JPS62343A - Fluorocarbon resin type artificial blood vessel and its production - Google Patents

Fluorocarbon resin type artificial blood vessel and its production

Info

Publication number
JPS62343A
JPS62343A JP60139785A JP13978585A JPS62343A JP S62343 A JPS62343 A JP S62343A JP 60139785 A JP60139785 A JP 60139785A JP 13978585 A JP13978585 A JP 13978585A JP S62343 A JPS62343 A JP S62343A
Authority
JP
Japan
Prior art keywords
artificial blood
blood vessel
mesh
wall surface
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60139785A
Other languages
Japanese (ja)
Inventor
靖 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60139785A priority Critical patent/JPS62343A/en
Publication of JPS62343A publication Critical patent/JPS62343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弗素含有合成高分子を構成素材とする人工血管
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an artificial blood vessel made of a fluorine-containing synthetic polymer.

〔発明の概要〕[Summary of the invention]

本発明は、合成樹脂製の人工血管において・人工血管チ
ューブの外壁面に一体に成形された網目状突起を配した
ことにより、 キンキング現象(曲げたときの折れる現象)なしに小さ
な曲率半径で曲げられ、破裂強度が大きく、長期開存性
の優れた人工血管を得るようにしたものである。
The present invention features synthetic resin artificial blood vessels that can be bent with a small radius of curvature without the kinking phenomenon (the phenomenon of breaking when bent) by arranging mesh-like protrusions integrally formed on the outer wall surface of the artificial blood vessel tube. The purpose of this invention is to obtain an artificial blood vessel with high burst strength and excellent long-term patency.

また、本発明は、前記人工血管の製造方法において、 チューブ状成形物の外壁に不連続の切れ目を多数設け、
チューブ状成形物をその長さ方向に延伸することによっ
て、 極めて簡単に、安価に人工血管の製造ができるようにし
たものである。
Further, the present invention provides the method for manufacturing an artificial blood vessel, comprising: providing a large number of discontinuous cuts in the outer wall of the tubular molded product;
By stretching a tubular molded product in its length direction, it is possible to manufacture an artificial blood vessel extremely easily and at low cost.

〔従来の技術〕[Conventional technology]

現在、人工血管としては、ポリエステル繊維の編織物で
構成された人工血管と弗素樹脂の人工血管が主として用
いられている。ポリエステル系の人工血管は、ポリエチ
レンテレフタレートの化学構造をもつ繊維からなり、キ
ンキング現象を防止するために蛇腹状にクリンプをつけ
て用し鴫れている。一方、弗素樹脂系の人工血管はポリ
テトラフルオロエチレンを素材とし、これを熱延伸して
血液接触面をフィブリル化(小繊維群化)して用いられ
ている。
Currently, as artificial blood vessels, artificial blood vessels made of knitted fabrics of polyester fibers and artificial blood vessels made of fluororesin are mainly used. Polyester-based artificial blood vessels are made of fibers with a chemical structure of polyethylene terephthalate, and are crimped in a bellows shape to prevent kinking. On the other hand, fluororesin-based artificial blood vessels are made of polytetrafluoroethylene, which is hot-stretched to fibrillate (group small fibers) the blood contact surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

弗素樹脂系の人工血管はポリエステル系の人工血管より
も長期開存性に優れ、殊に人工血管の口径が小さくなる
とポリエステル系の人工血管より有意に優れていること
が知られている。しかし、反面大きい欠点も有している
。それは、移植後の内皮細胞の増殖を助けるために血液
接触面をフィブリル化するのであるが、このために製造
時にチューブの長さ方向に延伸を行っており、この延伸
によって分子が必然的に延伸方向に配向してしまう。こ
のため延伸方向、すなわち人工血管の長さ方向に沿うて
裂は目が出来やすくなる。実際に実験的にテストしてみ
ても又実用してみても人工血管の長さ方向に沿っての破
裂が生じたり、ちょうど動脈瘤のように一部が膨張し、
この膨張部分は極めて裂は易くなる。これは人体におけ
る静脈瘤や動脈瘤の発生に相当する現象で、実用に際し
てこれらの欠点を克服することは極めて重要である。
It is known that fluororesin-based artificial blood vessels have superior long-term patency than polyester-based artificial blood vessels, and are significantly superior to polyester-based artificial blood vessels, especially when the diameter of the artificial blood vessel becomes small. However, it also has major drawbacks. It fibrillates the blood-contacting surface to aid the proliferation of endothelial cells after transplantation, but for this purpose, the tube is stretched in the length direction during manufacturing, and this stretching inevitably stretches the molecules. direction. For this reason, fissures tend to form along the stretching direction, that is, along the length of the artificial blood vessel. In actual experimental tests and in practical use, rupture occurs along the length of the artificial blood vessel, or part of the artificial blood vessel swells, just like an aneurysm.
This expanded portion is extremely susceptible to tearing. This phenomenon corresponds to the occurrence of varicose veins and aneurysms in the human body, and it is extremely important to overcome these drawbacks in practical use.

従来、弗素樹脂からなる人工血管では、この現象を防止
するために、別々に延伸した同種のテープ状のものを弗
素樹脂人工血管の長さ方向と実質的にほぼ直角に前記人
工血管に巻きつけるようにし、人工血管壁を長さ方向と
、長さ方向に実質的にほぼ直角に配向した二層から構成
させる方策が採られている。
Conventionally, in order to prevent this phenomenon with artificial blood vessels made of fluororesin, tape-like tapes of the same type, which are stretched separately, are wrapped around the artificial blood vessel substantially at right angles to the length direction of the fluororesin artificial blood vessel. In this way, strategies have been taken to construct the artificial blood vessel wall from two layers, one in the longitudinal direction and the other in two layers oriented substantially at right angles to the longitudinal direction.

あるいは又、長さ方向に分子が配向して縦方向(人工血
管の長さ方向)に沿って裂は易くなったことを防止する
ため、例えばポリプロピレン類の糸をこの人工血管の外
周に螺旋状に巻きつけてこの目的を達成しようとする試
みもあるが、これらの方法ではまだ充分に安心して弗素
樹脂系の人工血管を、圧力のかかる動脈系に用(九るこ
とに不安がある。しかもこれらの方法は工程が複雑であ
り、労力と費用と時間がかかり、品質管理上の問題も多
く、コスト高につながる等問題点も多し1゜更に今一つ
の問題点は、曲げたときの折れる現象(キンキング現象
という)である。このキンキング現象は人工血管を末梢
血管代用に用いるとき膝や肘の曲げに対して容易に生じ
、かなりの曲率で曲げても、このキンキング現象を起こ
さない人工血管の出現が強(要望されていた。
Alternatively, in order to prevent the molecules from being oriented in the length direction and easily tearing along the longitudinal direction (the length direction of the artificial blood vessel), for example, polypropylene threads can be spirally wrapped around the outer periphery of the artificial blood vessel. Some attempts have been made to achieve this goal by wrapping the fluororesin-based artificial blood vessel around the arterial system, but these methods still provide sufficient security for the use of fluororesin-based artificial blood vessels in the arterial system, which is under pressure. These methods have many problems, such as complicated processes, labor, cost, and time, many quality control problems, and high costs. This phenomenon (called the kinking phenomenon) occurs easily when an artificial blood vessel is used as a substitute for a peripheral blood vessel when the knee or elbow is bent. The appearance of is strong (requested).

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上に提示した問題点の解決のために、構造的
な面より検討し、新しい着想で弗素樹脂系の人工血管の
改良を試み、種々の試みを重ねた結果、1本発明を完成
した。
In order to solve the problems presented above, the present inventor investigated from a structural perspective and tried to improve a fluororesin-based artificial blood vessel with a new idea.As a result of various attempts, the present inventor has developed the present invention. completed.

本発明の要旨とするところは、チューブ状の弗素含有高
分子を延伸加工した人工血管において、一体に成形され
た板状の網目状突起が、該人工血管チューブの外壁面に
配設してなる人工血管であって、その製造方法としては
、弗素含有高分子力1らなるチューブ状成形物の外壁面
に輪切状又【まスパイラル状に不連続の切れ目を多数設
け、互し1に隣接する該切れ目の相互間において、任意
の該切れ目の不連続部が、これと隣接する切れ目の連続
部に対して位置するようにし、チューブ状成形物をその
長さ方向に延伸することを特徴としてしする。
The gist of the present invention is to provide an artificial blood vessel made by stretching a tubular fluorine-containing polymer, in which an integrally molded plate-like mesh projection is disposed on the outer wall surface of the artificial blood vessel tube. This is an artificial blood vessel, and the manufacturing method thereof is to provide a large number of discontinuous cuts in a circular or spiral shape on the outer wall surface of a tube-shaped molded product made of a fluorine-containing polymer 1, and to make a number of discontinuous cuts adjacent to each other. The tubular molded product is stretched in the length direction between the cuts, with a discontinuous part of any cut being positioned with respect to a continuous part of an adjacent cut. I'll do it.

この切れ目の不連続部は延伸後、網目状突起の結節部と
なる。この不連続部の数は、該切れ目が人工血管外壁を
一周する間に2ヶ以上及び50ケ以下、好ましくは3ヶ
以上及び20ケ以下がよ%z。
After stretching, the discontinuous portions of these cuts become nodules of the mesh-like protrusions. The number of discontinuous parts is 2 or more and 50 or less, preferably 3 or more and 20 or less while the cut goes around the outer wall of the artificial blood vessel.

この不連続部の数、すなわち網目の結節部が余り少ない
と破裂強度が保てず、多すぎると人工血管の伸縮性が悪
く、曲げにくくなる。
If the number of discontinuous parts, that is, the number of nodules in the network, is too small, bursting strength cannot be maintained, and if there are too many, the artificial blood vessel has poor elasticity and becomes difficult to bend.

本発明の人工血管の斜視図と断面図をそれぞれ第1A図
及び第1B図に、また、これらの図における網目状突起
3の部分拡大図を第2図に示した。
A perspective view and a sectional view of the artificial blood vessel of the present invention are shown in FIGS. 1A and 1B, respectively, and a partially enlarged view of the mesh-like protrusion 3 in these figures is shown in FIG. 2.

なお、第1B図及び第2図において、図中の各文字記号
は次の意味を有する。なお、平均値は、例ぇばhの場合
、Tで表し、その他の平均値もこれに倣った。
In addition, in FIG. 1B and FIG. 2, each character symbol in the figure has the following meaning. Note that, for example, in the case of h, the average value is represented by T, and the other average values also follow this.

h:網目状突起3の高さく璽■) W:網目状突起3の半値幅(1/2hの高さでの突起3
の幅(Illlll) d:人工血管の肉厚(璽S) 1:人工血管の内径(鶴) D−:W4目状突起間の間隔(tm) r:キンキングなしに曲げられる最小の曲率半径(n) lo 二組目状突起3に囲まれた網目部分lOの、人工
血管の長さ方向の最大幅(mm) 1、:網目部分10の、人工血管の長さ方向に直角方向
の長さくl1lll) 本発明の網目状突起3の平均の高さくh)とその平均半
値幅(1/2hの高さでの幅)の間に一≦7≦2 h 
      (1) の関係があり、 該人工血管の肉厚(d)と網目状突起3の平均半値幅(
マ)との間に 0、ld5w≦IOd     (2)の関係があり、
該網目状突起3の人工血管の長さの方向の平均最大幅T
7と網目の人工血管の長さ方向に直角方向の平均長さT
、との比が1.0≦7./I7≦50   (3)の範
囲内にあることが好ましい。
h: height of mesh-like protrusion 3) W: half-width of mesh-like protrusion 3 (protrusion 3 at height of 1/2h)
width (Illllll) d: Thickness of the artificial blood vessel (S) 1: Inner diameter of the artificial blood vessel (Tsuru) D-: Distance between W4 eyes (tm) r: Minimum radius of curvature that can be bent without kinking ( n) lo Maximum width (mm) of the mesh portion 10 surrounded by the two sets of mesh-like protrusions 3 in the longitudinal direction of the artificial blood vessel 1: Length of the mesh portion 10 in the direction perpendicular to the length direction of the artificial blood vessel 1≦7≦2 h between the average height (h) and the average half-width (width at the height of 1/2 h) of the mesh-like protrusions 3 of the present invention
(1) There is a relationship between the wall thickness (d) of the artificial blood vessel and the average half-width of the mesh-like projections 3 (
There is a relationship of 0, ld5w≦IOd (2),
Average maximum width T of the mesh-like projection 3 in the length direction of the artificial blood vessel
7 and the average length T in the direction perpendicular to the length direction of the mesh artificial blood vessel
, the ratio of 1.0≦7. /I7≦50 (3) Preferably.

咳7人工血管が上記(1)、(2)、(3)の各式の関
係を満たすと、該人工血管は極めて曲げに対して抗キン
キング性を発揮するとともに強い破壊強度を有すること
を本発明者は見出した。It、/T7比が上記(3)式
の範囲より小さいと、曲げに対する順応性がなくて曲が
らなくなる。又ffi、/T7比が50を超えると、伸
縮性に欠けて曲げられない。したがって、上記(3)式
の条件が必要で、この条件を満たせば、容易に急角度に
曲げることが出来る。
Cough 7 It is true that when the artificial blood vessel satisfies the relationships of the above equations (1), (2), and (3), the artificial blood vessel exhibits extremely kinking resistance against bending and has strong breaking strength. The inventor discovered this. If the ratio It, /T7 is smaller than the range expressed by the above equation (3), there will be no bending flexibility and the material will not bend. Furthermore, if the ffi,/T7 ratio exceeds 50, it lacks elasticity and cannot be bent. Therefore, the condition of the above equation (3) is required, and if this condition is satisfied, it can be easily bent to a steep angle.

上記(1)式は更に好ましくは □ ≦W≦h     (1) であり、 上記(2)式は更に好ましくは 0.3 d≦マ≦5d   (2) であり、 上記(3)式は更に好ましくは、 1.0≦I!、/l、≦30    (3)である。The above formula (1) is more preferably □ ≦W≦h    (1) and The above formula (2) is more preferably 0.3 d≦ma≦5d (2) and The above formula (3) is more preferably, 1.0≦I! , /l, ≦30 (3).

又、人工血管は手術での吻合、縫合に際して、人工血管
壁の薄い方が容易であり、その縫合仕上げの良し悪しに
よって長期開存性が左右されるので、吻合し易いこと、
縫合しやすいことは大変重要である。吻合や縫合の容易
さは人工血管の肉厚によって決り、薄い方が吻合、縫合
に適している。
In addition, it is easier to anastomose and suture an artificial blood vessel during surgery when the artificial blood vessel wall is thinner, and long-term patency is determined by the quality of the suture finish.
It is very important that it is easy to suture. The ease of anastomosis and suturing is determined by the thickness of the artificial blood vessel, and the thinner the wall, the more suitable for anastomosis and suturing.

ところが薄くなると破裂強度が弱くなって欠点を露呈す
る。そこで上記(1)及び(2)式に示すように肉厚d
及び網目状突起の平均半値幅7とその平均の高さTを規
定すると、破裂強度も充分で、縫合性、吻合性に優れ、
しかもキンキング現象なしに小さい曲率半径で曲げるこ
とが出来るゆ本発明は、力学的性能に優れかつ極めて小
さし丸面率半径でキンキングなしに曲げることが出来る
新しい人工血管を提供するものである・本発明は別の表
現をすると、人工血管の直径に対しである範囲の網目状
突起の数を規定し・人工血管の肉厚に対して網目状突起
の断面幅を一定の範囲に規制し、かつ綱目状突起の突起
高を一定範囲に規制すれば、破裂強度が強くかつキンキ
ングなしに急カーブに曲げられる人工血管となることを
見出したのである。
However, as it becomes thinner, its bursting strength becomes weaker, exposing its shortcomings. Therefore, as shown in equations (1) and (2) above, the wall thickness d
When the average half-width 7 and the average height T of the mesh-like protrusions are defined, the bursting strength is sufficient, the sutureability and anastomosis are excellent,
Moreover, it can be bent with a small radius of curvature without kinking.The present invention provides a new artificial blood vessel that has excellent mechanical performance and can be bent with an extremely small radius of roundness without kinking. Expressed in another way, the invention defines the number of mesh-like projections within a certain range with respect to the diameter of the artificial blood vessel, regulates the cross-sectional width of the mesh-like projections within a certain range with respect to the wall thickness of the artificial blood vessel, and They discovered that if the height of the rope-like protrusions is controlled within a certain range, an artificial blood vessel with strong bursting strength and that can be bent into sharp curves without kinking can be obtained.

第3図は本発明の人工血管を折曲げた状態で示す正面図
である。
FIG. 3 is a front view showing the artificial blood vessel of the present invention in a bent state.

本発明によれば、内径I!、flの人工血管において、
該人工血管の中心線11の曲率半径rnがr≦1.51
以下、更に1.On以下、更に0.81以下にまでキン
キングなしに曲げることが可能である。これは、本発明
に示したように人工血管を構成することによって人工血
管が各部とも夫々可なりの自由度をもって伸縮出来るの
で、曲げた場合、人工血管の曲げの曲率中心側(内側)
は縮み得るし、外側(曲げの中心すなわち曲率中心より
遠い方)は延びうる性質が付与されたためである。又本
発明の人工血管の破裂強度は強く、その強さは(d+T
)の厚みの破裂強度に匹敵する。
According to the invention, the inner diameter I! , fl artificial blood vessel,
The radius of curvature rn of the center line 11 of the artificial blood vessel is r≦1.51
Below, further 1. It is possible to bend the wire to 0.81 or less, and even to 0.81 or less without kinking. This is because by configuring the artificial blood vessel as shown in the present invention, each part of the artificial blood vessel can expand and contract with a considerable degree of freedom.
This is because the outer side (furthest from the center of bending, that is, the center of curvature) can be extended. In addition, the rupture strength of the artificial blood vessel of the present invention is strong, and the strength is (d+T
) thickness is comparable to the bursting strength.

又、このようにキンキングなしに小さい曲率半径で曲げ
うるためには、この人工血管の伸縮性が必要であり、無
負荷状態の自然長(Lo)と、人工血管の長さ方向に圧
縮したときの長さくり、)との間が、 0.1 r、、≦L2≦0.7L+1 好ましくは、 0.2L、≦LP ≦0.5L。
In addition, in order to be able to bend with a small radius of curvature without kinking, the artificial blood vessel must have elasticity, and the natural length (Lo) in the unloaded state and when compressed in the length direction of the artificial blood vessel are required. The length between ) is 0.1 r, ≦L2≦0.7L+1, preferably 0.2L, ≦LP ≦0.5L.

の関係で圧縮可能な人工血管であることが必要であり、
本発明はこのような人工血管を提供するものである(第
4A図と第4B図参照)。
Therefore, it is necessary that the artificial blood vessel is compressible.
The present invention provides such an artificial blood vessel (see Figures 4A and 4B).

このような性質を付与するためには、第1B図において
平均半値幅7と、隣接する網目状突起間の平均間隔−す
−とを 0.37≦−b−≦157 の関係に設定すれば可能となる。
In order to provide such properties, the average half-width 7 and the average spacing between adjacent mesh protrusions are set to the relationship 0.37≦-b-≦157 in Fig. 1B. It becomes possible.

LPが0.lLo以下になるように圧縮するには該人工
血管の肉厚を異常に薄くしなければ達成出来ないので、
人工血管の破裂強度は小さくなって実用に供し得ない。
LP is 0. Compression to below lLo cannot be achieved unless the wall thickness of the artificial blood vessel is made abnormally thin.
The bursting strength of the artificial blood vessel is so low that it cannot be put to practical use.

又、LPが0.7 t、o以上ではキンキングなしに小
さい曲率で曲げることが出来ないのである。キンキング
なしに曲げられるということは大変重要な性能であり、
キンキングが生じるとそこに血液が滞留してたちまち血
液が凝固して固まってしまうというこれまでの難点を解
決したことになる。
Moreover, if LP is 0.7 t,o or more, it is impossible to bend the material with a small curvature without kinking. Being able to bend without kinking is a very important performance.
This solves the problem that existed until now when kinking occurs, blood stagnates there and immediately coagulates.

本発明の綱目状突起3は、該人工血管の外装用2に全体
帽万偏なく覆っており、しかもその形状は人工血管の長
さ方向に伸縮し易い形状である点に注意されなければな
らない。
It must be noted that the mesh-like protrusion 3 of the present invention evenly covers the exterior 2 of the artificial blood vessel, and its shape is such that it can easily expand and contract in the length direction of the artificial blood vessel. .

即ち、網目は該人工血管の長さ方向に直角な方向に対し
ては滑らかに連なっており、一方、人工血管の長さ方向
には尖鋭な角度を交互に繰り返しつつ形成しているので
、人工血管の円周方向には極めて大きい形態安定性をも
ち、相当の応力にも形態変形しない特徴をもつ。
That is, the mesh is smoothly continuous in the direction perpendicular to the length direction of the artificial blood vessel, while forming alternating sharp angles in the length direction of the artificial blood vessel. It has extremely high morphological stability in the circumferential direction of blood vessels, and is characterized by not deforming even under considerable stress.

即ち、本発明の人工血管は長さ方向に伸縮容易で、長さ
方向に直角方向には形態安定性が優れて変形しない血管
である。これはこの人工血管に一体に配設された網目状
突起の形態が大きく貢献しているのである。
That is, the artificial blood vessel of the present invention is a blood vessel that can be easily expanded and contracted in the length direction, and has excellent morphological stability and does not deform in the direction perpendicular to the length direction. This is largely due to the shape of the mesh-like projections that are integrally arranged on this artificial blood vessel.

本発明の人工血管はあとで実施例で述べるように、弗素
樹脂系では成形加工条件を適当に換えて容易に作ること
ができる。
As will be described later in Examples, the artificial blood vessel of the present invention can be easily manufactured using a fluororesin by appropriately changing the molding conditions.

本発明で用いられる弗素樹脂はポリテトラフルオロエチ
レンが最も好ましく、改質の目的で他の物質、例えばア
クリル系樹脂やポリウレタンを添加してもよい。又ポリ
テトラフルオロエチレン共重合体、例えば四弗化エチレ
ン−パーフルオロアルコキシビニルエーテル共重合体、
四弗化エチレン−エチレン共重合体、四弗化エチレン−
プロピレン共重合体、三弗化エチレン塩化エチレン、弗
化ビニリデンであってもよい。
The fluororesin used in the present invention is most preferably polytetrafluoroethylene, and other substances such as acrylic resin or polyurethane may be added for the purpose of modification. Also, polytetrafluoroethylene copolymers, such as tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymers,
Ethylene tetrafluoride - ethylene copolymer, ethylene tetrafluoride -
Propylene copolymers, trifluoroethylene chloride, and vinylidene fluoride may also be used.

本発明の人工血管の製造工程を第5図について説明する
。本発明の人工血管は、第5図(a)に示すように、弗
化樹脂から成形されたチューブ状成形物4に、独立した
輪切状又はスパイラル状の不連続の切れ目5をそのチュ
ーブの外壁面8に設け、この不連続部9に両隣の切れ目
5の連続部を位置するようにし、これを適当な条件でチ
ューブ状成形物4の長さ方向に急激に延伸して製造され
る。
The manufacturing process of the artificial blood vessel of the present invention will be explained with reference to FIG. In the artificial blood vessel of the present invention, as shown in FIG. 5(a), a tube-shaped molded product 4 made of a fluorinated resin is provided with independent ring-shaped or spiral-shaped discontinuous cuts 5 in the tube. The discontinuous portion 9 is provided on the outer wall surface 8 so that the continuous portions of the cuts 5 on both sides are located, and the tube-shaped molded product 4 is rapidly stretched in the length direction under appropriate conditions.

第5図(b)〜(d)に延伸が行われるときの態様を示
す。なお第5図において、各部に表示した数値は後記の
実施例1に基づくものである。
FIGS. 5(b) to 5(d) show the manner in which stretching is performed. In FIG. 5, the numerical values displayed in each part are based on Example 1 described later.

チューブ状成形物4を延伸すると、チューブの内壁側は
ほぼ均一に延伸される。一方、外壁側は切れ目5が入っ
ているので切れ目5の両側は力が働かない。丁度切れ目
の端Bの部分に応力が集中してこの部分が延伸されるが
、第5図(b)の切れ目の底部Aの部分はそこにかかる
力が弱く、終局的に第5図(a)で切れ目の端Bの部分
が高い倍率で延伸され、延伸部B、を経て高延伸部B2
が形成され、切れ目の底部Aは低延伸部AI となる。
When the tubular molded product 4 is stretched, the inner wall side of the tube is stretched almost uniformly. On the other hand, since there is a cut 5 on the outer wall side, no force acts on either side of the cut 5. Stress is concentrated exactly at the end B of the cut and this part is stretched, but the force applied to the bottom A of the cut in Figure 5(b) is weak, and ultimately ), the part at the end B of the cut is stretched at a high magnification, and then passes through the stretched part B and then into the highly stretched part B2.
is formed, and the bottom part A of the cut becomes a low stretch part AI.

そして第5図(b)〜(d)における突起部分C4;l
!E伸応力が働かないので実質的に延伸されない。
And the protruding portion C4 in FIGS. 5(b) to (d); l
! E-stretching stress does not work, so there is no substantial stretching.

第6図に網目状突起3及び網目部分10の形成される過
程を部分外面図で示す。この図から、延伸処理前の切れ
目5の不連続部9が延伸処理後に綱目部分10の結節部
12となることがわかる。
FIG. 6 shows the process of forming the mesh protrusions 3 and the mesh portions 10 in a partial external view. From this figure, it can be seen that the discontinuous part 9 of the cut 5 before the drawing process becomes the knot part 12 of the rope section 10 after the drawing process.

従って本発明による人工血管は別の表現をすれば、チュ
ーブ状の弗素含有高分子を延伸してろくられる人工血管
であって、一体に成形された網目様の板状突起が該人工
血管の外壁面2全体に亘って配設されており、延伸によ
ってチューブの内壁面7と外壁面2とがフィブリル化し
、外壁面2にある網目状突起3間のフィブリルの状態が
内壁面7にあるフィブリルよりも疎なフィブリルを形成
するものである。
Therefore, to put it another way, the artificial blood vessel according to the present invention is an artificial blood vessel made by stretching a tube-shaped fluorine-containing polymer, in which an integrally formed mesh-like plate-like protrusion is formed on the outside of the artificial blood vessel. The inner wall surface 7 and outer wall surface 2 of the tube are fibrillated by stretching, and the state of the fibrils between the mesh-like protrusions 3 on the outer wall surface 2 is better than that of the fibrils on the inner wall surface 7. They also form loose fibrils.

又別の表現をするなら、本発明はチューブ状の弗素含有
高分子°を延伸してつくられる人工血管であって、一体
に成形された板状の網目状突起3が該人工血管の外壁面
囲に配設されており、外壁面2(仮想外壁面■、卯ち突
起部分の延伸外壁面相当面(第5図(d)に点線で表す
)を含む)において、高延伸部B、(疎フィブリル面)
と低延伸部(密フィブリル部(第5図(d)の点線1部
分))が交互に存在する人工血管であるといえる。
In other words, the present invention relates to an artificial blood vessel made by stretching a tube-shaped fluorine-containing polymer, in which the integrally molded plate-like mesh protrusion 3 is attached to the outer wall surface of the artificial blood vessel. The high extension part B, ( sparse fibril surface)
It can be said that this is an artificial blood vessel in which low elongation parts (dense fibril parts (the part indicated by the dotted line 1 in FIG. 5(d))) alternately exist.

或いは又、同上人工血管であって、その内壁面のフィブ
リル状態は比較的均一であり、外壁面(仮想外壁面■も
含む)のフィブリルの状態は人工血管の長さ方向に不均
一である人工血管とも表現出来るものである。
Alternatively, an artificial blood vessel as described above, in which the condition of the fibrils on the inner wall surface is relatively uniform, and the condition of the fibrils on the outer wall surface (including the virtual outer wall surface ■) is non-uniform in the length direction of the artificial blood vessel. It can also be described as a blood vessel.

いずれにせよ、外壁面がより疎なフィブリル面を有する
ために、外壁面からの内皮細胞の侵入、生育が容易であ
り、生体化が短時間に行われて、移植後の開存性の向上
に大きく貢献している。
In any case, since the outer wall surface has a more sparse fibrillar surface, it is easy for endothelial cells to invade and grow from the outer wall surface, and the biogenization occurs in a short time, improving patency after transplantation. has made a major contribution.

〔作用〕[Effect]

本発明に示された手段を人工血管に付与することにより
、破裂強度に強く、小さい曲率半径で曲げることが出来
る新しい性能を付与した人工血管の提供が可能となり、
動脈等に使用できる、合成樹脂製の長期開存性に優れた
人工血管の! 供カ可能となったものである。
By adding the means shown in the present invention to an artificial blood vessel, it is possible to provide an artificial blood vessel with new performance that is strong in bursting strength and can be bent with a small radius of curvature.
An artificial blood vessel made of synthetic resin with excellent long-term patency that can be used for arteries, etc. It is now possible to donate.

〔実施例〕〔Example〕

以下実施例によって本発明を更に詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

(実施例1) 市販の四弗化エチレン樹脂(三井フロロケミカル社製テ
フロン) 0.5 kgと押出助剤(液状潤滑剤として
ホワイトオイル(スモイルP−55、杜松石油社製)1
30ccとをタンブラ−で均一に混合し、これを加圧予
備成形後、ラム押出機でチューブ状に押し出した。次い
でホワイトオイルをその沸点以下の温度で加熱して充分
除去した。このチューブ状成形物は内径6fl、肉厚0
.8龍である。
(Example 1) 0.5 kg of commercially available tetrafluoroethylene resin (Teflon, manufactured by Mitsui Fluorochemical Co., Ltd.) and 1 extrusion aid (white oil (Sumoil P-55, manufactured by DuMatsu Oil Co., Ltd.) as a liquid lubricant)
30 cc were uniformly mixed in a tumbler, preformed under pressure, and then extruded into a tube shape using a ram extruder. The white oil was then heated at a temperature below its boiling point to thoroughly remove it. This tubular molded product has an inner diameter of 6fl and a wall thickness of 0.
.. There are 8 dragons.

この状態のチューブの内腔にほぼ密着する状態にステン
レス棒を挿入し、これを回転しつつ外壁面に鋭利な刃物
で輪切り状に0.2mm間隔でチューブの長さ方向に直
角に切れ目を入れた。切れ目の深さはチューブの内壁面
から0.1鶴を残している。
Insert a stainless steel rod so that it is almost in close contact with the inner cavity of the tube, and while rotating the rod, make circular cuts at 0.2 mm intervals on the outer wall surface at right angles to the length of the tube. Ta. The depth of the cut is 0.1 mm from the inner wall of the tube.

この切れ目は円周する間に4ケの不連続部分をつくり、
互いに隣接する切れ目の不連続部を相互にずらして、任
意の不連続部をそれに隣接する切れ目の連続部の中央に
位置させる。
This cut creates 4 discontinuous parts while going around the circumference,
The discontinuities of adjacent cuts are offset with respect to each other so that any discontinuity is located in the center of the continuous part of the cuts adjacent to it.

このチューブを327℃以下の温度で1.2倍ないし1
0倍に延伸するが、300℃位が適当である。本例では
20ctaのチューブを280℃に加熱した状態で急速
に100cmに延伸した。この処置によって切れ目の部
分が強度に延伸され、切れ目間部分には力がかからない
ので延伸されず、被延伸部分は高延伸倍率となって疎な
フィブリル構造となる。
This tube is heated 1.2 times to 1 times at a temperature below 327℃.
It is stretched 0 times, but approximately 300°C is appropriate. In this example, a 20 cta tube was rapidly stretched to 100 cm while being heated to 280°C. By this treatment, the cut portions are strongly stretched, and since no force is applied to the portions between the cuts, they are not stretched, and the stretched portions have a high stretching ratio and have a sparse fibril structure.

一方、内壁面は均一に延伸され、比較的細かい密なフィ
ブリルとなる。
On the other hand, the inner wall surface is uniformly stretched and becomes relatively fine and dense fibrils.

このようにして−回の延伸でチューブの外壁面は未延伸
の網目の板状突起で覆われるようになる。
In this way, the outer wall surface of the tube comes to be covered with unstretched mesh plate-like protrusions by stretching twice.

延伸後のチューブが収縮しないように両端を固定し、チ
ューブの端に冷却空気を導入するパイプを接続し、他端
を閉じ、温度をあげて320℃になったとき、0.4 
kg/cm”の空気圧を急激に″導入し、この圧力を保
持しながら温度を上昇させて400℃に達したら、今度
は急激に冷却して室温に戻した。
Both ends of the stretched tube are fixed to prevent it from shrinking, a pipe for introducing cooling air is connected to one end of the tube, the other end is closed, and the temperature is raised to 320°C, when the temperature is 0.4
An air pressure of "kg/cm" was rapidly introduced, and while this pressure was maintained, the temperature was raised to 400° C., and then rapidly cooled to return to room temperature.

出来上がった人工血管の形態は、第2図、第4A図に示
されたような外壁形状となり、内径6鰭、肉厚(d) 
0.1 m、網目状の板状突起の平均の高さくh) 0
.7 vs、平均半値幅(−w) 0.2 tm、It
nllfは7.5であり、人工血管の長さ方向の突起間
の平均間隔(D)は0.581m、LP/LOは0.4
1、最小曲率半径(r)は6.4flであった。
The completed artificial blood vessel has an outer wall shape as shown in Figures 2 and 4A, an inner diameter of 6 fins, and a wall thickness (d).
0.1 m, average height of mesh plate-like protrusions h) 0
.. 7 vs, average half width (-w) 0.2 tm, It
nllf is 7.5, the average distance (D) between protrusions in the longitudinal direction of the artificial blood vessel is 0.581 m, and LP/LO is 0.4
1. The minimum radius of curvature (r) was 6.4 fl.

(実施例2) 実施例1でラム押出機で押し出したチューブ状成形物か
ら、ホワイトオイルの沸゛点以下で加熱しホワイトオイ
ルを除去した。実施例1と同様にこの状態のチューブ状
の内腔に略密着する状態にステンレス棒を挿入し、これ
を1回転しつつチューブの外壁面に超音波カッターを用
いて切込みをつけつつチューブを一方向に一定速度でず
らした。
(Example 2) White oil was removed from the tubular molded product extruded using the ram extruder in Example 1 by heating at a temperature below the boiling point of white oil. As in Example 1, a stainless steel rod was inserted into the tube-shaped lumen in this state so that it was in close contact with the inner cavity, and while rotating the stainless steel rod once, a cut was made on the outer wall surface of the tube using an ultrasonic cutter, and the tube was cut once. direction at a constant speed.

切込みを一周する間に不連続部を5ケ所つくった。Five discontinuities were created while going around the notch.

このようにして切込みを不連続にスパイラル状に入れる
ことが出来た。
In this way, we were able to make discontinuous spiral cuts.

このチューブの内径は10龍、厚みは1.0鶴、切れ目
は0.12mm間隔としてスパイラル状にチューブの内
壁面より0.2鰭残しである。次いで、このチューブを
290℃に温めて急激に3.5倍に延伸した。この方法
によって外壁層に網目状の板状突起を有する四弗化ポリ
エチレンの人工血管が出来た。内壁面のフィブリルは細
かく、フィブリルの長さは平均32μ蹟、フィブリル同
志の平均間隔は2.8μmであり、一方、外壁層にある
突起間のフィブリルの平均の長さは0.3tll、フィ
ブリル間の平均間隔は6 Q ttmであった。
The inner diameter of this tube is 10 mm, the thickness is 1.0 mm, and the slits are spaced at 0.12 mm intervals, leaving 0.2 fins from the inner wall surface of the tube in a spiral shape. Next, this tube was heated to 290° C. and rapidly stretched 3.5 times. By this method, a polytetrafluoroethylene artificial blood vessel having a mesh-like plate-like protrusion on the outer wall layer was created. The fibrils on the inner wall surface are fine, with an average length of 32 μm and an average spacing between fibrils of 2.8 μm.On the other hand, the average length of fibrils between protrusions on the outer wall layer is 0.3 tll, and the average length between the fibrils is 2.8 μm. The average interval was 6 Q ttm.

尚、この人工血管の形態的特徴(記号は実施例1及び本
文参照)を示すと、 ! =10fi、 d =0.2鶴、h =0.6鶴、
マ=0.1 us、D ”0.4411m、 L P 
/ L o =0.51、r =18+u、了、 /i
!、 =9.211fi?あった。
The morphological characteristics of this artificial blood vessel (see Example 1 and the text for symbols) are: ! =10fi, d =0.2 crane, h =0.6 crane,
Ma = 0.1 us, D ”0.4411m, L P
/ Lo = 0.51, r = 18 + u, end, /i
! , =9.211fi? there were.

(実施例3〜6) 実施例1と同様の方法で下表に示すような内径の人工血
管の数種の形態の人工血管をつくった。
(Examples 3 to 6) In the same manner as in Example 1, several types of artificial blood vessels with inner diameters shown in the table below were made.

下表には、圧縮比t、 P / L O及びキンキング
の生じない最小曲率半径rをも記入した。
In the table below, the compression ratio t, P/LO, and the minimum radius of curvature r at which kinking does not occur are also entered.

実施例 内径 11   w  IJTHd   D 
 LP/LOr(■−) 3  3 0.5 0.1  8 0.2 0.35 
0.30 4.84  6 0.8 0.1  1! 
  0.3 0.25 0.47 7.05  10 
1.0 0.2  13  0.4 0.36 0.4
9 14.16  15 1.0 0.2  15 0
.6 0.48 0.31 17.8単位:龍 (実施例7) 実施例1,2,4.6の人工血管に800鶴ngの圧を
断続的に10回/分の割合で30日間加えたが破裂現象
をみなかった。
Example Inner diameter 11 w IJTHd D
LP/LOr(■-) 3 3 0.5 0.1 8 0.2 0.35
0.30 4.84 6 0.8 0.1 1!
0.3 0.25 0.47 7.05 10
1.0 0.2 13 0.4 0.36 0.4
9 14.16 15 1.0 0.2 15 0
.. 6 0.48 0.31 17.8 Unit: Dragon (Example 7) A pressure of 800 Tsuru ng was applied intermittently to the artificial blood vessels of Examples 1, 2, and 4.6 at a rate of 10 times/min for 30 days. However, no rupture phenomenon was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によって、弗素樹脂系合成樹脂からなる人工血管
であって、破裂強度が大きくて充分動脈用の血管として
使用出来、しがも小さい曲率半径でキンキングなしに曲
げられ、末梢血管代用に使用出来、長期開存性に優れた
人工血管の提供が可能となった。しかも製造方法は極め
て簡単であり、コストダウンにつながるものである。
The present invention provides an artificial blood vessel made of fluororesin-based synthetic resin, which has high bursting strength and can be used as an arterial blood vessel, yet has a small radius of curvature and can be bent without kinking, and can be used as a peripheral blood vessel substitute. It has now become possible to provide artificial blood vessels with excellent long-term patency. Moreover, the manufacturing method is extremely simple, leading to cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は本発明の人工血管の一実施例を示す斜視図、
第1B図は第1図の人工血管の縦断面図、第2図は網目
状突起の部分拡大図、第3図は第1図の人工血管を折り
曲げた状態で示す部分正面図、第4A図は第1図の人工
血管の無負荷状態の概略正面図、第4B図は第4A図の
人工血管を圧縮した状態の概略正面図、第5図は本発明
の方法の一実施例を説明するための工程を示す斜視図(
a)と部分断面図(b)〜(d)、第6図(a)と(b
)は網目状突起の形成を示す部分外面図である。 なお、図面に用いた符号において、 2−・・−・−−−−−一一一・・・−外壁層3・−・
・−一−−−・・・−・−網目状突起4−−−−−−−
−−−−−−−・−・−チューブ状成形物5−・・・−
・−−−−−−・・−・−切れ目7〜−−一−−−一一
−・・・−−−−m=内壁面8−・−・・・・−・・−
・−−−−−一外壁面9−・−・−・・−−−−−−−
−−−一・不連続部10・−・・・−・−−−−一網目
部分12−−−−−−−−−−−−−−御粘節部AI・
−−−−−一−−−・−・−低延伸部B、−−−−−−
−−−−−−−−一延伸部B t =−−−−−−−−
−−−−・・高延伸部c−−−−−−−−−−−−−−
−・−未延伸部■−・・・−・−・−−−一−・・−仮
想外壁面である。
FIG. 1A is a perspective view showing an embodiment of the artificial blood vessel of the present invention;
Figure 1B is a longitudinal sectional view of the artificial blood vessel in Figure 1, Figure 2 is a partially enlarged view of the mesh-like protrusion, Figure 3 is a partial front view of the artificial blood vessel in Figure 1 in a bent state, and Figure 4A. 1 is a schematic front view of the artificial blood vessel shown in FIG. 1 in an unloaded state, FIG. 4B is a schematic front view of the artificial blood vessel shown in FIG. 4A in a compressed state, and FIG. 5 illustrates an embodiment of the method of the present invention. A perspective view showing the process for (
a), partial cross-sectional views (b) to (d), and Figures 6 (a) and (b).
) is a partial external view showing the formation of mesh-like protrusions. In addition, in the symbols used in the drawings, 2-...------111...-Outer wall layer 3--
・−1−−−・・・−・−Mesh-shaped projection 4−−−−−−−
−−−−−−−・−・−Tubular molded product 5−−
・−−−−−−・・−・− Cuts 7 to −−1−−−11−−−−−−m = Inner wall surface 8−・−・・−・・−
・−−−−−Outer wall surface 9−・−・−・・−−−−−−
---1.Discontinuous part 10-------1 mesh part 12------------ Knot part AI・
−−−−−1−−−・−・−Low stretch part B, −−−−−
−−−−−−−−One stretched portion B t =−−−−−−−−
-----・Highly stretched part c------------
−・−Unstretched portion■−・・−・−・−−−1−・・−Virtual outer wall surface.

Claims (1)

【特許請求の範囲】 1、延伸加工した弗素含有高分子から構成された人工血
管であって、一体に成形された網目状突起が該人工血管
チューブの外壁面に配設された人工血管。 2、弗素含有高分子からなるチューブ状成形物の外壁面
に輪切状又はスパイラル状に不連続の切れ目を多数設け
、互いに隣接する該切れ目の相互間において、任意の該
切れ目の不連続部が、これと隣接する切れ目の連続部に
対して位置するようにし、チューブ状成形物をその長さ
方向に延伸することを特徴とする人工血管の製造方法。
[Scope of Claims] 1. An artificial blood vessel made of a stretched fluorine-containing polymer, in which an integrally molded mesh projection is disposed on the outer wall surface of the artificial blood vessel tube. 2. A large number of discontinuous cuts are provided in the outer wall surface of a tubular molded product made of a fluorine-containing polymer in a ring shape or a spiral shape, and any discontinuous part of the cut is made between adjacent cuts. , a method for manufacturing an artificial blood vessel, comprising stretching the tubular molded product in its length direction so that the tubular molded product is positioned in relation to a continuous portion of the cut adjacent to the cut.
JP60139785A 1985-06-26 1985-06-26 Fluorocarbon resin type artificial blood vessel and its production Pending JPS62343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60139785A JPS62343A (en) 1985-06-26 1985-06-26 Fluorocarbon resin type artificial blood vessel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139785A JPS62343A (en) 1985-06-26 1985-06-26 Fluorocarbon resin type artificial blood vessel and its production

Publications (1)

Publication Number Publication Date
JPS62343A true JPS62343A (en) 1987-01-06

Family

ID=15253368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139785A Pending JPS62343A (en) 1985-06-26 1985-06-26 Fluorocarbon resin type artificial blood vessel and its production

Country Status (1)

Country Link
JP (1) JPS62343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135345A (en) * 1982-02-08 1983-08-11 Toyota Motor Corp Cutoff method of fuel for internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135345A (en) * 1982-02-08 1983-08-11 Toyota Motor Corp Cutoff method of fuel for internal-combustion engine
JPH0520578B2 (en) * 1982-02-08 1993-03-19 Toyota Motor Co Ltd

Similar Documents

Publication Publication Date Title
US3105492A (en) Synthetic blood vessel grafts
US7879085B2 (en) ePTFE crimped graft
US5843171A (en) Method of insitu bypass to hold open venous valves
US4647416A (en) Method of preparing a vascular graft prosthesis
US4550447A (en) Vascular graft prosthesis
US6080198A (en) Method for forming a yarn wrapped PTFE tubular prosthesis
AU686530B2 (en) Super-elastic alloy braid structure
US5282847A (en) Prosthetic vascular grafts with a pleated structure
CA1066456A (en) Vascular insert and process for making it
US3337673A (en) Uniformly corrugated prosthesis and process of making same
CN101808690A (en) Braided occlusion device having repeating expanded volume segments separated by articulation segments
NL7908646A (en) POROUS STRUCTURE OF POLYTETRAFLUORETHENE AND METHOD FOR THE MANUFACTURE THEREOF.
US20020049489A1 (en) Prosthesis and method of making a prosthesis having an external support structure
WO2002028318A2 (en) Prosthesis having an external support structure and method of making the same
WO2022222663A1 (en) Anti-embolism protection apparatus
JPS62343A (en) Fluorocarbon resin type artificial blood vessel and its production
JP4269456B2 (en) Method for manufacturing catheter tube
JPS61293452A (en) Fluororesin artificial blood vessel and its production
JPH06343688A (en) Artificial blood vessel
JPH06189984A (en) Artificial blood vessel and manufacture thereof
JPS61272047A (en) Artificial blood vessel
JPH0218098B2 (en)
JPS6037736B2 (en) Tubular organ prosthetics
JP2005152181A (en) Embedding-type tubular treating tool
JPS62152467A (en) Production of tubular organ prosthetic material