JPH06343688A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPH06343688A
JPH06343688A JP16316693A JP16316693A JPH06343688A JP H06343688 A JPH06343688 A JP H06343688A JP 16316693 A JP16316693 A JP 16316693A JP 16316693 A JP16316693 A JP 16316693A JP H06343688 A JPH06343688 A JP H06343688A
Authority
JP
Japan
Prior art keywords
tube
blood vessel
layers
artificial blood
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16316693A
Other languages
Japanese (ja)
Other versions
JP2970320B2 (en
Inventor
Fumihiro Hayashi
文弘 林
Atsushi Uno
敦史 宇野
Shinichi Kanazawa
進一 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16316693A priority Critical patent/JP2970320B2/en
Publication of JPH06343688A publication Critical patent/JPH06343688A/en
Application granted granted Critical
Publication of JP2970320B2 publication Critical patent/JP2970320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To generate an artificial blood vessel excellent in the blocking performance of a pierced hole at the time of piercing with a needle by furnishing a multilayer structure in which a pipe wall consists of two or more porous layers made of ethylene tetrafluoride resin (PTFE), and forming a non-adhesion part at the interface between at least two of the porous substance layers. CONSTITUTION:An artificial blood vessel 1 to be favorably used in blood dialysis shunt is of a multilayer structure consisting of an inner layer tube 2 and outer layer tube 3 both made of a PTFE porous substance, and the interface between the two tubes 2, 3 is made non-adhesive. At least one of the layers 2, 3 is made from a PTFE porous substance which has a fine fibrous structure consisting of fibers and node coupling them and whose intersecting angle between the fiber orientation direction and the tube long axis direction is no less than 10deg. Thereby a needle is put piercing in the condition that a dislocation is generated between the two layers by a shearing force in the direction toward the plane at the time of piercing with a needle, and after draw-off of the needle, the pierced hole is blocked by a force generated by the layers willing to return each other due to strain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用途に用いられる
人工血管に関し、さらに詳しくは、四弗化エチレン樹脂
(以下、PTFEと略記)多孔質体からなる人工血管に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial blood vessel used for medical use, and more particularly to an artificial blood vessel made of a tetrafluoroethylene resin (hereinafter abbreviated as PTFE) porous material.

【0002】[0002]

【従来の技術】PTFEを材料とする多孔質体は、PT
FE自体のもつ耐熱性、耐薬品性、耐候性、不燃性など
の特性、さらには低摩擦係数、撥水・撥油性、非粘着性
等の表面特性に加えて、多孔質であるため、可撓性、流
体透過性、微粒子の捕集・濾過性、低誘電率・誘電正接
等の特性が付加されており、これらの独自の特性から一
般工業分野のみならず医療分野などへの用途が拡大して
いる。例えば、PTFE多孔質体は、濾過膜、隔膜、シ
ール材の他、人工血管等の医療材料としても用いられて
いる。
2. Description of the Related Art A porous material made of PTFE is PT
FE itself has heat resistance, chemical resistance, weather resistance, nonflammability, and other characteristics, as well as low friction coefficient, water / oil repellency, non-adhesive surface characteristics, etc. Flexibility, fluid permeability, collection / filtration of fine particles, low dielectric constant / dielectric loss tangent, etc. are added, and these unique properties expand applications to general industrial fields as well as medical fields. is doing. For example, the PTFE porous body is used as a medical material such as an artificial blood vessel as well as a filtration membrane, a diaphragm, and a sealing material.

【0003】人工血管は、生体血管の病変部位と切除し
た欠損部の補填や病変部を迂回して血行を維持するバイ
パスとして、あるいは血液透析で血液の体外循環のため
使用する血液導管として、さらにはシャントチューブな
どとして使用されている。人工血管としての用途のう
ち、透析シャント用人工血管は、大きな利用分野であ
る。長期透析患者に対し血液透析用のブラッドアクセス
として内シャントが広く用いられているが、これは、頻
回のシャントの再手術により吻合ないしは穿刺する自己
血管の無くなった症例に対するものである。血液透析用
シャントは、通常、前腕及び上腕の動脈と静脈の間をつ
なぐバイパス状に吻合されるが、この用途には、可撓性
や生体適合性に優れるPTFE多孔質チューブがよく用
いられている。
An artificial blood vessel is used as a bypass for filling a lesion site of a living blood vessel and excised defect, bypassing the lesion site and maintaining blood circulation, or as a blood conduit used for extracorporeal circulation of blood in hemodialysis. Is used as a shunt tube. Among the applications as an artificial blood vessel, the artificial blood vessel for dialysis shunt is a large field of application. The internal shunt is widely used as a blood access for hemodialysis for long-term dialysis patients, but this is for the case where the anastomoses or punctures due to frequent reoperations of the shunt have disappeared. Hemodialysis shunts are usually anastomosed in a bypass shape that connects the arteries and veins of the forearm and brachia. For this purpose, a PTFE porous tube with excellent flexibility and biocompatibility is often used. There is.

【0004】このPTFE多孔質チューブは、生体適合
性や可撓性には優れているものの、生体血管に比べると
弾力性に劣っている。このため、PTFE多孔質チュー
ブを血液透析用シャントとして用いる場合、透析装置の
太針を繰り返し穿刺すると、穿刺針抜去後に穿刺針の孔
が塞がらないで残り、そこから血液・血漿の漏出が起こ
り、その結果、血腫や血清腫が起こったり、この穿刺に
よる血液漏出、血液凝固を繰り返す内に内膜が異常肥厚
し、最終的に動脈瘤・血管閉塞に至るという問題があっ
た。
Although this PTFE porous tube is excellent in biocompatibility and flexibility, it is inferior in elasticity as compared with a living blood vessel. Therefore, when the PTFE porous tube is used as a shunt for hemodialysis, if the thick needle of the dialysis machine is repeatedly punctured, the hole of the puncture needle remains unobstructed after the puncture needle is removed, and blood / plasma leakage occurs from there. As a result, there has been a problem that a hematoma or a seroma occurs, blood leaks due to this puncture, and the intima abnormally thickens during repeated blood coagulation, eventually leading to an aneurysm / vascular occlusion.

【0005】これに対し、弾力性に富む樹脂、例えばシ
リコンゴム樹脂やウレタン樹脂を用いた人工血管は、穿
刺抜去後、容易にその孔は塞がり止血は良好であるもの
の、引裂強度や耐座屈性に問題がある。即ち、これらの
弾性樹脂チューブは、生体血管との吻合の際、手術糸等
に対する引裂強度が低く吻合できないため、人工血管と
しては不適であり、特に、内シャント用途としては、前
腕及び上腕等の狭い領域への移植に必要となる可撓性が
なく、座屈しやすいなどの問題があった。さらに、弾性
樹脂チューブは、PTFE多孔質チューブに比べ、局部
的な止血性はよいものの、度重なる穿刺によるチューブ
全体の強度劣化が激しいこともあって、チューブ破裂の
危険性が高く、また、PTFE多孔質チューブのような
繊維性でないため、粒塊物の血中への遊離の危険性もあ
る。
On the other hand, an artificial blood vessel using a resin having a high elasticity, such as a silicone rubber resin or a urethane resin, can easily close its hole after puncture and withdrawal and has good hemostasis, but has tear strength and buckling resistance. There is a problem with sex. That is, these elastic resin tubes are unsuitable as an artificial blood vessel because they have low tear strength against surgical threads and the like and cannot be anastomosed during anastomosis with a living blood vessel, and particularly as an inner shunt application, such as forearm and upper arm. There is a problem that it does not have the flexibility required for transplantation into a narrow area and is easily buckled. Further, although the elastic resin tube has better local hemostatic property than the PTFE porous tube, the strength of the entire tube is severely deteriorated due to repeated puncture, so that the risk of tube rupture is high, and the PTFE tube Since it is not fibrous like a porous tube, there is also a risk of releasing agglomerates into the blood.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、PT
FE多孔質チューブの有する表面特性、生体適合性、易
屈曲性を損なうことなく、針穿刺時における穿刺孔の閉
塞性に優れた人工血管を提供することである。本発明者
らは、鋭意研究した結果、PTFE多孔質チューブを多
層化することによって、穿刺孔の閉塞性が得られること
を見出した。即ち、人工血管の管壁を複数のPTFE多
孔質体層により構成し、かつ、各層間の界面あるいは少
なくとも2層間の界面において、単に密着させるか、部
分的に融着または接着させるなどして、非接着部分を設
けることにより、針穿刺時に剪断力によって非接着部分
の層間にずれが生じた状態で針が穿刺され、その結果、
針抜去後に穿刺孔が連続した貫通孔を形成せず、有効穿
刺孔面積が小さくなることを見出した。また、PTFE
多孔質チューブの繊維の配向方向を、通常の管軸方向か
ら円周方向にずらせることによって、穿刺孔の閉塞性が
向上することを見出した。さらに、これら2つの方法を
組み合わせることにより、より効果的に穿刺孔の閉塞性
を向上させ得ることを見出した。本発明は、これらの知
見に基づいて完成するに至ったものである。
The object of the present invention is to provide a PT
An object of the present invention is to provide an artificial blood vessel having excellent puncture hole occlusion properties during needle puncture, without impairing the surface characteristics, biocompatibility, and flexibility of the FE porous tube. As a result of intensive studies, the present inventors have found that the multilayer structure of the PTFE porous tube can provide the puncture of the puncture hole. That is, the tube wall of the artificial blood vessel is composed of a plurality of PTFE porous body layers, and at the interface between the respective layers or at the interface between at least two layers, simply adhered or partially fused or adhered, By providing the non-adhesive portion, the needle is punctured in a state in which the shear force at the time of puncturing the needle causes a gap between the layers of the non-adhesive portion, and as a result,
It has been found that the effective puncture area becomes small without forming a continuous through hole after the needle is removed. Also, PTFE
It has been found that the occluding property of the puncture hole is improved by shifting the fiber orientation direction of the porous tube from the normal tube axis direction to the circumferential direction. Furthermore, it has been found that by combining these two methods, the occlusive property of the puncture hole can be improved more effectively. The present invention has been completed based on these findings.

【0007】[0007]

【課題を解決するための手段】かくして、本発明によれ
ば、管壁が2層以上の四弗化エチレン樹脂多孔質体層か
ら構成された多層構造を有し、かつ、該多孔質体層の内
の少なくとも2層間の界面において非接着部分を有する
ことを特徴とする人工血管が提供される。また、本発明
によれば、管壁が繊維と該繊維を連結する結節とからな
る微細繊維状構造を有する四弗化エチレン樹脂多孔質体
から構成された人工血管において、該繊維の配向方向と
管の長軸方向との交差角が10度以上であることを特徴
とする人工血管が提供される。
Thus, according to the present invention, the tube wall has a multi-layer structure composed of two or more porous layers of tetrafluoroethylene resin, and the porous layer is An artificial blood vessel is provided, which has a non-adhesive portion at an interface between at least two layers of the above. Further, according to the present invention, in an artificial blood vessel composed of a tetrafluoroethylene resin porous body having a fine fibrous structure in which the tube wall has fibers and a nodule connecting the fibers, the orientation direction of the fibers is There is provided an artificial blood vessel characterized by having a crossing angle of 10 degrees or more with the long axis direction of the tube.

【0008】さらに、本発明によれば、管壁が2層以上
の四弗化エチレン樹脂多孔質体層から構成された多層構
造を有し、該多孔質体層の内の少なくとも2層間の界面
において非接触部分を有する人工血管であって、該多孔
質体層の内の少なくとも1層が、繊維と該繊維を連結す
る結節とからなる微細繊維状構造を有する四弗化エチレ
ン樹脂多孔質体からなり、かつ、該繊維の配向方向と管
の長軸方向との交差角が10度以上であることを特徴と
する人工血管が提供される。
Further, according to the present invention, the tube wall has a multi-layered structure composed of two or more layers of the tetrafluoroethylene resin porous body layer, and the interface between at least two layers of the porous body layer. In the artificial blood vessel having a non-contacting portion, at least one layer of the porous body layer has a fine fibrous structure composed of fibers and a nodule connecting the fibers, and the tetrafluoroethylene resin porous body is An artificial blood vessel is provided, which is characterized in that the crossing angle between the fiber orientation direction and the long axis direction of the tube is 10 degrees or more.

【0009】以下、本発明について詳述する。PTFE
多孔質チューブは、穿刺孔が塞がりにくいという問題を
有している。本発明は、この問題に対し、構造的な面か
ら解決を図ったものである。本発明において、PTFE
多孔質体としては、チューブ成型品やシート成型品をチ
ューブ状にさらに成型したものを用いることができる。
The present invention will be described in detail below. PTFE
The porous tube has a problem that it is difficult to close the puncture hole. The present invention addresses this problem from a structural point of view. In the present invention, PTFE
As the porous body, a tube-molded product or a sheet-molded product further molded into a tubular shape can be used.

【0010】本発明に用いるPTFE多孔質チューブ
は、例えば、特公昭42−13560号公報に記載の方
法により製造することができる。具体的には、先ず、P
TFE未焼結粉末に液状潤滑剤を混和し、押出し等によ
りチューブ状に成形する。この成形物から液状潤滑剤を
加熱蒸発等により除去、あるいは除去せずして成形物を
少なくとも一軸方向に延伸する。熱収縮防止状態にて焼
結温度の327℃以上に加熱して延伸した構造を焼結固
定すると強度の向上したPTFE多孔質チューブが得ら
れる。
The PTFE porous tube used in the present invention can be manufactured, for example, by the method described in Japanese Patent Publication No. 42-13560. Specifically, first, P
A liquid lubricant is mixed with TFE unsintered powder and molded into a tube by extrusion or the like. The liquid lubricant is removed from the molded product by heating evaporation or the like, or the liquid lubricant is not removed, and the molded product is stretched in at least one axial direction. When the structure stretched by heating to a sintering temperature of 327 ° C. or higher in a state of preventing heat shrinkage is fixed by sintering, a PTFE porous tube having improved strength can be obtained.

【0011】このPTFE多孔質チューブは、非常に細
い繊維と該繊維により互いに連結された結節とからなる
微細繊維状組織を有しており、この微細繊維状組織が多
孔性空間を形成している。その繊維径と長さ、結節の大
きさやそれらの数は延伸と焼結の条件により変化させる
ことが可能であり、得られたPTFE多孔質チューブの
孔径と気孔率も自由に決定できる。PTFE多孔質シー
トも同様の方法で得ることができる。各結節間を結ぶ繊
維の長軸方向を繊維の配向方向という。これらのPTF
E多孔質体は、穿刺による孔が塞がらないことは、前述
したとおりである。
This PTFE porous tube has a fine fibrous structure composed of very thin fibers and nodules connected to each other by the fibers, and this fine fibrous structure forms a porous space. . The fiber diameter and length, the size of knots and the number thereof can be changed depending on the conditions of stretching and sintering, and the pore size and porosity of the obtained PTFE porous tube can be freely determined. The PTFE porous sheet can be obtained by the same method. The long axis direction of the fiber connecting the respective nodes is called the fiber orientation direction. These PTFs
As described above, the pores of the E porous body are not blocked by the puncture.

【0012】本発明の第一の特徴は、PTFE多孔質体
を多層構造とすることにより、各層における穿刺孔は、
そのままでも、各層間のずれが生じると、結果的に外面
から内面にかけて貫通した孔の面積が小さくなることを
利用したものである。多層構造を構成する複数のPTF
E多孔質体層の内の少なくとも2つの層が平面方向への
ずれを生じる自由度をもつ場合、針穿刺時における平面
方向への剪断力によって、2つの層間においてずれが生
じた状態で、針が穿刺される。この針を抜去すると、穿
刺時に与えられた各層の歪が互いに戻ろうとする力が働
き、結果的に各層の穿刺孔は、連続した貫通孔ではなく
なり、有効穿刺孔面積が小さくなる。
The first feature of the present invention is that the PTFE porous body has a multi-layer structure, so that the puncture holes in each layer are
Even if it is left as it is, it is used that the area of the hole penetrating from the outer surface to the inner surface is reduced when the displacement between the layers occurs. Multiple PTFs that make up a multilayer structure
E When at least two layers of the porous body layers have a degree of freedom that causes a displacement in the plane direction, the needle is punctured in a state in which the shear force in the plane direction at the time of needle puncture causes the displacement between the two layers. Is punctured. When the needle is removed, the strain applied to each layer during straining tends to return to each other, and as a result, the puncture hole in each layer is no longer a continuous through hole, and the effective puncture area is reduced.

【0013】一般に透析時に用いられる穿刺針は、外径
1mm以上の太さのものが使用されるため、有効穿刺孔
面積を効果的に小さくするためには、少なくとも0.1
mm以上の各層間のずれを生じるような自由度を持たせ
ることが好ましい。
Generally, a puncture needle used for dialysis has an outer diameter of 1 mm or more. Therefore, in order to effectively reduce the effective puncture hole area, at least 0.1
It is preferable to have a degree of freedom that causes a displacement between layers of not less than mm.

【0014】多層構造において、このような「ずれの自
由度」をもたせるためには、(1)単に膨張させたPT
FEチューブを、内層となるPTFEチューブ上にかぶ
せて、融点未満の温度で収縮させ、各層間を摩擦力のみ
で密着させて固定する方法、(2)積層した各層を部分
的に融点以上に加熱して、融着させた部分と融着してい
ない部分を設ける方法、(3)PTFEよりも低融点の
樹脂、例えばFEPやシリコーン樹脂、ウレタン樹脂、
フッ素ゴム、熱可塑性エラストマーなどを用いて、各層
間を部分的に接着するが接着していない部分も存在させ
る方法、及びこれらの方法を組み合わせた方法等が採用
できる。
In order to have such a "degree of freedom of displacement" in the multilayer structure, (1) simply expanded PT
A method in which the FE tube is covered on the PTFE tube which is the inner layer, contracted at a temperature lower than the melting point, and each layer is adhered and fixed only by frictional force, (2) Each laminated layer is partially heated to the melting point or higher. And (3) a resin having a lower melting point than PTFE, for example, FEP, silicone resin, urethane resin,
It is possible to employ a method in which each layer is partially adhered by using a fluororubber, a thermoplastic elastomer, or the like, but a non-adhered portion is present, or a method in which these methods are combined.

【0015】発明の第二の特徴は、PTFE多孔質チュ
ーブの繊維の配向方向を円周方向に漸近させることによ
り、穿刺孔断面が細長い形状に変化し、結果的に、長軸
配向品よりも孔の面積が小さくなることを利用したもの
である。一般に、針を穿刺する場合、針の長軸を人工血
管の長軸に一致させて行われるため、針の先端のカッテ
ィングエッジは、人工血管の長軸に対し、約90度の進
入角度をもつことになる。この時、人工血管の繊維が円
周方向に配向している場合、カッティングエッジの進入
角度と繊維の配向方向が一致し、穿刺孔は、繊維の方向
に裂けるように開くため、穿刺針抜去後には、孔の断面
が細く長い形状になり、結果的に穿刺孔の面積を小さく
抑えることができる。
The second feature of the invention is that the puncture hole cross section changes to an elongated shape by making the orientation direction of the fibers of the PTFE porous tube asymptotic to the circumferential direction. It utilizes the fact that the area of the holes is small. Generally, when puncturing a needle, the long axis of the needle is made to coincide with the long axis of the artificial blood vessel, so the cutting edge at the tip of the needle has an approach angle of about 90 degrees with respect to the long axis of the artificial blood vessel. It will be. At this time, if the fibers of the artificial blood vessel are oriented in the circumferential direction, the approach angle of the cutting edge and the orientation direction of the fibers match, and the puncture hole opens so as to tear in the direction of the fiber. The hole has a narrow and long cross section, and as a result, the area of the puncture hole can be kept small.

【0016】上記のように、穿刺孔を効果的に小さくす
るためには、穿刺針のカッテイングエッジの繊維の配向
方向に対する進入角度を少なくとも80度以下にする必
要があるため、人工血管の繊維の配向方向は長軸方向に
対し、10度以上の角度をもつことが必要である。一般
に、PTFE多孔質チューブを製造する場合、管の長軸
方向への延伸倍率が大きいため、繊維の配向方向は、管
の長軸方向と一致する。繊維の配向方向を管の長軸方向
に対し10度以上の角度を持たせるには、例えば、膨張
させたPTFEチューブ成型品を、ネジリ変形を与えた
状態で固定し、融点以上の温度に一定時間加熱し、冷却
する方法が採用できる。この方法により、繊維が管の長
軸方向を中心として、円周上を螺旋状に配向した構造の
PTFE多孔質チューブが得られる。
As described above, in order to effectively reduce the size of the puncture hole, it is necessary to set the entering angle of the cutting edge of the puncture needle with respect to the fiber orientation direction to be at least 80 degrees or less. It is necessary that the orientation direction has an angle of 10 degrees or more with the major axis direction. Generally, when a PTFE porous tube is manufactured, the orientation ratio of the fibers coincides with the long axis direction of the tube because the stretching ratio in the long axis direction of the tube is large. In order to make the orientation direction of the fiber have an angle of 10 degrees or more with respect to the long axis direction of the tube, for example, an expanded PTFE tube molded product is fixed in a state in which it is twisted and deformed, and the temperature is kept at a temperature higher than the melting point. A method of heating for a time and cooling can be adopted. By this method, a PTFE porous tube having a structure in which the fibers are spirally oriented on the circumference centering on the long axis direction of the tube can be obtained.

【0017】また、繊維の配向方向を管の長軸方向に対
し10度以上の角度を持たせたPTFE多孔質チューブ
は、PTFEシート成型品を、繊維の配向が円周方向に
なるように、円柱に巻きつけて固定し、融点以上の温度
に一定時間加熱し、冷却した後、円柱をとり除くことに
より得ることができる。繊維の配向方向が円周方向と一
致する場合、繊維の配向方向と管の長軸方向との交差角
は90度となる。
Further, the PTFE porous tube in which the fiber orientation direction has an angle of 10 degrees or more with respect to the long axis direction of the tube is a PTFE sheet molded product, so that the fiber orientation is in the circumferential direction. It can be obtained by wrapping around a cylinder, fixing, heating to a temperature above the melting point for a certain period of time, cooling, and then removing the cylinder. When the fiber orientation direction coincides with the circumferential direction, the crossing angle between the fiber orientation direction and the long axis direction of the tube is 90 degrees.

【0018】このようにして、繊維の配向方向と管の長
軸方向との交差角が10度以上のPTFE多孔質チュー
ブを作成することができる。なお、ここで、交差角が1
0度以上とは、繊維の配向方向と管の長軸方向とがなす
2つの交差角のうち、小さい方の交差角が10度以上で
あることを意味する。さらに、本発明の第一と第二の特
徴を組み合わせることにより、より大きな穿刺孔の閉塞
性を得ることが可能となる。少なくとも一層の穿刺孔の
面積が小さければ、各層間のずれが小さくても有効穿刺
孔面積は、極端に小さくなる。
In this way, a PTFE porous tube having an intersection angle between the fiber orientation direction and the long axis direction of the tube of 10 degrees or more can be prepared. Here, the intersection angle is 1
0 degree or more means that the smaller one of the two intersection angles formed by the fiber orientation direction and the long axis direction of the tube is 10 degrees or more. Further, by combining the first and second characteristics of the present invention, it becomes possible to obtain a larger puncture hole blocking property. If the area of at least one puncture hole is small, the effective puncture hole area will be extremely small even if the displacement between the layers is small.

【0019】上記のように、多層構造の人工血管に針を
穿刺抜去すると、穿刺孔に軸方向にずれが生じ、内面か
ら外面にかけて連続する孔の有効面積が減少する。この
ため、孔からの出血は、最小限に抑えられるとともに、
孔が早く血栓で塞がれ、止血時間を短縮させることがで
きる。また、繊維の配向方向が円周方向に漸近した人工
血管では、穿刺孔が繊維の配向方向に平行に一文字的に
孔が開き、孔の面積が減少する。このため、孔からの出
血は、最小限に抑えられるとともに、孔が早く血栓で塞
がれ、止血時間を短縮させることができる。さらに、多
層構造とし、かつ、繊維の配向方向が円周方向に漸近し
た層を組み合わせることにより、有孔穿刺孔の面積が極
端に小さくなる。このため、孔からの出血量は、極めて
少なくなるとともに、血栓による閉塞が極めて、早くな
り、止血時間を極端に短縮させることができる。
As described above, when the needle is punctured and withdrawn from the artificial blood vessel having the multilayer structure, the puncture hole is displaced in the axial direction, and the effective area of the hole continuous from the inner surface to the outer surface is reduced. Therefore, bleeding from the hole is minimized and
The holes are quickly clogged with thrombus, and the time for hemostasis can be shortened. Further, in the artificial blood vessel in which the orientation direction of the fibers is asymptotic to the circumferential direction, the puncture hole is opened literally in parallel with the orientation direction of the fiber, and the area of the hole is reduced. Therefore, bleeding from the hole can be suppressed to a minimum, and the hole can be quickly blocked by a thrombus to shorten the hemostasis time. Furthermore, the area of the perforated puncture hole is extremely reduced by using a multilayer structure and combining layers in which the orientation direction of the fibers is asymptotic to the circumferential direction. Therefore, the amount of bleeding from the hole is extremely small, the occlusion by the thrombus is extremely fast, and the hemostasis time can be extremely shortened.

【0020】[0020]

【実施例】以下、本発明について実施例及び比較例を挙
げてより具体的に説明するが、本発明はこれらの実施例
のみに限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0021】[実施例1]PTFEファインパウダー
(ダイキン工業株式会社製、F104)100重量部に
対して、ナフサ(エッソ社製、商品名ドライゾール)2
3重量部を助剤として混合し、ラム押出機によってチュ
ーブ状に成型した後に、ドライゾールを50℃、48時
間で乾燥させた。この押出チューブを電気炉中400
℃、炉内滞在時間80秒の条件で加熱しながら500%
延伸し、気孔率77%、繊維長33μm、内径4mm、
肉厚300μmのPTFE多孔質チューブ(サンプルN
o.1)を得た。
Example 1 To 100 parts by weight of PTFE fine powder (F104 manufactured by Daikin Industries, Ltd.), naphtha (manufactured by Esso Co., Ltd., drysol) was added.
After mixing 3 parts by weight as an auxiliary agent and molding into a tube by a ram extruder, DRYSOL was dried at 50 ° C. for 48 hours. This extruded tube is placed in an electric furnace for 400
500% while heating at 80 ℃ for 80 seconds in the furnace
Stretched, porosity 77%, fiber length 33 μm, inner diameter 4 mm,
PTFE porous tube with 300 μm wall thickness (Sample N
o. 1) was obtained.

【0022】さらに、室温下で、このチューブの内腔に
内径5mmまたは6mmのステンレス鋼製の円柱を挿入
して膨張し、肉厚300μm以下の内径5mmのチュー
ブと内径6mmのチューブを得た。この内径4mmのチ
ューブの内腔に外径4mmのステンレス鋼製の円柱を挿
入したものを、外層となる内径5mmのチューブの内腔
に挿入し、300℃の炉内で内径5mmのチューブを径
方向に収縮させることで、内層の内径4mmのチューブ
に密着させ、内層、外層からなる内径4mmの2層構造
のチューブ(サンプルNo.2)を得た。
Further, at room temperature, a stainless steel column having an inner diameter of 5 mm or 6 mm was inserted into the inner cavity of the tube and expanded to obtain a tube having an inner diameter of 5 mm and a tube having an inner diameter of 300 μm and a diameter of 6 mm. The inner diameter of the tube with an inner diameter of 4 mm and a cylinder made of stainless steel with an outer diameter of 4 mm were inserted into the inner lumen of the tube with an inner diameter of 5 mm, which was the outer layer, and the tube with an inner diameter of 5 mm was placed in a furnace at 300 ° C. By contracting in the direction, the inner layer was brought into close contact with a tube having an inner diameter of 4 mm to obtain a tube (sample No. 2) having a two-layer structure of an inner layer and an outer layer having an inner diameter of 4 mm.

【0023】同様に、内径4mmのチューブの内腔に外
径4mmのステンレス鋼製の円柱を挿入したものを、中
間層となる内径5mmのチューブの内腔に挿入し、さら
に、それを外層となる6mmのチューブに挿入し、30
0℃の炉内で内径5mm及び6mmのチューブを径方向
に収縮させることで、内層の内径4mmのチューブに密
着させ、内層、中間層、外層からなる内径4mmの3層
構造のチューブ(サンプルNo.3)を得た。
Similarly, a stainless steel cylinder having an outer diameter of 4 mm is inserted into the inner lumen of a tube having an inner diameter of 4 mm, and the tube is inserted into the inner lumen of a tube having an inner diameter of 5 mm, which serves as an intermediate layer. Insert into a 6 mm tube
Tubes with inner diameters of 5 mm and 6 mm are contracted in the furnace at 0 ° C. in the radial direction so as to be closely adhered to the inner layer tubes with inner diameter of 4 mm. . 3) was obtained.

【0024】多層構造化を行わない、元の内径4mmの
チューブ(サンプルNo.1)と本発明による2層構造
チューブ(サンプルNo.2)及び3層構造チューブ
(サンプルNo.3)について、18G針による穿刺孔
からの内圧120mmHgにおける漏水量を測定した。
その結果を表1に示す。表1から明らかなように、層の
数を増加させることにより、漏水量を減少させる効果が
得られることが分かった。また、各層の穿刺孔を観察す
ると、図1に示すように、層間のずれにより、穿刺孔の
有効面積が減少していた。
18G of the original tube having an inner diameter of 4 mm (Sample No. 1), the two-layer structure tube (Sample No. 2) and the three-layer structure tube (Sample No. 3) according to the present invention, which are not multilayered The amount of water leakage from the puncture hole with the needle at an internal pressure of 120 mmHg was measured.
The results are shown in Table 1. As is clear from Table 1, it was found that the effect of reducing the amount of water leakage was obtained by increasing the number of layers. Further, when observing the puncture holes in each layer, as shown in FIG. 1, the effective area of the puncture holes was reduced due to the displacement between the layers.

【0025】[実施例2]実施例1で用いた内径4mm
のチューブの内腔に外径4mmのステンレス鋼製の円柱
を挿入し、チューブの繊維が長軸方向に対し60度の角
度を持って配向するようにチューブに捻れ変形を与えた
状態で円柱に固定し、350℃の炉内で5分間の加熱を
行うことで、繊維が管の長軸方向に対し60度の角度を
持って配向した内径4mmの配向チューブ(サンプルN
o.4)が得られた。この場合、繊維は、管の長軸方向
に対し60度の角度をもって、円周上を螺旋状に配向し
ている。
[Embodiment 2] The inner diameter used in Embodiment 1 is 4 mm.
Insert a stainless steel cylinder with an outer diameter of 4 mm into the inner lumen of the tube, and twist the tube so that the fibers of the tube are oriented at an angle of 60 degrees with respect to the long axis direction The tube was fixed and heated in a furnace at 350 ° C. for 5 minutes to orient the fibers at an angle of 60 degrees with respect to the long axis direction of the tube.
o. 4) was obtained. In this case, the fibers are helically oriented on the circumference at an angle of 60 degrees with respect to the long axis direction of the tube.

【0026】得られた螺旋配向チューブ(サンプルN
o.4)について、実施例1と同様に漏水量の測定を行
った。その結果、表1に見られるように、繊維が管の長
軸方向に配向した元の内径4mmのチューブ(サンプル
No.1)に対して、20%以上の漏水量減少効果が認
められた。また、穿刺孔を観察すると、図2に示すよう
に、穿刺孔の形状が長軸配向品とは異なっており、孔の
面積が減少していた。
The obtained spiral orientation tube (Sample N
o. Regarding 4), the amount of water leakage was measured in the same manner as in Example 1. As a result, as shown in Table 1, with respect to the original tube having an inner diameter of 4 mm (Sample No. 1) in which the fibers were oriented in the long axis direction of the tube, a water leakage reduction effect of 20% or more was recognized. Further, when the puncture hole was observed, as shown in FIG. 2, the shape of the puncture hole was different from that of the long-axis oriented product, and the area of the hole was reduced.

【0027】[実施例3]PTFEファインパウダー
(旭硝子株式会社製、CD123)100重量部に対し
て、ナフサ(エッソ社製、商品名ドライゾール)23重
量部を助剤として混合し、ラム押出機によってチューブ
状に成型した後に、ドライゾールを50℃、48時間で
乾燥させた。この押出チューブを電気炉中550℃、炉
内滞在時間30秒の条件で加熱しながら450%延伸
し、気孔率82%、繊維長40μm、内径6mm、肉厚
800μmの厚肉のPTFE多孔質チューブ(サンプル
No.5)を得た。
[Example 3] A ram extruder was prepared by mixing 23 parts by weight of naphtha (Drysol, trade name, manufactured by Esso Co.) with 100 parts by weight of PTFE fine powder (CD123, manufactured by Asahi Glass Co., Ltd.) as an auxiliary agent. After being molded into a tube shape by, the drysol was dried at 50 ° C. for 48 hours. This extruded tube was stretched by 450% while being heated in an electric furnace at a temperature of 550 ° C. for 30 seconds in the furnace, and a porous PTFE tube having a porosity of 82%, a fiber length of 40 μm, an inner diameter of 6 mm, and a wall thickness of 800 μm was formed. (Sample No. 5) was obtained.

【0028】一方、実施例1で用いた内径4mmのチュ
ーブを室温下で外径6mmのステンレス鋼製の円柱に挿
入しながら膨張させ、かつ、繊維が管の長軸方向に対し
60度の角度を持って配向するように捻れ変形を加え、
350℃の炉内で5分間の加熱を行うことで、内径6m
m、肉厚300μm以下の螺旋配向薄肉チューブを得
た。肉厚チューブの内腔に内径6mmのステンレス鋼製
の円柱を挿入し、その上に螺旋配向薄肉のチューブを膨
張させながら被覆し、内層に繊維が管の長軸方向に配向
したPTFE多孔質体層、外層には、繊維が螺旋配向し
たPTFE多孔質体層の2層構造のチューブ(サンプル
No.6)が得られた。
On the other hand, the tube having an inner diameter of 4 mm used in Example 1 was expanded at room temperature while being inserted into a stainless steel column having an outer diameter of 6 mm, and the fiber was formed at an angle of 60 degrees with respect to the longitudinal direction of the tube. Add twist deformation to orient,
By heating in a furnace at 350 ° C for 5 minutes, the inner diameter is 6m
m, and a wall thickness of 300 μm or less was obtained. A stainless steel cylinder with an inner diameter of 6 mm is inserted into the inner wall of a thick-walled tube, and a spirally oriented thin-walled tube is covered on the tube while expanding, and fibers are oriented in the inner layer of the PTFE porous body. A tube (Sample No. 6) having a two-layer structure of a PTFE porous body layer in which fibers were spirally oriented was obtained as the layer and the outer layer.

【0029】得られた2層構造のチューブ(サンプルN
o.6)と、このチューブの製作に用いた厚肉チューブ
(サンプルNo.5)について、実施例1と同様に漏水
量の測定を行った。その結果、表1に見られるように、
単層構造の厚肉チューブに対し、螺旋配向薄肉チューブ
を被覆した2層構造のチューブにすることにより、約8
0%の漏水量の減少が得られた。チューブの内面及び外
面を観察すると、内層の穿刺孔の面積は大きいが、外層
の穿刺孔は殆ど塞がっていた。
The resulting two-layer tube (Sample N
o. 6) and the thick-walled tube (Sample No. 5) used for manufacturing this tube, the amount of water leakage was measured in the same manner as in Example 1. As a result, as shown in Table 1,
By changing the thickness of a single-layer tube from a single-layer tube to a two-layer tube covered with a spiral orientation thin tube,
A 0% reduction in water leakage was obtained. When the inner surface and the outer surface of the tube were observed, the area of the puncture hole in the inner layer was large, but the puncture hole in the outer layer was almost closed.

【0030】[実施例4]一軸延伸PTFEシート・F
P030(肉厚80μm、孔径30μm、住友電気工業
株式会社製)を用いた。図3に示すように、該PTFE
シートを外径6mmのステンレス鋼製の円柱に、繊維が
円柱の円周方向に配向するように、10周巻き付け、シ
ートの両端を融点以上の温度に熱したコテを用いて融着
させた後に円柱を引き抜くことで、繊維が円周方向に配
向した(管の長軸方向との交差角は90度)10層のチ
ューブ(サンプルNo.7)を作製した。
[Example 4] Uniaxially stretched PTFE sheet F
P030 (wall thickness 80 μm, pore diameter 30 μm, manufactured by Sumitomo Electric Industries, Ltd.) was used. As shown in FIG.
After the sheet was wrapped around a stainless steel cylinder having an outer diameter of 6 mm for 10 turns so that the fibers were oriented in the circumferential direction of the cylinder, and both ends of the sheet were fused using a trowel heated to a temperature equal to or higher than the melting point. By pulling out the cylinder, a 10-layer tube (Sample No. 7) in which the fibers were oriented in the circumferential direction (the angle of intersection with the long axis direction of the tube was 90 degrees) was produced.

【0031】得られた10層のチューブ(サンプルN
o.7)を用い、実施例1と同様に漏水量の測定を行っ
た。その結果、表1に見られるように、単層長軸配向品
(サンプルNo.1または5)に対し、約75%の漏水
量の減少が得られた。また、内面および外面を観察する
と、内層および外層の穿刺孔は殆ど塞がっていた。
The resulting 10-layer tube (Sample N
o. Using 7), the amount of water leakage was measured in the same manner as in Example 1. As a result, as shown in Table 1, a reduction in water leakage of about 75% was obtained with respect to the single-layer long-axis oriented product (Sample No. 1 or 5). Further, when the inner surface and the outer surface were observed, the puncture holes in the inner layer and the outer layer were almost closed.

【0032】[0032]

【表1】 (脚注) (Mean±S.D.) 各n=4、内圧=120mmHg(0.16kg/cm
2) 18G(φ1.20mm)針穿刺
[Table 1] (Footnote) (Mean ± SD) Each n = 4, internal pressure = 120 mmHg (0.16 kg / cm
2 ) 18G (φ1.20mm) needle puncture

【0033】[実施例5]実施例3のサンプルNo.6
と同様な方法で製作した長さ約40mmの人工血管(サ
ンプルNo.8)と、長さ約40mmの市販の人工血管
(住友電気工業株式会社製、内径6mmのテクノグラフ
ト)を、それぞれウサギ(体重約3kg、成熟ニュージ
ーランド・ホワイト・ラビット雄、2羽)の腹部大動脈
に置換し、18G針穿刺抜去後の止血に要する時間につ
いて比較検討した。
[Embodiment 5] Sample No. 3 of the third embodiment. 6
An artificial blood vessel having a length of about 40 mm (Sample No. 8) manufactured by the same method as described above and a commercially available artificial blood vessel having a length of about 40 mm (Sumitomo Electric Industrial Co., Ltd., technograft having an inner diameter of 6 mm) were respectively placed in rabbits ( A comparative study was conducted on the time required for hemostasis after removal of the 18G needle puncture by substituting the abdominal aorta of a mature New Zealand White rabbit (2 males, body weight: about 3 kg).

【0034】ウサギの耳翼静脈よりペントバルビタール
(ダイナボット株式会社製、商品名ペントシリン)を静
注し、深麻酔に達したところで、腹部を切開し、腹部大
動脈を露出し周辺組織から剥離した後、腎動脈、下腸間
膜動脈を4−0号シルク縫合糸で結紮した。次に、腹部
大動脈の上流と下流をバスキュラークリップを用いて血
流を停止させた。そして、φ6mmの人工血管を吻合す
るために、特別製のコネクターを介して、腹部大動脈に
人工血管を端々吻合し、クリップを取り除き、血流を再
開した。
After pentobarbital (manufactured by Dynabot Co., Ltd., trade name pentocillin) was intravenously injected through the ear vein of a rabbit, and when deep anesthesia was reached, the abdomen was incised and the abdominal aorta was exposed and peeled from the surrounding tissue. The renal artery and the inferior mesenteric artery were ligated with No. 4-0 silk suture. Next, blood flow was stopped upstream and downstream of the abdominal aorta using a vascular clip. Then, in order to anastomose the artificial blood vessel of φ6 mm, the artificial blood vessel was anastomosed to the abdominal aorta through a special connector, the clip was removed, and the blood flow was restarted.

【0035】その移植人工血管に対し、18G針をin
situで穿刺し、抜去直後の出血の様子を迅速に観
察した後、即座に、特別に製作した圧迫器で穿刺部位を
120mmHgの圧力で圧迫し、1分毎に止血の確認を
行う一連の操作を、4回行った。その結果、テクノグラ
フトでは、比較的出血量も多く15分以上の時間を要す
るのに対し、サンプルNo.8では、殆ど出血せずに0
〜3分の間に止血が完了した。
[0035] for its portability artificial blood vessels, 18G needle in
After puncturing with in situ and observing bleeding immediately after removal, immediately press the puncture site with a specially made compression device with a pressure of 120 mmHg, and confirm the hemostasis every minute. Was performed 4 times. As a result, technograft has a relatively large amount of bleeding and requires a time of 15 minutes or more, whereas sample No. At 8 with almost no bleeding, 0
Hemostasis was completed within ~ 3 minutes.

【0036】[0036]

【発明の効果】本発明によれば、PTFE多孔質チュー
ブの持つ生体適合性と、特殊な構造による穿刺孔閉塞性
を合わせ持つ優れた人工血管が提供される。したがっ
て、本発明による人工血管は、特に血液透析内シャント
用人工血管として非常に効果的である。
According to the present invention, there is provided an excellent artificial blood vessel having both the biocompatibility of the PTFE porous tube and the puncture hole blocking property due to a special structure. Therefore, the artificial blood vessel according to the present invention is very effective especially as an artificial blood vessel for a hemodialysis shunt.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1の多層人工血管(サンプルN
o.2)の18G針穿刺抜去後の穿刺孔の断面を拡大し
た図である。
FIG. 1 is a multilayer artificial blood vessel of Example 1 (Sample N).
o. It is the figure which expanded the cross section of the puncture hole after 18G needle puncture extraction of 2).

【図2】図2は、実施例2の螺旋配向人工血管(サンプ
ルNo.4)の18G針穿刺抜去後の穿刺孔を外面から
見た拡大図である。
FIG. 2 is an enlarged view of the puncture hole of the spirally oriented artificial blood vessel (Sample No. 4) of Example 2 after the 18G needle puncture and withdrawal, as seen from the outer surface.

【図3】図3は、実施例4の10層の人工血管(サンプ
ルNo.7)の構造を示す模式図である。
3 is a schematic diagram showing the structure of a 10-layer artificial blood vessel (Sample No. 7) of Example 4. FIG.

【符号の説明】[Explanation of symbols]

1:実施例1で用いた互いに接着していない2層のPT
FE多孔質体の人工血管である。 2:PTFE多孔質体の内層チューブ。 3:PTFE多孔質体の外層チューブ。 4:18G針の穿刺・抜去の操作によって生じる層のズ
レである。 5:層のズレによって、各層の孔が重なった部分(有効
孔)である。 6:実施例2で用いた螺旋配向PTFE多孔質体による
人工血管である。 7:繊維の配向方向を示す矢印である。 8:18G針の穿刺抜去後に残った細長い形状を示す孔
である。 9:実施例4で用いた10層の人工血管である。 10:各層が接着されていない、10層構造の穿刺孔閉
塞の効果が得られる部分である。 11:各層を融点以上の温度で接着した部分である。 12:繊維の配向方向を示す矢印である。
1: Two-layer PT used in Example 1 but not bonded to each other
It is an artificial blood vessel of FE porous body. 2: Inner layer tube of PTFE porous body. 3: PTFE outer layer tube. 4: Layer deviation caused by the operation of puncturing / withdrawing the 18G needle. 5: A portion (effective hole) where the holes of each layer overlap due to the deviation of the layers. 6: An artificial blood vessel using the spirally oriented PTFE porous body used in Example 2. 7: An arrow indicating the direction of fiber orientation. 8: A hole showing an elongated shape that remains after the 18G needle is punctured and removed. 9: 10-layer artificial blood vessel used in Example 4. 10: A portion where each layer is not adhered and the effect of blocking the puncture hole of a 10-layer structure is obtained. 11: A part where each layer is bonded at a temperature equal to or higher than the melting point. 12: An arrow indicating the orientation direction of the fibers.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管壁が2層以上の四弗化エチレン樹脂多
孔質体層から構成された多層構造を有し、かつ、該多孔
質体層の内の少なくとも2層間の界面において非接着部
分を有することを特徴とする人工血管。
1. A pipe wall has a multi-layer structure composed of two or more layers of a tetrafluoroethylene resin porous body layer, and a non-adhesive portion at an interface between at least two layers of the porous body layer. An artificial blood vessel having:
【請求項2】 管壁が繊維と該繊維を連結する結節とか
らなる微細繊維状構造を有する四弗化エチレン樹脂多孔
質体から構成された人工血管において、該繊維の配向方
向と管の長軸方向との交差角が10度以上であることを
特徴とする人工血管。
2. An artificial blood vessel whose tube wall is made of a tetrafluoroethylene resin porous body having a fine fibrous structure composed of fibers and nodules connecting the fibers, in an orientation direction of the fibers and a tube length. An artificial blood vessel having a crossing angle with the axial direction of 10 degrees or more.
【請求項3】 管壁が2層以上の四弗化エチレン樹脂多
孔質体層から構成された多層構造を有し、該多孔質体層
の内の少なくとも2層間の界面において非接触部分を有
する人工血管であって、該多孔質体層の内の少なくとも
1層が、繊維と該繊維を連結する結節とからなる微細繊
維状構造を有する四弗化エチレン樹脂多孔質体からな
り、かつ、該繊維の配向方向と管の長軸方向との交差角
が10度以上であることを特徴とする人工血管。
3. The tube wall has a multi-layer structure composed of two or more layers of a tetrafluoroethylene resin porous body layer, and has a non-contact portion at the interface between at least two layers of the porous body layer. An artificial blood vessel, wherein at least one layer of the porous body layer is made of a tetrafluoroethylene resin porous body having a fine fibrous structure composed of fibers and a nodule connecting the fibers, and An artificial blood vessel, wherein the crossing angle between the fiber orientation direction and the long axis direction of the tube is 10 degrees or more.
JP16316693A 1993-06-07 1993-06-07 Artificial blood vessel Expired - Fee Related JP2970320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16316693A JP2970320B2 (en) 1993-06-07 1993-06-07 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16316693A JP2970320B2 (en) 1993-06-07 1993-06-07 Artificial blood vessel

Publications (2)

Publication Number Publication Date
JPH06343688A true JPH06343688A (en) 1994-12-20
JP2970320B2 JP2970320B2 (en) 1999-11-02

Family

ID=15768493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16316693A Expired - Fee Related JP2970320B2 (en) 1993-06-07 1993-06-07 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JP2970320B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025938A1 (en) * 1996-01-22 1997-07-24 Meadox Medicals, Inc. Improved ptfe vascular graft and method of manufacture
WO1999026558A1 (en) * 1997-11-24 1999-06-03 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
WO1999047077A1 (en) 1998-03-18 1999-09-23 Meadox Medicals, Inc. Improved ptfe vascular prosthesis and method of manufacture
WO2000047271A1 (en) * 1999-02-11 2000-08-17 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US6926735B2 (en) 2002-12-23 2005-08-09 Scimed Life Systems, Inc. Multi-lumen vascular grafts having improved self-sealing properties
WO2012094212A1 (en) * 2011-01-05 2012-07-12 Abbott Cardiovascular Systems Inc. A stent graft with double eptfe-layered-system with high plasticity and high rigidity
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019016808A2 (en) 2017-03-31 2020-04-07 Toray Industries cylindrical structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719783B2 (en) 1996-01-22 2004-04-13 Scimed Life Systems, Inc. PTFE vascular graft and method of manufacture
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
WO1997025938A1 (en) * 1996-01-22 1997-07-24 Meadox Medicals, Inc. Improved ptfe vascular graft and method of manufacture
AU711304B2 (en) * 1996-01-22 1999-10-07 Meadox Medicals, Inc. Improved PTFE vascular graft and method of manufacture
US6001125A (en) * 1996-01-22 1999-12-14 Meadox Medicals, Inc. PTFE vascular prosthesis and method of manufacture
US6036724A (en) * 1996-01-22 2000-03-14 Meadox Medicals, Inc. PTFE vascular graft and method of manufacture
US7244271B2 (en) 1996-01-22 2007-07-17 Boston Scientific Scimed, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
WO1999026558A1 (en) * 1997-11-24 1999-06-03 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
WO1999047077A1 (en) 1998-03-18 1999-09-23 Meadox Medicals, Inc. Improved ptfe vascular prosthesis and method of manufacture
WO2000047271A1 (en) * 1999-02-11 2000-08-17 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6926735B2 (en) 2002-12-23 2005-08-09 Scimed Life Systems, Inc. Multi-lumen vascular grafts having improved self-sealing properties
WO2012094212A1 (en) * 2011-01-05 2012-07-12 Abbott Cardiovascular Systems Inc. A stent graft with double eptfe-layered-system with high plasticity and high rigidity
CN103313734A (en) * 2011-01-05 2013-09-18 阿博特心血管系统公司 Stent graft with double ePTFE-layered-system with high plasticity and high rigidity
US8784477B2 (en) 2011-01-05 2014-07-22 Abbott Cardiovascular Systems Inc. Stent graft with two layer ePTFE layer system with high plasticity and high rigidity
AU2011353520B2 (en) * 2011-01-05 2016-02-04 Abbott Cardiovascular Systems Inc. A stent graft with double ePTFE-layered-system with high plasticity and high rigidity
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices

Also Published As

Publication number Publication date
JP2970320B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US5897587A (en) Multi-stage prosthesis
JP4278630B2 (en) Laminated self-sealing vascular access graft
US20080312577A1 (en) Expandable dialysis apparatus and method
US3993078A (en) Insert for use preferably in vascular surgery
US6719783B2 (en) PTFE vascular graft and method of manufacture
US8906087B2 (en) Method of making implantable devices with reduced needle puncture site leakage
US5425739A (en) Anastomosis stent and stent selection system
JP2970320B2 (en) Artificial blood vessel
JP2021098146A (en) Stent-graft with improved flexibility
JP2006511282A (en) Multi-lumen vascular graft with improved self-sealing properties
US7901446B2 (en) Thin-walled vascular graft
JPH11290448A (en) Medical tube
WO2000047271A1 (en) Multiple-layered leak-resistant tube
US20020049489A1 (en) Prosthesis and method of making a prosthesis having an external support structure
WO2002028318A2 (en) Prosthesis having an external support structure and method of making the same
JPH06106037A (en) Tubular porous double layer film and its production
US20210283302A1 (en) Multilayer vascular graft
JP2005152181A (en) Embedding-type tubular treating tool
JPH06189984A (en) Artificial blood vessel and manufacture thereof
JPS647856B2 (en)
JPH06246142A (en) Tubular porous body of polytetrafluoroethylene resin and its production
JPH05176947A (en) Artificial blood vessel and its production
CN215228834U (en) Pipe structure
JP2003250819A (en) Flange member for synthetic blood vessel and synthetic blood vessel
JPH05176948A (en) Artificial blood vessel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees