JPS58135345A - Cutoff method of fuel for internal-combustion engine - Google Patents

Cutoff method of fuel for internal-combustion engine

Info

Publication number
JPS58135345A
JPS58135345A JP1769082A JP1769082A JPS58135345A JP S58135345 A JPS58135345 A JP S58135345A JP 1769082 A JP1769082 A JP 1769082A JP 1769082 A JP1769082 A JP 1769082A JP S58135345 A JPS58135345 A JP S58135345A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel cutoff
cutoff
exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1769082A
Other languages
Japanese (ja)
Other versions
JPH0520578B2 (en
Inventor
Osamu Shinoda
篠田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1769082A priority Critical patent/JPS58135345A/en
Publication of JPS58135345A publication Critical patent/JPS58135345A/en
Publication of JPH0520578B2 publication Critical patent/JPH0520578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To check possible impact attendant with the resumption of fuel supply by setting the rotation speed of the engine at a smaller value in the feed back of fuel to stop the fuel cutoff when the vehicle speed exceeds a specified value or a brake is in operation than other cases. CONSTITUTION:First, when detecting that a throttle valve 3 is at an idling opening from an output of a throttle sensor 29 during the operation of the engine, a controller 40 determines whether the rotation speed Ne of the engine exceeds the minimum value Nc(about 2,000rpm) for starting the fuel cutoff or not from an output of a vehicle speed sensor 35 and outputs a fuel cutoff signal to a fuel injection valve 41 when YES. Subsequently, it determines whether the rotation speed Ne exceeds the value Nh(about 1,800rpm) for stopping the fuel cutoff or not and then, determines whether or not the vehicle speed V exceeds a specified value Vo when NO. When coming up with NO, it stops the fuel cutoff, namely, resume the fuel supply, under the condition that, the brake is in operation and the rotation speed Ne is below Nl (about 1,000rpm).

Description

【発明の詳細な説明】 本発明は、内燃機関の減速期間に吸気系への燃料供給を
遮断して燃料消費効率および有害成分の放出を改善する
内燃機関の燃料遮断(フューエル・カット)方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cut method for an internal combustion engine that improves fuel consumption efficiency and emission of harmful components by cutting off fuel supply to the intake system during the deceleration period of the internal combustion engine. .

このような燃料遮断方法では絞り弁開度を検出するスロ
ットルセンサおよび機関回転速度センサ(クランク角セ
ンサ)から減速期間を検出して燃料遮断を実施している
が、従来の燃料遮(1) 新方法では燃料遮断を中止する燃料復帰機関回転速度を
、車速および制動装置の作動状態に関係なく一定に設定
している。燃料消費効率の一層の改善を図るためにはこ
れら機関回転速度を小さい値に設定して燃料遮断期間の
増大を図ることが有利であるが、燃料復帰機関回転速度
を小さい値に設定する場合、燃料供給の再開に伴う発生
衝撃が大きくなるという支障がある。
In this fuel cutoff method, fuel cutoff is performed by detecting the deceleration period from a throttle sensor that detects the opening of the throttle valve and an engine rotation speed sensor (crank angle sensor). In this method, the fuel return engine rotational speed at which the fuel cutoff is stopped is set to be constant regardless of the vehicle speed and the operating state of the brake system. In order to further improve fuel consumption efficiency, it is advantageous to set these engine speeds to small values to increase the fuel cutoff period, but when setting the fuel return engine speed to a small value, There is a problem in that the shock that occurs when the fuel supply is restarted becomes larger.

本発明の目的は、発生衝撃を抑制しつつ燃料遮断期間を
増大させることができる内燃機関の燃料遮断方法を提供
することである。
An object of the present invention is to provide a fuel cutoff method for an internal combustion engine that can increase the fuel cutoff period while suppressing the generated shock.

この目的を達成するために本発明の内燃機関の燃料遮断
方法によれば、高車速あるいは制動ブレーキの作動中は
、燃料復帰時に車両にががる衝撃が車両の大きな慣性あ
るいは車両に働く制動力により緩和されることに着目し
、車速が所定値以上である場合あるいは制動装置が作動
している場合では燃料遮断を中止する燃料復帰機関回転
速度をその他の場合よりも小さい値に設定する。
In order to achieve this object, the fuel cutoff method for an internal combustion engine of the present invention provides that, at high vehicle speeds or when the braking brake is in operation, the shock caused by the vehicle when the fuel is restored is due to the large inertia of the vehicle or the braking force acting on the vehicle. Focusing on the fact that the vehicle speed is more than a predetermined value or the braking device is operating, the fuel return engine rotational speed at which the fuel cutoff is canceled is set to a smaller value than in other cases.

(2) 図面を参照して本発明の詳細な説明する。(2) The present invention will be described in detail with reference to the drawings.

第1図は本発明が適用される電子制御燃料噴射機関の全
体の概略図である。エアクリーナ1から吸入された空気
はエアフローメータ2、絞り弁3、サージタンク4、吸
気ポート5、および吸気弁6を含む吸気通路12を介し
て機関本体7の燃焼室8へ送られる。絞り弁6は運転室
の加速ペダル13に連動する。燃焼室8はシリンダヘッ
ド9、シリンダブロック10、およびピストン11によ
って区画され、混合気の燃焼によって生成された排気ガ
スは排気弁I5、排気ポー) 16、排気分岐管17、
および排気管18を介して大気へ放出される。バイパス
通路21は絞り弁3の上流とサージタンク4とを接続し
、バイパス流量制御弁22はバイパス通路21の流通断
面積を制御してアイドリンク時の機関回転速度を一定に
維持する。窒素酸化物の発生を抑制するために排気ガス
を吸気系へ導く排気ガス再循環(EGR)通路23は、
排気分岐管17とサージタンク4とを接続し、オンオフ
弁形式の排気ガス再循環(EGR)制(3) 御弁24は電気パルスに応動してEGR通路23を開閉
する。吸気温センサ28はエアフローメータ2内に設け
られて吸気温を検出し、スロットル位置センサ29ば、
絞り弁3の開度を検出する。水温センサ30はシリンダ
ブロック10に取付けられて冷却水温度、すなわち機関
温度を検出し、酸素濃度センサとして周知の空燃比セン
サ31は排気分岐管17の集合部分に取付けられて集合
部分における酸素濃度を検出し、クランク角センサ32
は、機関本体7のクランク軸(図示せず)に結合する配
電器33の軸340回転からクランク軸のクランク角を
検出し、車速センサ35は自動変速機36の出力軸の回
転速度を検出する。これらのセンサ2 、28 、29
 、30 、31 、32 、35の出力、および蓄電
池37の電圧は電子制御装置40へ送られる。
FIG. 1 is an overall schematic diagram of an electronically controlled fuel injection engine to which the present invention is applied. Air taken in from the air cleaner 1 is sent to the combustion chamber 8 of the engine body 7 through an intake passage 12 that includes an air flow meter 2, a throttle valve 3, a surge tank 4, an intake port 5, and an intake valve 6. The throttle valve 6 is linked to an accelerator pedal 13 in the driver's cab. The combustion chamber 8 is divided by a cylinder head 9, a cylinder block 10, and a piston 11, and the exhaust gas generated by combustion of the air-fuel mixture is passed through an exhaust valve I5, an exhaust port 16, an exhaust branch pipe 17,
and is discharged to the atmosphere via the exhaust pipe 18. The bypass passage 21 connects the upstream side of the throttle valve 3 and the surge tank 4, and the bypass flow rate control valve 22 controls the flow cross-sectional area of the bypass passage 21 to maintain a constant engine rotational speed during idle link. An exhaust gas recirculation (EGR) passage 23 that guides exhaust gas to the intake system in order to suppress the generation of nitrogen oxides is
The exhaust branch pipe 17 and the surge tank 4 are connected, and an on-off valve type exhaust gas recirculation (EGR) control valve 24 opens and closes the EGR passage 23 in response to electric pulses. The intake air temperature sensor 28 is provided in the air flow meter 2 to detect the intake air temperature, and the throttle position sensor 29,
The opening degree of the throttle valve 3 is detected. The water temperature sensor 30 is attached to the cylinder block 10 to detect the cooling water temperature, that is, the engine temperature, and the air-fuel ratio sensor 31, known as an oxygen concentration sensor, is attached to the collecting part of the exhaust branch pipe 17 to detect the oxygen concentration in the collecting part. The crank angle sensor 32
detects the crank angle of the crankshaft from the rotation of the shaft 340 of the power distributor 33 coupled to the crankshaft (not shown) of the engine body 7, and the vehicle speed sensor 35 detects the rotational speed of the output shaft of the automatic transmission 36. . These sensors 2 , 28 , 29
, 30 , 31 , 32 , 35 and the voltage of the storage battery 37 are sent to an electronic control unit 40 .

燃料噴射弁41は各気筒に対応して各吸気ポート5の近
傍にそれぞれ設けられ、ポンプ42は燃料を燃料タンク
43から燃料通路44を介して燃料噴射弁41へ送る。
A fuel injection valve 41 is provided near each intake port 5 in correspondence with each cylinder, and a pump 42 sends fuel from a fuel tank 43 to the fuel injection valve 41 via a fuel passage 44.

電子制御装置40は各センサからの入力信号の関数とし
ての燃料噴射量を計算し、(4) 計算した燃料噴射量に対応したパルス幅の電気パルスを
燃料噴射弁41へ送る。電子制御装置40はまた、バイ
パス流量制御弁22、EGR制御弁24、自動変速機の
油圧制御回路のソレノイド45、および点火装置46を
制御する。点火装置46の点火コイルの二次側は配電器
33へ接続されている。
The electronic control unit 40 calculates the fuel injection amount as a function of the input signals from each sensor, and (4) sends an electric pulse with a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 41. The electronic control device 40 also controls the bypass flow control valve 22, the EGR control valve 24, the solenoid 45 of the automatic transmission hydraulic control circuit, and the ignition device 46. The secondary side of the ignition coil of the ignition device 46 is connected to the power distributor 33 .

第2図は電子制御装置の内部のブロック図である。CP
U (中央処理装置)56、ROM (読出し専用記憶
装置)57、RAM (直接アクセス記憶装置)58、
C−RAM(相補型RAM ) 59、マルチプレクサ
付きA/D (アナログ/デジタル)変換器60、およ
び入出力インタフェース61は、バス62を介して互い
に接続されている。C−RAM59は、補助電源へ接続
されており、点火スイッチが開かれて機関が停止してい
る期間も所定の電力を供給されて記憶を保持することが
できる。エアフローメータ2、吸気温センサ28、水温
センサ30、および空燃比センサ31からのアナログ信
号はA/D変換器60へ送られる。スロットル位置セン
サ29、クランク角センサ32、および車速センサ35
の出(5) 力は入出力インタフェース61へ送られ、バイパス流量
制御弁22、EGR制御弁24、ソレノイド45、およ
び点火装置46は入出力インターフェース61から入力
信号を送られる。
FIG. 2 is a block diagram of the inside of the electronic control device. C.P.
U (central processing unit) 56, ROM (read-only storage) 57, RAM (direct access storage) 58,
A C-RAM (complementary RAM) 59, an A/D (analog/digital) converter with multiplexer 60, and an input/output interface 61 are connected to each other via a bus 62. The C-RAM 59 is connected to an auxiliary power source, and is supplied with a predetermined amount of power even when the ignition switch is opened and the engine is stopped, so that the memory can be retained. Analog signals from the air flow meter 2, intake temperature sensor 28, water temperature sensor 30, and air-fuel ratio sensor 31 are sent to an A/D converter 60. Throttle position sensor 29, crank angle sensor 32, and vehicle speed sensor 35
Output (5) Power is sent to the input/output interface 61 , and the bypass flow control valve 22 , EGR control valve 24 , solenoid 45 , and ignition device 46 are sent input signals from the input/output interface 61 .

第3図は本発明を実施するプログラムのフローチャート
である。ステップ65ではアイドルスイッチがオンか否
か、すなわち絞り弁3がアイドリング開度にあるか否か
を判別し、判別結果が正であればステップ66へ進み、
否であればステップ77へ進む。アイドルスイッチは前
述のスロットルセンサ29に含まれている。ステップ6
6では機関回転速度Ne ;jNcか否かを判別し、判
別結果が正であればステップ67へ進み、否であればス
テップ68へ進む。Ncは燃料遮断を開始する最小の機
関回転速度であり、後述のNhに対してNc≧Nhの関
係をもつ。ステップ67ではフラグf=1とする。フラ
グfは燃料遮断を実施する条件が成立したことを示すた
めのフラグであり、いったん1になると燃料供給が再開
されるまで1に維持される。ステップ70ではフラグf
/c=1に(6) される。フラグf/c = 1の場合、燃料遮断が実施
される。ステップ68ではf=1か否かを判別し、判別
結果が正であればステップ69へ進み、否であればステ
ップ77へ進む。ステップ69では機関回転速度Ne 
’@ Nhか否かを判別し、判別結果が正であればステ
ップ70へ進み、否であればステップ74へ進む。Nh
および後述のNlは、燃料遮断を中止する、すなわち燃
料供給を再開する機関回転速度であり、Nh )Nlで
ある。ステップ74では車速v4voか否かを判別し、
判別結果が正であればステップ76へ進み、否であれば
ステップ75へ進む。ステップ75では制動装置、すな
わちブレーキの作動中か否かを判別し、判別結果が正で
あればステップ76へ、否であればステップ77へ進ム
。ステップ76では機関回転速度Ne 〉Nlか否かを
判別し、判別結果が正であればステップ70へ進み、否
であればステップ77へ進む。ステップ70ではフラグ
f=oとする。ステップ78ではフラグf/c−0、し
たがって燃料遮断を中止、すなわち燃料供給を行なう。
FIG. 3 is a flowchart of a program implementing the present invention. In step 65, it is determined whether the idle switch is on, that is, whether the throttle valve 3 is at the idling opening position, and if the determination result is positive, the process proceeds to step 66.
If not, the process advances to step 77. The idle switch is included in the throttle sensor 29 mentioned above. Step 6
At step 6, it is determined whether the engine rotational speed Ne; Nc is the minimum engine rotation speed at which fuel cutoff starts, and has a relationship of Nc≧Nh with respect to Nh, which will be described later. In step 67, the flag f=1. The flag f is a flag to indicate that the conditions for implementing a fuel cutoff are satisfied, and once it becomes 1, it is maintained at 1 until the fuel supply is restarted. In step 70, the flag f
/c=1 (6). If flag f/c = 1, a fuel cutoff is implemented. In step 68, it is determined whether f=1 or not. If the determination result is positive, the process proceeds to step 69; otherwise, the process proceeds to step 77. In step 69, the engine rotation speed Ne
'@Nh or not is determined, and if the determination result is positive, the process proceeds to step 70, and if not, the process proceeds to step 74. Nh
and Nl, which will be described later, is the engine rotational speed at which the fuel cutoff is stopped, that is, the fuel supply is restarted, and is Nh)Nl. In step 74, it is determined whether the vehicle speed is v4vo,
If the determination result is positive, the process proceeds to step 76; if not, the process proceeds to step 75. In step 75, it is determined whether or not the braking device, that is, the brake, is in operation. If the determination result is positive, the process proceeds to step 76, and if not, the process proceeds to step 77. In step 76, it is determined whether the engine rotational speed Ne>Nl, and if the determination result is positive, the process proceeds to step 70, and if not, the process proceeds to step 77. In step 70, the flag f=o. In step 78, the flag f/c-0 is set, so the fuel cutoff is canceled, that is, fuel is supplied.

したがって、内燃(7) 機関の減速中で機関回転速度NeがNc以上であると燃
料遮断が行なわれ、車速v′b″−VO以上である場合
あるいはブレーキが作動中の場合では機関回転速度Ne
が小さい方の設定値としてのNAまで下降すると燃料遮
断が中止され、その他の場合では機関回転速度Neが大
きい方の設定値Nhまで下降すると燃料遮断が中止され
る。なお好ましい実施例としてはNc = 200Or
、 p、 m、、Nh=1800r、pom、、NA+
=1.000r、plm、である。
Therefore, if the internal combustion (7) engine is decelerating and the engine rotational speed Ne is Nc or more, fuel cutoff is performed, and if the vehicle speed is more than v'b''-VO or the brake is in operation, the engine rotational speed Ne
When Ne falls to the smaller set value NA, the fuel cut-off is canceled, and in other cases, when the engine speed Ne drops to the larger set value Nh, the fuel cut-off is canceled. In addition, as a preferred embodiment, Nc = 200Or
, p, m,, Nh=1800r, pom,, NA+
=1.000r, plm.

第4図は本発明における燃料遮断の実施領域および中止
領域を示している。なお第4図において第2速、第3速
および第4速時におげろ車速V−機関回転速度Neの関
係を示している。燃料復帰時の、すなわち燃料遮断後の
燃料供給再開時の機関の出力トルクの変動に伴う衝撃に
因る車両の揺り返しは車速あるいは機関回転速度が大き
い場合程、乗員が感じる度合が小さい。
FIG. 4 shows the implementation range and the stop range of fuel cutoff in the present invention. Note that FIG. 4 shows the relationship between the vehicle speed V and the engine rotational speed Ne at the second, third, and fourth speeds. The higher the vehicle speed or engine rotational speed is, the less the vehicle occupant will feel the rolling motion of the vehicle due to the impact caused by fluctuations in the output torque of the engine when the fuel is restored, that is, when the fuel supply is resumed after a fuel cutoff.

なぜならば、車速あるいは機関回転速度が大きいとき程
、車両あるいは機関回転部の大きな慣性により車両の揺
り返しは緩和されるからであ(8) る。したがって、■≧VOかつNe≧Nlとしての高速
領域AおよびV < VOかつNe≧Nhとしての高回
転領域Bは支障なく燃料遮断を実施することができる。
This is because as the vehicle speed or engine rotational speed increases, the rolling motion of the vehicle is alleviated due to the large inertia of the vehicle or engine rotating parts (8). Therefore, the fuel can be cut off without any problem in the high-speed region A where ■≧VO and Ne≧Nl and in the high-speed region B where V<VO and Ne≧Nh.

また、制動装置の作動中は制動力が車両に作用して車両
の揺り返しがかなり緩和される。したがってV<VOか
つNl 〈Ne (Nhとしての領域Cでは制動装置が
作動中である場合のみ燃料遮断が実施される。領域りは
燃料遮断を行なわない領域である。こうして燃料遮断領
域が全体として拡大される。
Further, while the braking device is in operation, a braking force acts on the vehicle and the rolling of the vehicle is considerably alleviated. Therefore, in region C where V<VO and Nl <Ne (Nh), fuel cut-off is performed only when the brake system is operating. This region is a region in which fuel cut-off is not performed. Thus, the fuel cut-off region as a whole Expanded.

このように本発明によれば、燃料復帰機関回転速度が、
車速および制動装置の作動状態に関係して設定される結
果、燃料復帰時の発生衝撃を抑制しつつ燃料遮断領域を
最大限増大し、燃料消費効率および有害成分の放出抑制
を著しく改善することができる。
As described above, according to the present invention, the fuel return engine rotation speed is
As a result of being set in relation to the vehicle speed and the operating state of the braking system, it is possible to maximize the fuel cut-off area while suppressing the shock generated when fuel is restored, significantly improving fuel consumption efficiency and suppressing the release of harmful components. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される電子制御燃料噴射機関の概
略図、第2図は第1図の電子制御装置のブロック図、第
3図は本発明を実施するプ(9) ログラムのフローチャート、第4図は燃料遮断の実施お
よび中止領域を示す図である。 29・・・スロットルセンサ、32・・・クランク角セ
ンサ、40・・・電子制御装置 特許出願人  トヨタ自動車工業株式会社l−二 (10)
Fig. 1 is a schematic diagram of an electronically controlled fuel injection engine to which the present invention is applied, Fig. 2 is a block diagram of the electronic control device of Fig. 1, and Fig. 3 is a flowchart of a program (9) implementing the present invention. , FIG. 4 is a diagram showing areas in which fuel cutoff is performed and stopped. 29...Throttle sensor, 32...Crank angle sensor, 40...Electronic control device patent applicant Toyota Motor Corporation l-2 (10)

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の減速期間に吸気系への燃料供給を遮断する内
燃機関の燃料遮断方法において、車速が所定値以上であ
る場合あるいは制動装置が作動している場合では燃料遮
断を中止する燃料復帰機関回転速度をその他の場合より
も小さい値に設定することを特徴とする、内燃機関の燃
料遮断方法。
In a fuel cutoff method for an internal combustion engine that cuts off fuel supply to the intake system during the deceleration period of the internal combustion engine, the fuel cutoff is stopped when the vehicle speed is above a predetermined value or when the braking device is activated. A method of fuel cutoff for an internal combustion engine, characterized in that the speed is set to a value smaller than it would otherwise be.
JP1769082A 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine Granted JPS58135345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1769082A JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1769082A JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58135345A true JPS58135345A (en) 1983-08-11
JPH0520578B2 JPH0520578B2 (en) 1993-03-19

Family

ID=11950813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1769082A Granted JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58135345A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211728A (en) * 1983-05-17 1984-11-30 Nissan Motor Co Ltd Fuel cassette unit
JPS62253938A (en) * 1986-04-28 1987-11-05 Mazda Motor Corp Fuel control device for engine
CN103016178A (en) * 2011-09-22 2013-04-03 通用汽车环球科技运作有限责任公司 Deceleration fuel cutoff control systems and methods
JP2016142146A (en) * 2015-01-30 2016-08-08 愛三工業株式会社 Gas fuel supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62343A (en) * 1985-06-26 1987-01-06 城 靖 Fluorocarbon resin type artificial blood vessel and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62343A (en) * 1985-06-26 1987-01-06 城 靖 Fluorocarbon resin type artificial blood vessel and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211728A (en) * 1983-05-17 1984-11-30 Nissan Motor Co Ltd Fuel cassette unit
JPS62253938A (en) * 1986-04-28 1987-11-05 Mazda Motor Corp Fuel control device for engine
CN103016178A (en) * 2011-09-22 2013-04-03 通用汽车环球科技运作有限责任公司 Deceleration fuel cutoff control systems and methods
JP2016142146A (en) * 2015-01-30 2016-08-08 愛三工業株式会社 Gas fuel supply device

Also Published As

Publication number Publication date
JPH0520578B2 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JPS62343B2 (en)
JPS5857072A (en) Ignition timing controlling method of electronic control engine
US4550703A (en) Continous method of fuel injection in electronically controlled engine
JPS58135345A (en) Cutoff method of fuel for internal-combustion engine
JPH0465227B2 (en)
JPH0248681Y2 (en)
JPH09209798A (en) Exhaust gas recirculating device for engine and its method
JP4021005B2 (en) Intake air amount control device for vehicle engine
US20240336254A1 (en) Control method for hybrid vehicle and control device for hybrid vehicle
JPS648179B2 (en)
JPS58187565A (en) Speed reduction control device of internal-combustion engine for vehicle
JPS5825527A (en) Control method of fuel cut at deceleration of engine
JP3852633B2 (en) Engine deceleration control device
JPH0756227B2 (en) Fuel correction method during deceleration of electronically controlled engine
JPS61136057A (en) Lockup mechanism control device for car
JP2535859B2 (en) Overheat prevention device for in-vehicle engine
JPH0236787B2 (en)
JPS5872629A (en) Fuel supply method in warming state of electronically controlled engine
JPH063177Y2 (en) Exhaust gas recirculation control device for diesel engine
JPS6017234A (en) Air-fuel ratio control method for internal-combustion engine
JP2808658B2 (en) Fuel injection control device for internal combustion engine
JPH0247589B2 (en)
JPH0229855B2 (en) ENJINNOKYUKISOCHI
JPS5965531A (en) Engine speed control device for internal-combustion engine
JPS5872630A (en) Accelerating fuel supply method of electronically controlled engine