JPH0520578B2 - - Google Patents

Info

Publication number
JPH0520578B2
JPH0520578B2 JP57017690A JP1769082A JPH0520578B2 JP H0520578 B2 JPH0520578 B2 JP H0520578B2 JP 57017690 A JP57017690 A JP 57017690A JP 1769082 A JP1769082 A JP 1769082A JP H0520578 B2 JPH0520578 B2 JP H0520578B2
Authority
JP
Japan
Prior art keywords
fuel
engine
sensor
fuel cutoff
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57017690A
Other languages
Japanese (ja)
Other versions
JPS58135345A (en
Inventor
Osamu Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1769082A priority Critical patent/JPS58135345A/en
Publication of JPS58135345A publication Critical patent/JPS58135345A/en
Publication of JPH0520578B2 publication Critical patent/JPH0520578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料遮断方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fuel cutoff method for an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来の燃料遮断方法では絞り弁開度を検出する
スロツトルセンサおよび機関回転速度センサ(ク
ランク角センサ)から減速期間を検出して燃料遮
断を実施しているが、従来の燃料遮断方法では燃
料遮断を中止する燃料復帰機関回転速度を、車速
に関係なく一定に設定している。
In conventional fuel cutoff methods, fuel cutoff is performed by detecting the deceleration period using a throttle sensor that detects the opening of the throttle valve and an engine rotation speed sensor (crank angle sensor); The fuel return engine rotational speed at which fuel recovery is stopped is set to be constant regardless of vehicle speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この場合、燃料復帰機関回転数を低くすればす
るほど燃料遮断期間が増大するので燃料消費量を
低減することができるが燃料復帰機関回転速度を
低くすると車速が低いときの燃料供給再開時に発
生衝撃が大きくなるという問題がある。
In this case, the lower the fuel recovery engine rotation speed, the longer the fuel cutoff period will be, so fuel consumption can be reduced. However, if the fuel recovery engine rotation speed is lowered, a shock will occur when fuel supply is restarted at a low vehicle speed. The problem is that it becomes large.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本発明によれば 内燃機関の減速期間に吸気系への燃料供給を遮
断する内燃機関の燃料遮断方法において、車速が
所定値以上である場合には燃料遮断を中止する燃
料復帰機関回転速度をその他の場合よりも小さい
値に設定するようにしている。
According to the present invention, in order to solve the above problems, in a fuel cutoff method for an internal combustion engine that cuts off fuel supply to the intake system during a deceleration period of the internal combustion engine, the fuel cutoff is stopped when the vehicle speed is equal to or higher than a predetermined value. The fuel return engine rotational speed is set to a smaller value than in other cases.

〔作用〕[Effect]

車速が所定値以上の場合には燃料復帰機関回転
速度が低くされ、車速が所定値以下の場合には燃
料復帰機関回転速度が高くされる。
When the vehicle speed is above a predetermined value, the fuel return engine rotation speed is lowered, and when the vehicle speed is below the predetermined value, the fuel return engine rotation speed is increased.

〔実施例〕〔Example〕

第1図は本発明が適用される電子制御燃料噴射
機関の全体の概略図である。エアクリーナ1か吸
入された空気はエアフローメータ2、絞り弁3、
サージタンク4、吸気ポート5、および吸気弁6
を含む吸気通路12を介して機関本体7の燃焼室
8へ送られる。絞り弁3は運転室の加速ペダル1
3に連動する。燃焼室8はシリンダヘツド9、シ
リンダブロツク10、およびピストン11によつ
て区画され、混合気の燃焼によつて生成された排
気ガスは排気弁15、排気ポート16、排気分岐
管17、および排気管18を介して大気へ放出さ
れる。バイパス通路21は絞り弁3の上流とサー
ジタンク4とを接続し、バイパス流量制御弁22
はバイパス通路21の流通断面積を制御してアイ
ドリング時の機関回転速度を一定に維持する。窒
素酸化物の発生を抑制するために排気ガスを吸気
系へ導く排気ガス再循環(EGR)通路23は、
排気分岐管17とサージタンク4とを接続し、オ
ンオフ弁形式の排気ガス再循環(EGR)制御弁
24は電気パルスに応動してEGR通路23を開
閉する。吸気温センサ28はエアフローメータ2
内に設けられて吸気温を検出し、スロツトル位置
センサ29は、絞り弁3の開度を検出する。水温
センサ30はシリンダブロツク10に取付けられ
て冷却水温度、すなわち機関温度を検出し、酸素
濃度センサとして周知の空燃比センサ31は排気
分岐管17の集合部分に取付けられて集合部分に
おける酸素濃度を検出し、クランク角センサ32
は、機関本体7のクランク軸(図示せず)に結合
する配電器33の軸34の回転からクランク軸の
クランク角を検出し、車速センサ35は自動変速
機36の出力軸の回転速度を検出する。これらの
センサ2,28,29,30,31,32,35
の出力、および蓄電池37の電圧は電子制御装置
40へ送られる。燃料噴射弁41は各気筒に対応
して各吸気ポート5の近傍にそれぞれ設けられ、
ポンプ42は燃料を燃料タンク43から燃料通路
44を介して燃料噴射弁41へ送る。電子制御装
置40は各センサからの入力信号の関数としての
燃料噴射量を計算し、計算した燃料噴射量に対応
したパルス幅の電気パルスを燃料噴射弁41へ送
る。電子制御装置40はまた、バイパス流量制御
弁22、EGR制御弁24、自動変速機の油圧制
御回路のソレノイド45、および点火装置46を
制御する。点火装置46の点火コイルの二次側は
配電器33へ接続されている。
FIG. 1 is an overall schematic diagram of an electronically controlled fuel injection engine to which the present invention is applied. The air sucked by the air cleaner 1 is transferred to the air flow meter 2, throttle valve 3,
Surge tank 4, intake port 5, and intake valve 6
The air is sent to the combustion chamber 8 of the engine body 7 via the intake passage 12 containing the air. Throttle valve 3 is the accelerator pedal 1 in the driver's cab.
Linked to 3. The combustion chamber 8 is divided by a cylinder head 9, a cylinder block 10, and a piston 11, and the exhaust gas generated by combustion of the air-fuel mixture is passed through an exhaust valve 15, an exhaust port 16, an exhaust branch pipe 17, and an exhaust pipe. 18 to the atmosphere. The bypass passage 21 connects the upstream of the throttle valve 3 and the surge tank 4, and the bypass flow control valve 22
controls the flow cross-sectional area of the bypass passage 21 to maintain a constant engine rotational speed during idling. An exhaust gas recirculation (EGR) passage 23 that guides exhaust gas to the intake system in order to suppress the generation of nitrogen oxides is
The exhaust branch pipe 17 and the surge tank 4 are connected, and an on-off valve type exhaust gas recirculation (EGR) control valve 24 opens and closes the EGR passage 23 in response to electric pulses. The intake temperature sensor 28 is the air flow meter 2
A throttle position sensor 29 is provided inside to detect the intake air temperature, and a throttle position sensor 29 detects the opening degree of the throttle valve 3. The water temperature sensor 30 is attached to the cylinder block 10 to detect the cooling water temperature, that is, the engine temperature, and the air-fuel ratio sensor 31, known as an oxygen concentration sensor, is attached to the collecting part of the exhaust branch pipe 17 to detect the oxygen concentration in the collecting part. The crank angle sensor 32
detects the crank angle of the crankshaft from the rotation of the shaft 34 of the power distributor 33 connected to the crankshaft (not shown) of the engine body 7, and the vehicle speed sensor 35 detects the rotational speed of the output shaft of the automatic transmission 36. do. These sensors 2, 28, 29, 30, 31, 32, 35
The output of the storage battery 37 and the voltage of the storage battery 37 are sent to the electronic control unit 40. A fuel injection valve 41 is provided near each intake port 5 corresponding to each cylinder,
Pump 42 sends fuel from fuel tank 43 to fuel injection valve 41 via fuel passage 44 . The electronic control unit 40 calculates the amount of fuel to be injected as a function of the input signals from each sensor, and sends an electrical pulse to the fuel injection valve 41 with a pulse width corresponding to the calculated amount of fuel to be injected. The electronic controller 40 also controls the bypass flow control valve 22, the EGR control valve 24, the solenoid 45 of the automatic transmission hydraulic control circuit, and the ignition device 46. The secondary side of the ignition coil of the ignition device 46 is connected to the power distributor 33 .

第2図は電子制御装置の内部のブロツク図であ
る。CPU(中央処理装置)56、ROM(読出し専
用記憶装置)57、RAM(直接アクセス記憶装
置)58、C−RAM(相補型RAM)59、マル
チプレクサ付きA/D(アナログ/デジタル)変
換器60、および入出力インタフエース61は、
バス62を介して互いに接続されている。C−
RAM59は、補助電源へ接続されており、点火
スイツチが開かれて機関が停止している期間も所
定の電力を供給されて記憶を保持することができ
る。エアフローメータ2、吸気温センサ28、水
温センサ30、および空燃比センサ31からのア
ナログ信号はA/D変換器60へ送られる。スロ
ツトル位置センサ29、クランク角センサ32、
および車速センサ35の出力は入出力インタフエ
ース61へ送られ、バイパス流量制御弁22、
EGR制御弁24、ソレノイド45、および点火
装置46は入出力インタフエース61から入力信
号を送られる。
FIG. 2 is an internal block diagram of the electronic control unit. CPU (central processing unit) 56, ROM (read-only memory) 57, RAM (direct access memory) 58, C-RAM (complementary RAM) 59, A/D (analog/digital) converter with multiplexer 60, and The input/output interface 61 is
They are connected to each other via a bus 62. C-
The RAM 59 is connected to an auxiliary power source, and is supplied with a predetermined amount of power even when the ignition switch is opened and the engine is stopped so that the memory can be retained. Analog signals from the air flow meter 2, intake temperature sensor 28, water temperature sensor 30, and air-fuel ratio sensor 31 are sent to an A/D converter 60. Throttle position sensor 29, crank angle sensor 32,
The output of the vehicle speed sensor 35 is sent to the input/output interface 61, and the bypass flow control valve 22,
EGR control valve 24, solenoid 45, and ignition device 46 receive input signals from input/output interface 61.

第3図は本発明を実施するプログラムのフロー
チヤートである。ステツプ65ではアイドルスイツ
チがオンか否か、すなわち絞り弁3がアイドリン
グ開度にあるか否かを判別し、判別結果が正であ
ればステツプ66へ進み、否であればステツプ77へ
進む。アイドルスイツチは前述のスロツトルセン
サ29に含まれている。ステツプ66では機関回転
速度Ne≧Ncか否かを判別し、判別結果が正であ
ればステツプ67へ進み、否であればステツプ68へ
進む。Ncは燃料遮断を開始する最小の機関回転
速度であり、後述のNhに対してNc≧Nhの関係
をもつ。ステツプ67ではフラグf=1とする。フ
ラグfは燃料遮断を実施する条件が成立したこと
を示すためのフラグであり、いつたん1になると
燃料供給が再開されるまで1に維持される。ステ
ツプ70ではフラグf/c=1にされる。フラグ
f/c=1の場合、燃料遮断が実施れる。ステツ
プ68ではf=1か否かを判別し、判別結果が正で
あればステツプ69へ進み、否であればステツプ77
へ進む。ステツプ69では機関回転速度Ne≧Nhか
否かを判別し、判別結果が正であればステツプ70
へ進み、否であればステツプ74へ進む。Nhおよ
び後述のNlは、燃料遮断を中止する、すなわち
燃料供給を再開する機関回転速度であり、Nh>
Nlである。ステツプ74では車速V≧V0か否かを
判別し、判別結果が正であればステツプ76へ進
み、否であればステツプ75へ進む。ステツプ75で
は制動装置、すなわちブレーキの作動中か否かを
判別し、判別結果が正であればステツプ76へ、否
であればステツプ77へ進む。ステツプ76では機関
回転速度Ne≧Nlか否かを判別し、判別結果が正
であればステツプ70へ進み、否であればステツプ
77へ進む。ステツプ70ではフラグf=0とする。
ステツプ78ではフラグf/c=0、したがつて燃
料遮断を中止、すなわち燃料供給を行なう。した
がつて、内燃機関の減速中で機関回転速度Neが
Nc以上であると燃料遮断が行なわれ、車速Vが
V0以上である場合あるいはブレーキが作動中の
場合では機関回転速度Neが小さい方の設定値と
してのNlまで下降すると燃料遮断が中止され、
その他の場合では機関回転速度Neが大きい方の
設定値Nhまで下降すると燃料遮断が中止される。
なお好ましい実施例としてはNc=2000r.p.m.、
Nh=1800r.p.m.、Nl=1000r.p.m.である。
FIG. 3 is a flowchart of a program implementing the present invention. In step 65, it is determined whether the idle switch is on, that is, whether or not the throttle valve 3 is at the idling opening. If the determination result is positive, the process proceeds to step 66, and if not, the process proceeds to step 77. The idle switch is included in the throttle sensor 29 mentioned above. In step 66, it is determined whether the engine rotation speed Ne≧Nc, and if the determination result is positive, the process proceeds to step 67, and if not, the process proceeds to step 68. Nc is the minimum engine rotation speed at which fuel cutoff starts, and has a relationship of Nc≧Nh with respect to Nh, which will be described later. At step 67, the flag f=1. The flag f is a flag to indicate that the conditions for implementing a fuel cutoff are satisfied, and once it becomes 1, it is maintained at 1 until the fuel supply is restarted. At step 70, the flag f/c is set to 1. If flag f/c=1, a fuel cutoff is performed. In step 68, it is determined whether f=1 or not. If the determination result is positive, proceed to step 69, and if not, proceed to step 77.
Proceed to. In step 69, it is determined whether the engine rotation speed Ne≧Nh or not, and if the determination result is positive, the process proceeds to step 70.
If not, proceed to step 74. Nh and Nl (described later) are engine rotational speeds at which fuel cutoff is stopped, that is, fuel supply is restarted, and Nh>
It is Nl. In step 74, it is determined whether the vehicle speed V≧V0 or not. If the determination result is positive, the process proceeds to step 76, and if not, the process proceeds to step 75. In step 75, it is determined whether or not the braking device, ie, the brake, is in operation. If the determination result is positive, the process proceeds to step 76, and if not, the process proceeds to step 77. In step 76, it is determined whether the engine rotation speed Ne≧Nl, and if the determination result is positive, the process proceeds to step 70, and if not, the process proceeds to step 70.
Proceed to 77. At step 70, the flag f=0.
At step 78, the flag f/c=0, so the fuel cutoff is canceled, that is, fuel is supplied. Therefore, during deceleration of the internal combustion engine, the engine rotational speed Ne
If it is above Nc, fuel cutoff will be performed and the vehicle speed V will be
If the engine rotational speed Ne is higher than V0 or the brake is in operation, the fuel cutoff is canceled when the engine speed Ne decreases to the smaller set value Nl.
In other cases, the fuel cutoff is canceled when the engine speed Ne decreases to the larger set value Nh.
In addition, as a preferred embodiment, Nc=2000r.pm,
Nh=1800r.pm, Nl=1000r.pm.

第4図は本発明における燃料遮断の実施領域お
よび中止領域を示している。なお第4図において
第2速、第3速および第4速時における車速V−
機関回転速度Neの関係を示している。燃料復帰
時の、すなわち燃料遮断後の燃料供給再開時の機
関の出力トルクの変動に伴う衝撃に因る車両の揺
り返しは車速あるいは機関回転速度が大きい場合
程、乗員が感じる度合が小さい。なぜならば、車
速あるいは機関回転速度が大きいとき程、車両あ
るいは機関回転部の大きな慣性により車両の揺り
返しは緩和されるからである。したがつて、V≧
V0かつNe≧Nlとしての高速領域AおよびV<
V0かつNe≧Nhとしての高回転領域Bは支障な
く燃料遮断を実施することができる。また、制動
装置の作動中は制動力が車両に作用して車両の揺
り返しがかなり緩和される。したがつてV<V0
かつNl≦Ne<Nhとしての領域Cでは制動装置
が作動中である場合のみ燃料遮断が実施される。
領域Dは燃料遮断を行なわない領域である。こう
して燃料遮断領域が全体として拡大される。
FIG. 4 shows the implementation range and the stop range of fuel cutoff in the present invention. In addition, in Fig. 4, the vehicle speed V- at 2nd, 3rd, and 4th speeds
It shows the relationship between engine rotational speed Ne. The higher the vehicle speed or engine rotational speed is, the less the vehicle occupant will feel the rolling motion of the vehicle due to the impact caused by fluctuations in the output torque of the engine when the fuel is restored, that is, when the fuel supply is resumed after a fuel cutoff. This is because, as the vehicle speed or engine rotational speed increases, the rolling motion of the vehicle is alleviated due to the large inertia of the vehicle or engine rotating parts. Therefore, V≧
High speed region A and V< as V0 and Ne≧Nl
In the high rotation region B where V0 and Ne≧Nh, the fuel can be cut off without any problem. Further, while the braking device is in operation, a braking force acts on the vehicle and the rolling of the vehicle is considerably alleviated. Therefore, V<V0
In region C where Nl≦Ne<Nh, fuel cutoff is performed only when the brake system is in operation.
Area D is an area where fuel cutoff is not performed. In this way, the fuel cut-off area is enlarged as a whole.

〔発明の効果〕〔Effect of the invention〕

車速が所定値以上の場合には燃料復帰機関回転
速度を低くし、車速が所定値以下の場合には燃料
復帰機関回転速度を高くすることによつて燃料供
給再開時における発生衝撃を抑制しつつ燃料遮断
期間を増大でき、斯くして燃料消費量を低減する
ことができる。
When the vehicle speed is above a predetermined value, the fuel return engine rotation speed is lowered, and when the vehicle speed is below a predetermined value, the fuel return engine rotation speed is increased, thereby suppressing the impact that occurs when fuel supply is resumed. The fuel cut-off period can be increased, thus reducing fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御燃料噴射
機関の概略図、第2図は第1図の電子制御装置の
ブロツク図、第3図は本発明を実施するプログラ
ムのフローチヤート、第4図は燃料遮断の実施お
よび中止領域を示す図である。 29……スロツトルセンサ、32……クランク
角センサ、40……電子制御装置。
FIG. 1 is a schematic diagram of an electronically controlled fuel injection engine to which the present invention is applied, FIG. 2 is a block diagram of the electronic control device of FIG. 1, FIG. 3 is a flowchart of a program for implementing the present invention, and FIG. The figure is a diagram showing areas in which fuel cutoff is performed and stopped. 29...Throttle sensor, 32...Crank angle sensor, 40...Electronic control device.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の減速期間に吸気系への燃料供給を
遮断する内燃機関の燃料遮断方法において、車速
が所定値以上である場合には燃料遮断を中止する
燃料復帰機関回転速度をその他の場合よりも小さ
い値に設定することを特徴とする、内燃機関の燃
料遮断方法。
1. In a fuel cutoff method for an internal combustion engine that cuts off the fuel supply to the intake system during the deceleration period of the internal combustion engine, when the vehicle speed is above a predetermined value, the fuel return engine rotation speed at which the fuel cutoff is stopped is set higher than in other cases. A fuel cutoff method for an internal combustion engine, characterized by setting the fuel to a small value.
JP1769082A 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine Granted JPS58135345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1769082A JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1769082A JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58135345A JPS58135345A (en) 1983-08-11
JPH0520578B2 true JPH0520578B2 (en) 1993-03-19

Family

ID=11950813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1769082A Granted JPS58135345A (en) 1982-02-08 1982-02-08 Cutoff method of fuel for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58135345A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211728A (en) * 1983-05-17 1984-11-30 Nissan Motor Co Ltd Fuel cassette unit
JPS62253938A (en) * 1986-04-28 1987-11-05 Mazda Motor Corp Fuel control device for engine
US9127603B2 (en) * 2011-09-22 2015-09-08 Ronald W. Knoebel Deceleration fuel cutoff control systems and methods
JP6512843B2 (en) * 2015-01-30 2019-05-15 愛三工業株式会社 Gas fuel supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62343A (en) * 1985-06-26 1987-01-06 城 靖 Fluorocarbon resin type artificial blood vessel and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62343A (en) * 1985-06-26 1987-01-06 城 靖 Fluorocarbon resin type artificial blood vessel and its production

Also Published As

Publication number Publication date
JPS58135345A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
JPH0747944B2 (en) Engine controller
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
US4391243A (en) Method and apparatus of supplying fuel in electronic control fuel injection engine
JPH0251052B2 (en)
JPH0557420B2 (en)
JPS5857072A (en) Ignition timing controlling method of electronic control engine
US4550703A (en) Continous method of fuel injection in electronically controlled engine
US4718016A (en) Method of and system for controlling idling speed in electronically controlled engine
JPH0520578B2 (en)
JPH09209798A (en) Exhaust gas recirculating device for engine and its method
JPH0684735B2 (en) Fuel injection control method
JPS5825527A (en) Control method of fuel cut at deceleration of engine
JPH0236787B2 (en)
JP2535859B2 (en) Overheat prevention device for in-vehicle engine
JPS6017234A (en) Air-fuel ratio control method for internal-combustion engine
JPH0121336B2 (en)
JPH05542B2 (en)
JPH0544550B2 (en)
JP2808658B2 (en) Fuel injection control device for internal combustion engine
JPH0730731B2 (en) In-vehicle engine overheat prevention device
JPH0663466B2 (en) Internal combustion engine speed control device
JPS58187565A (en) Speed reduction control device of internal-combustion engine for vehicle
JPH0370104B2 (en)
JPH0514096B2 (en)
JPH10184517A (en) Ignition timing control method of vehicular engine