconductor porcelain composition Granted JPS54125500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3378078A JPS54125500A (en) 1978-03-23 1978-03-23 Reduction type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3378078A JPS54125500A (en) 1978-03-23 1978-03-23 Reduction type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS54125500A JPS54125500A (en) 1979-09-28
JPS6115529B2 true JPS6115529B2 (en) 1986-04-24

Family

ID=12395964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3378078A Granted JPS54125500A (en) 1978-03-23 1978-03-23 Reduction type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS54125500A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121210A (en) * 1981-01-20 1982-07-28 Nichicon Capacitor Ltd Reduced type semiconductor porcelain composition
FR2632301A1 (en) * 1988-06-03 1989-12-08 Europ Composants Electron HIGH PERMITTIVITY CERAMIC COMPOSITION AND CAPACITOR USING THE SAME

Also Published As

Publication number Publication date
JPS54125500A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
JPS6121967A (en) Dielectric composition
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
JPH05109319A (en) High dielectric constant dielectric porcilain composition
US4721692A (en) Dielectric ceramic composition
JPH04292458A (en) Dielectric ceramic composition having high dielectric constant
JPS6115529B2 (en)
JPS6053408B2 (en) Reduced semiconductor ceramic composition
JPS6128619B2 (en)
JPS6120504B2 (en)
JPS6235256B2 (en)
JPH0676627A (en) Dielectric ceramic composition
JPS6053407B2 (en) Reduced semiconductor ceramic composition
JPH0477698B2 (en)
JPS6230483B2 (en)
JPS6217368B2 (en)
JPS6230482B2 (en)
JPS6128209B2 (en)
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JP2665643B2 (en) Manufacturing method of grain boundary layer type ceramics
JPS6128208B2 (en)
JPH0536308A (en) High permittivity dielectric ceramic composition
JPS6258128B2 (en)
JP2000182881A (en) Dielectric ceramic material
JPS597664B2 (en) High dielectric constant porcelain composition
JPH0244608A (en) Dielectric porcelain