JPH06189984A - Artificial blood vessel and manufacture thereof - Google Patents

Artificial blood vessel and manufacture thereof

Info

Publication number
JPH06189984A
JPH06189984A JP5117881A JP11788193A JPH06189984A JP H06189984 A JPH06189984 A JP H06189984A JP 5117881 A JP5117881 A JP 5117881A JP 11788193 A JP11788193 A JP 11788193A JP H06189984 A JPH06189984 A JP H06189984A
Authority
JP
Japan
Prior art keywords
tubular
porous body
artificial blood
blood vessel
tetrafluoroethylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5117881A
Other languages
Japanese (ja)
Inventor
Shinichi Kanazawa
進一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5117881A priority Critical patent/JPH06189984A/en
Publication of JPH06189984A publication Critical patent/JPH06189984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Abstract

PURPOSE:To enhance durability against bending and compression forces by forming a coating layer of tubular resin fluoride having mesh-like holes on the external surface of a porous body, with regard to an artificial blood vessel made of a tubular porous body of tetrafluoroethylene resin having a fine fibrous tissue. CONSTITUTION:A tubular resin fluoride coating layer 2 having mesh-like holes 4 is laid on the external surface of a tubular tetrafluoroethylene resin porous body 1 having a fine fibrous tissue made of fibers and knots thereby jointed to each other, thereby manufacturing an artificial blood vessel. In this case, the layer 2 has many groups of notches arranged peripherally on the tubular resin fluoride resin body, and many groups of notches arranged at positions dislocated by the predetermined angle along another peripheral section, alternately laid at equal intervals in a lengthwise direction. The layer 2 is, then, laid on the external surface of the porous body 1 and pulled in a lengthwise direction, thereby opening the notches and forming the mesh-like holes 4. Thereafter, the layer 2 is heated at a temperature equal to or above the melting point of the resin fluoride, thereby being secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管状四弗化エチレン樹
脂多孔質体で構成された人工血管に関し、さらに詳しく
は、屈曲及び圧迫に対する耐性に優れた管状四弗化エチ
レン樹脂多孔質体製の人工血管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial blood vessel composed of a tubular tetrafluoroethylene resin porous body, more specifically, a tubular tetrafluoroethylene resin porous body excellent in resistance to bending and compression. Of artificial blood vessels.

【0002】[0002]

【従来の技術】人工血管は、生体血管の病変部位の欠損
部を補填する置換移植、病変部位を迂回して血行を維持
するためのバイパス移植、あるいは動脈と静脈との短絡
などの血液導管などとして使用されている。 従来、人
工血管の材料としては、編組構造を有するポリエステル
繊維編物や織物、あるいは微細多孔質構造を有する管状
四弗化エチレン樹脂多孔質体(以下、PTFE多孔質チ
ューブと略記)が用いられてきた。
2. Description of the Related Art Artificial blood vessels are replacement transplants for filling a defect in a lesion site of a living blood vessel, bypass transplants for bypassing the lesion site to maintain blood circulation, or blood conduits such as short circuits between arteries and veins. Is used as. Conventionally, as a material for an artificial blood vessel, a polyester fiber knitted fabric or a woven fabric having a braided structure, or a tubular tetrafluoroethylene resin porous body having a fine porous structure (hereinafter abbreviated as PTFE porous tube) has been used. .

【0003】これらの中でも、PTFE多孔質チューブ
は、素材の四弗化エチレン樹脂自体が抗血栓性に優れて
いると共に、繊維と該繊維とによって互いに連結された
結節からなる微細繊維状組織、即ち、繊維−結節による
多孔質構造が生体組織適合性に優れているため、ポリエ
ステル繊維に比較して、より小口径の領域での人工血管
として実用化されてきた。
Among these, the PTFE porous tube is a fine fibrous tissue composed of fibers and nodules connected to each other, that is, the tetrafluoroethylene resin as a raw material is excellent in antithrombogenicity. Since the fiber-nodule porous structure is excellent in biotissue compatibility, it has been put to practical use as an artificial blood vessel in a region having a smaller diameter than that of polyester fiber.

【0004】人工血管には、血液をその内腔を通して移
送するという目的から、その内腔の連通状態を維持する
ことが必須となる。つまり、人工血管は、生体内に移植
されて常に周囲の生体組織からの圧迫を受けたり、関節
など屈曲部を通る場合や、臓器や骨を迂回して移植され
る場合などがあるため、屈曲や圧迫に対して耐性がなけ
ればならない。人工血管が容易に折れ曲がったり、押し
つぶされたりすると、内腔の連通状態が阻害され、血流
の閉塞を生じる。
For the purpose of transporting blood through the lumen of the artificial blood vessel, it is essential to maintain the communication state of the lumen. In other words, an artificial blood vessel may be implanted in a living body and always receive pressure from surrounding living tissues, or may pass through a bent part such as a joint, or may be transplanted by bypassing an organ or a bone. Must be resistant to pressure. When the artificial blood vessel is easily bent or crushed, the communication state of the lumen is obstructed and blood flow is blocked.

【0005】特に、PTFE多孔質チューブが賞用され
る中口径領域では、このような場合が多いため、内腔の
維持性が重要となる。一方、人工血管には、縫合針の通
し易さや生体血管との縫合性が求められるため、過度に
管壁を厚くしたり、材質を硬くすることができないた
め、屈曲や圧迫に対する十分な耐性を付与することは、
困難であった。
In particular, in the medium-diameter region where the PTFE porous tube is favored, this is often the case, and thus the maintainability of the lumen is important. On the other hand, an artificial blood vessel is required to have easy passage of a suture needle and sutureability with a living blood vessel, and therefore it is not possible to excessively thicken the tube wall or harden the material, so that it has sufficient resistance to bending and compression. Granting is
It was difficult.

【0006】これらの問題に対して、(1)PTFE多
孔質チューブの周囲に、リング状またはスパイラル状の
補強物をつける方法、(2)PTFE多孔質チューブの
外面を加熱処理し、外面に凹凸構造を設ける方法(特公
昭58−1656号)などが提案されている。しかしな
がら、(1)の方法では、補強物自身の強度が強くて
も、リング状またはスパイラル状の補強物に斜め方向の
力が加わった場合、これらの補強物は、チューブ長軸方
向に対して斜めに倒れてしまい、内腔を維持することが
できない。また、(2)の方法では、内腔の維持性は良
好なものの、補強のために設けた外面の凹凸構造の層が
PTFE多孔質チューブ本体と一体化しているため、人
工血管の全体が硬くなり、しかも、柔らかさが必要な縫
合部で補強部を除去することができない。したがって、
(2)の方法では、人工血管の縫合性が不十分であると
いう問題があった。
To solve these problems, (1) a method of attaching a ring-shaped or spiral-shaped reinforcement to the periphery of the PTFE porous tube, (2) heat treatment of the outer surface of the PTFE porous tube, and unevenness on the outer surface A method of providing a structure (Japanese Patent Publication No. 58-1656) has been proposed. However, in the method of (1), even if the strength of the reinforcement itself is high, when a diagonal force is applied to the ring-shaped or spiral-shaped reinforcement, these reinforcements are It falls at an angle and cannot maintain the lumen. Further, in the method (2), although the inner cavity is maintained well, the layer of the uneven structure on the outer surface provided for reinforcement is integrated with the PTFE porous tube body, so that the whole artificial blood vessel is hard. In addition, the reinforcement portion cannot be removed at the stitched portion that requires softness. Therefore,
The method (2) has a problem in that the sutureability of the artificial blood vessel is insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、屈曲
及び圧迫に対する耐性に優れ、かつ、縫合性に優れた管
状四弗化エチレン樹脂多孔質体製の人工血管を提供する
ことにある。また、本発明の目的は、前記特性を有する
人口血管の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an artificial blood vessel made of a tubular tetrafluoroethylene resin porous body which has excellent resistance to bending and compression and excellent sutureability. Moreover, the objective of this invention is providing the manufacturing method of the artificial blood vessel which has the said characteristic.

【0008】本発明者は、前記従来技術の問題点を克服
するための研究過程において、従来のリング状やスパイ
ラル状の補強物では、各リング間あるいはスパイラルの
巻き間のチューブ長軸方向への連絡がなく、そのため、
屈曲や圧迫が加わった場合、補強物が長軸方向に倒れ
て、内腔を閉塞してしまうという欠点を有することに着
目した。
The present inventor, in the course of research for overcoming the above-mentioned problems of the prior art, in the conventional ring-shaped or spiral-shaped reinforcement, the tube longitudinal direction in between the rings or between the spiral windings. I didn't get in touch, so
We paid attention to the fact that when bending or pressure is applied, the reinforcement falls down in the long axis direction and occludes the lumen.

【0009】そこで、本発明者は、研究を進めた結果、
PTFE多孔質チューブの外面に、網目状の孔を有する
管状弗素樹脂体の被覆層を設けることにより、円周方向
に十分な形状維持強度を持ち、圧迫に対する良好な耐性
を有すると共に、長軸方向に適当な弾性的な可撓性を持
ち、内腔を維持しながら屈曲が可能な人工血管の得られ
ることを見出した。
Therefore, as a result of conducting research, the present inventor found that
The outer surface of the PTFE porous tube is provided with a coating layer of a tubular fluororesin body having mesh-like holes, so that it has sufficient shape-maintaining strength in the circumferential direction, good resistance to pressure, and long-axis direction. It has been found that an artificial blood vessel having appropriate elastic flexibility and capable of bending while maintaining the lumen can be obtained.

【0010】また、多数の切れ込みを設けた管状弗素樹
脂体を長軸方向に引き伸ばすことにより網目構造を持つ
被覆層を形成したり、あるいは2層構成のPTFE多孔
質チューブの外層に熱処理によって凹凸構造を付与して
網目構造を形成することにより、網目状の孔を有する補
強層とPTFE多孔質チューブ本体とが一体化してお
り、しかも、縫合部では、補強部を除去することができ
る人工血管の得られることを見出した。本発明は、これ
らの知見に基づいて完成するに至ったものである。
Further, a tubular fluororesin body having a large number of cuts is stretched in the long axis direction to form a coating layer having a mesh structure, or a concavo-convex structure is formed on the outer layer of a PTFE porous tube having a two-layer structure by heat treatment. To form a mesh structure, the reinforcing layer having mesh holes and the PTFE porous tube body are integrated, and at the sutured portion, the reinforcing portion of the artificial blood vessel can be removed. It was found that it can be obtained. The present invention has been completed based on these findings.

【0011】[0011]

【課題を解決するための手段】かくして、本発明によれ
ば、繊維と該繊維によって互いに連結された結節とから
なる微細繊維状組織を有する管状四弗化エチレン樹脂多
孔質体で構成された人工血管において、該管状四弗化エ
チレン樹脂多孔質体の外面に、網目状の孔を有する管状
弗素樹脂体の被覆層が設けられていることを特徴とする
人工血管が提供される。
Thus, according to the present invention, an artificial body composed of a tubular tetrafluoroethylene resin porous body having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers. A blood vessel is provided with an artificial blood vessel characterized in that a coating layer of a tubular fluororesin body having mesh-like pores is provided on the outer surface of the tubular tetrafluoroethylene resin porous body.

【0012】また、本発明によれば、(1)管状弗素樹
脂体の円周に沿って、それぞれ同じ長さの切れ込みを2
〜4個の範囲内で等間隔に配置してなる切れ込み群
〔A〕と、該円周から一定距離離れた位置にある他の円
周に沿って、前記と同じ長さと個数の切れ込みを、18
0度を前記切れ込みの個数で割った角度だけずらした位
置に配置してなる切れ込み群〔B〕とを、管状弗素樹脂
体の長軸方向に沿って、交互に等間隔で多数配置した構
造の管状弗素樹脂体を作成し、次いで、(2)該管状弗
素樹脂体を、繊維と該繊維によって互いに連結された結
節とからなる微細繊維状組織を有する管状四弗化エチレ
ン樹脂多孔質体の外面に被せて、長軸方向に引っ張るこ
とにより、切れ込みを開口させて網目状の孔を形成させ
ると共に、口径を縮小させて管状四弗化エチレン樹脂多
孔質体の外面に密着させ、しかる後、(3)管状弗素樹
脂体を形成する弗素樹脂の融点以上の温度で加熱して、
網目状の孔を有する管状弗素樹脂体の被覆層を管状四弗
化エチレン樹脂多孔質体の外面に固定することを特徴と
する人工血管の製造方法が提供される。
Further, according to the present invention, (1) two cuts having the same length are formed along the circumference of the tubular fluororesin body.
A group of notches [A] arranged at equal intervals within a range of up to 4 and another notch of the same length and number as described above along another circle at a position separated from the circumference by a certain distance, 18
A plurality of cut groups [B], which are arranged at positions displaced by an angle obtained by dividing 0 degree by the number of cuts, are arranged alternately at equal intervals along the long axis direction of the tubular fluororesin body. A tubular fluororesin body is prepared, and then (2) the tubular fluororesin body has an outer surface of a tubular tetrafluoroethylene resin porous body having a fine fibrous structure composed of fibers and knots connected to each other by the fibers. Over, and by pulling in the long axis direction to open the notches to form a mesh-like hole, and reduce the diameter to make it adhere to the outer surface of the tubular tetrafluoroethylene resin porous body, and then ( 3) Heating at a temperature above the melting point of the fluororesin forming the tubular fluororesin body,
There is provided a method for producing an artificial blood vessel, which comprises fixing a coating layer of a tubular fluororesin body having mesh-like holes to the outer surface of a tubular tetrafluoroethylene resin porous body.

【0013】さらに、本発明によれば、(1)高分子量
の四弗化エチレン樹脂未燒結粉末と液状潤滑剤との混和
物と、低分子量の四弗化エチレン樹脂未燒結粉末と液状
潤滑剤との混和物とを同時押出して、高分子量の四弗化
エチレン樹脂を含む内層と、低分子量の四弗化エチレン
樹脂を含む外層とからなる積層チューブを作成し、
(2)該積層チューブを、液状潤滑剤を除去し、または
除去することなく、少なくとも一軸方向に延伸して、繊
維と該繊維によって互いに連結された結節とからなる微
細繊維状組織を有する積層管状四弗化エチレン樹脂多孔
質体とし、(3)得られた積層管状四弗化エチレン樹脂
多孔質体を熱収縮防止状態にて、加熱燒結する際、また
は加熱燒結した後、少なくとも外層を約327℃以上の
温度に加熱して、外層に微細繊維状組織の切断・収縮及
び/または分解除去された部分を設けることにより、網
目状の孔を有する被覆層を形成することを特徴とする人
工血管の製造方法が提供される。
Further, according to the present invention, (1) a mixture of a high molecular weight unsintered powder of tetrafluoroethylene resin and a liquid lubricant, a low molecular weight unsintered powder of tetrafluoroethylene resin and a liquid lubricant And a mixture of and are co-extruded to form a laminated tube consisting of an inner layer containing a high molecular weight tetrafluoroethylene resin and an outer layer containing a low molecular weight tetrafluoroethylene resin,
(2) Laminated tube having a fine fibrous structure composed of fibers and nodules connected to each other by stretching the laminated tube in the at least uniaxial direction with or without removing the liquid lubricant. (3) When the obtained laminated tubular tetrafluoroethylene resin porous body is heat-sintered or after heat-sintering in a heat shrink-preventing state, at least the outer layer is about 327. An artificial blood vessel characterized by forming a coating layer having reticulated pores by heating to a temperature of ℃ or higher and providing a portion where fine fibrous tissue has been cut / contracted and / or decomposed and removed in the outer layer. A method of manufacturing the same is provided.

【0014】さらにまた、本発明によれば、繊維と該繊
維によって互いに連結された結節とからなる微細繊維状
組織を有する管状四弗化エチレン樹脂多孔質体(a)
を、該多孔質体(a)を形成する四弗化エチレン樹脂よ
り低分子量の四弗化エチレン樹脂を用いて作成され、同
様の微細繊維状組織を有する管状四弗化エチレン樹脂多
孔質体(b)で被覆し、次いで、少なくとも該多孔質体
(b)を約327℃以上の温度に加熱して、多孔質体
(b)に微細繊維状組織の切断・収縮及び/または分解
除去された部分を設けることにより、網目状の孔を有す
る被覆層を形成することを特徴とする人工血管の製造方
法が提供される。
Furthermore, according to the present invention, a tubular tetrafluoroethylene resin porous body (a) having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers.
Is prepared by using a tetrafluoroethylene resin having a molecular weight lower than that of the tetrafluoroethylene resin forming the porous body (a), and a tubular tetrafluoroethylene resin porous body (having a similar fine fibrous structure ( b), and then at least the porous body (b) is heated to a temperature of about 327 ° C. or higher to cut / shrink and / or decompose and remove the fine fibrous tissue in the porous body (b). By providing the portion, a method for producing an artificial blood vessel is provided, which comprises forming a coating layer having mesh holes.

【0015】さらに、本発明によれば、繊維と該繊維に
よって互いに連結された結節とからなる微細繊維状組織
を有する管状四弗化エチレン樹脂多孔質体(a)を、予
めその外面に微細繊維状組織の切断・収縮及び/または
分解除去された部分をもつ同様の管状四弗化エチレン樹
脂多孔質体(b)で被覆し、次いで、少なくとも該多孔
質体(b)を約327℃以上の温度に加熱して、多孔質
体(b)の外面から内面に至る全体に微細繊維状組織の
切断・収縮及び/または分解除去された部分を設けるこ
とにより、網目状の孔を有する被覆層を形成することを
特徴とする人工血管の製造方法が提供される。
Further, according to the present invention, a tubular tetrafluoroethylene resin porous body (a) having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers is preliminarily formed on the outer surface of the fine fibers. The same tubular tetrafluoride ethylene resin porous body (b) having a portion where the tissue-like tissue has been cut / contracted and / or decomposed and removed is coated, and then at least the porous body (b) is heated to about 327 ° C. or higher. By heating to a temperature and providing a portion in which the fine fibrous structure is cut / contracted and / or decomposed and removed over the entire surface of the porous body (b) from the outer surface to the inner surface, a coating layer having mesh-like pores is formed. Provided is a method for producing an artificial blood vessel, which comprises forming the artificial blood vessel.

【0016】以下、本発明について詳述する。本発明の
人工血管は、繊維と該繊維によって互いに連結された結
節とからなる微細繊維状組織を有する管状四弗化エチレ
ン樹脂多孔質体を基本構成とするものであって、例え
ば、特公昭42−13560号に記載の方法によりPT
FE多孔質チューブを作製し、次いで、外面に網目状補
強物を形成する処理を行うことにより製造することがで
きる。
The present invention will be described in detail below. The artificial blood vessel of the present invention has a basic structure of a tubular tetrafluoroethylene resin porous body having a fine fibrous structure composed of fibers and nodules connected to each other by the fibers. PT by the method described in -13560
It can be manufactured by producing a FE porous tube and then performing a treatment of forming a mesh reinforcement on the outer surface.

【0017】PTFE多孔質チューブを作成するには、
まず、PTFE未焼成粉末に液状潤滑剤を混和し、押出
・圧延によりチューブ状に予備成形する。この成形体か
ら液状潤滑剤を除去し、または除去することなく、少な
くとも一軸方向に延伸する。次に、成形体を収縮しない
ように固定した状態で、樹脂の融点である約327℃以
上に加熱して、延伸した構造を燒結固定すると、強度の
向上したPTFE多孔質チューブが得られる。このPT
FE多孔質チューブは、繊維と該繊維によって互いに連
結された結節とからなる微細繊維状組織を有し、該組織
が多孔質構造を付与している。
To make a PTFE porous tube,
First, a liquid lubricant is mixed with PTFE unsintered powder, and a tube is preformed by extrusion and rolling. The liquid lubricant is removed from the molded body or is stretched in at least uniaxial direction without being removed. Next, in a state where the molded body is fixed so as not to shrink, it is heated to 327 ° C. or higher, which is the melting point of the resin, and the stretched structure is sintered and fixed to obtain a PTFE porous tube having improved strength. This PT
The FE porous tube has a fine fibrous tissue composed of fibers and nodules connected to each other by the fibers, and the tissue imparts a porous structure.

【0018】本発明の人工血管は、この延伸法によるP
TFE多孔質チューブ製人工血管の外面に網目状の補強
部を設けることにより得られるが、この補強部は、次の
ような特性をもつことが重要である。 圧迫に対し管状構造を維持するために、円周方向に十
分な形状維持強度を持つこと。 屈曲に対応するために、長軸方向に適当な弾性的な可
撓性をもつこと。 縫合部では、補強部が邪魔になるため、部分的に補強
層の除去が容易に行うことができること。 上記の〜の特性を満足する人工血管を得る第一の方
法として、以下の製造方法を挙げることができる。
The artificial blood vessel of the present invention has a P
It can be obtained by providing a mesh-like reinforcing portion on the outer surface of the artificial blood vessel made of TFE porous tube, and it is important that this reinforcing portion has the following characteristics. Sufficient shape retention strength in the circumferential direction to maintain tubular structure against compression. Appropriate elastic flexibility in the longitudinal direction to accommodate bending. At the sewn part, the reinforcing part is an obstacle, so that the reinforcing layer can be easily partially removed. As a first method for obtaining an artificial blood vessel satisfying the above characteristics (1) to (4), the following manufacturing methods can be mentioned.

【0019】(1)管状弗素樹脂体の円周に沿って、そ
れぞれ同じ長さの切れ込みを2〜4個の範囲内で等間隔
に配置する。これを切れ込み群〔A〕という。 (2)該円周から一定距離離れた位置にある他の円周に
沿って、前記と同じ長さと個数の切れ込みを、180度
を前記切れ込みの個数で割った角度だけずらした位置に
配置する。これを切れ込み群〔B〕という。 (3)上記切れ込み群〔A〕と〔B〕とを、管状弗素樹
脂体の長軸方向に沿って、交互に等間隔で多数配置した
構造の管状弗素樹脂体を作成する。 (4)多数の切れ込みを設けた管状弗素樹脂体を、PT
FE多孔質チューブの外面に被せて、長軸方向に引っ張
ることにより、切れ込みを開口させて網目状の孔を形成
させる。その際、管状弗素樹脂体の口径が縮小してPT
FE多孔質チューブの外面に密着する。なお、前記管状
弗素樹脂体をPTFE多孔質チューブに被せる前に長軸
方向に引っ張って予め切れ込みを開口させておいてもよ
いが、その場合も、PTFE多孔質チューブに被せる際
には、切れ込みが閉じるように長軸方向に縮小して、管
状弗素樹脂体の口径を元の大きさに拡大しておくと操作
が容易である。 (5)管状弗素樹脂体を形成する弗素樹脂の融点以上の
温度で加熱して、網目状の孔を有する管状弗素樹脂体の
被覆層をPTFE多孔質チューブの外面に固定する。
(1) Along the circumference of the tubular fluororesin body, notches of the same length are arranged at equal intervals within a range of 2 to 4. This is called a notch group [A]. (2) Along the other circumference, which is a certain distance away from the circumference, cuts having the same length and number as the above are arranged at positions shifted by an angle obtained by dividing 180 degrees by the number of cuts. . This is called a notch group [B]. (3) A tubular fluororesin body having a structure in which a large number of the cut groups [A] and [B] are alternately arranged at equal intervals along the major axis direction of the tubular fluororesin body is prepared. (4) PT the tubular fluororesin body with many cuts
By covering the outer surface of the FE porous tube and pulling it in the long axis direction, the slit is opened to form a mesh-like hole. At that time, the diameter of the tubular fluororesin body is reduced and PT
It adheres to the outer surface of the FE porous tube. It should be noted that before the tubular fluororesin body is covered with the PTFE porous tube, the cut may be preliminarily opened by pulling in the long axis direction, but in that case, when the PTFE porous tube is covered, the cut is not formed. The operation is easy if the tubular fluororesin body is expanded to its original size by contracting in the long axis direction so as to be closed. (5) By heating at a temperature equal to or higher than the melting point of the fluororesin forming the tubular fluororesin body, the coating layer of the tubular fluororesin body having mesh-like holes is fixed to the outer surface of the PTFE porous tube.

【0020】以上の工程により、管状弗素樹脂体には、
切れ込みが引き延ばされて木の葉状の孔が形成され、切
れ込みと切れ込みの間の部分が網状を形成する支柱をつ
なぐ連結部となる。この網状構造は、切れ込みが円周方
向であり、それが長軸方向に引き延ばされて形成されて
いるために、元の管状弗素樹脂体の長軸方向の強度は分
断して弱められて、網状構造に基づく擬弾性をもち、円
周方向には元の管状弗素樹脂体の強度を保持している。
つまり、網目状の孔を有する管状弗素樹脂体の被覆層
は、少なくとも前記及びの強度特性に関する必要条
件を満足する構造を有している。
Through the above steps, the tubular fluororesin body is
The cuts are extended to form a leaf-shaped hole in the tree, and the portion between the cuts serves as a connecting portion that connects the columns that form a net. In this net-like structure, the notch is in the circumferential direction, and since it is formed by extending it in the major axis direction, the strength of the original tubular fluororesin body in the major axis direction is divided and weakened. It has a pseudo-elasticity based on the network structure and retains the strength of the original tubular fluororesin body in the circumferential direction.
That is, the coating layer of the tubular fluororesin body having the mesh-like holes has a structure satisfying at least the above-mentioned and necessary conditions concerning the strength characteristics.

【0021】単に補強物に孔を開けたり、糸状のものを
網状に編んだりするだけでは、このように方向によって
強度が違う構造を作ることが難しい。したがって、管状
弗素樹脂体の円周に沿って形成された複数の切れ込み
を、長軸方向に沿って、切れ込みの位置が交互に異なる
ようにして、多数設け、管状弗素樹脂体を長軸方向に引
っ張ることにより、該切れ込みを開口させて網目状の孔
を形成させた被覆層が好ましい。
It is difficult to form such a structure having different strengths depending on the directions by simply making holes in the reinforcing material or knitting a thread-shaped material in a net shape. Therefore, a plurality of cuts formed along the circumference of the tubular fluororesin body are provided so that the positions of the cuts are alternately different along the major axis direction, and the tubular fluororesin body is arranged in the major axis direction. A coating layer in which the notches are opened by pulling to form a mesh-like hole is preferable.

【0022】実用上、このような網状構造で前記のよう
な効果を得るためには、該網状構造を一定の範囲の形状
にすることが望ましい。口径によって差があるものの、
PTFE多孔質チューブ製人工血管自体の壁厚は、通常
300〜1500μm程度にしないと、縫合性と可撓性
に問題が生じる。発明者の検討では、縫合部の補強層を
はずして使用するとしても、人工血管の壁厚とのバラン
スから、網状管状弗素樹脂体の厚みは、1000μm以
下にすることが好ましい。一方、円周方向の強度を保つ
ためには、弗素樹脂体の種類にもよるが、300μm以
上の厚みは必要でる。したがって、網状管状弗素樹脂体
の厚みは、300〜1000μmの範囲が実用的であ
る。また、網状構造は、円周方向の強度を補強し、長軸
方向には柔らかくする必要があることを考えれば、網状
構造をなす各支柱は、円周方向から45度以上傾斜して
いないことが好ましい。
Practically, in order to obtain the above effects with such a network structure, it is desirable that the network structure has a shape within a certain range. Although it depends on the aperture,
Unless the wall thickness of the PTFE porous tube-made artificial blood vessel itself is usually set to about 300 to 1500 μm, problems occur in sutureability and flexibility. According to the study of the inventor, even if the reinforcing layer of the sutured portion is removed and used, the thickness of the reticulated tubular fluororesin body is preferably 1000 μm or less in view of the balance with the wall thickness of the artificial blood vessel. On the other hand, in order to maintain the strength in the circumferential direction, a thickness of 300 μm or more is necessary, depending on the kind of the fluororesin body. Therefore, the thickness of the reticulated tubular fluororesin body is practically in the range of 300 to 1000 μm. Also, considering that the net-like structure needs to reinforce the strength in the circumferential direction and be soft in the major axis direction, each strut forming the net-like structure should not be inclined by 45 degrees or more from the circumferential direction. Is preferred.

【0023】さらに、網状構造の孔の数が、円周方向に
4ケ以上並んだり、孔の最大幅が1mm以下になると、
屈曲に対する可撓性が十分ではなく、可撓性を向上させ
るために管状弗素樹脂体の厚みを減じても、今度は円周
方向の強度補強が小さくなるというようにバランスが悪
くなる。したがって、網目状の孔の数は、人工血管長さ
1cmあたり5〜30個の範囲が望ましい。
Furthermore, when the number of holes in the mesh structure is four or more in the circumferential direction, or the maximum width of the holes is 1 mm or less,
The flexibility with respect to bending is not sufficient, and even if the thickness of the tubular fluororesin body is reduced in order to improve the flexibility, the strength reinforcement in the circumferential direction becomes small this time, resulting in poor balance. Therefore, the number of mesh holes is preferably in the range of 5 to 30 per cm of the artificial blood vessel.

【0024】なお、同一の管状弗素樹脂体において、各
切れ込みの長さは、それぞれ同じとし、各切れ込み間の
間隔と各切れ込み群の間隔は、それぞれ等間隔とする
が、これらには、±10%程度の誤差があってもよい。
In the same tubular fluororesin body, the lengths of the cuts are the same, and the intervals between the cuts and the intervals between the cut groups are equal to each other. There may be an error of about%.

【0025】以上のようにして得た網状管状弗素樹脂体
を、PTFE多孔質チューブの外面に被覆し、弗素樹脂
の融点以上に加熱して、両者を溶融接着させる。この
際、網状管状弗素樹脂体は、予め被覆するPTFE多孔
質チューブよりも大きな口径にしておき、PTFE多孔
質チューブに被覆した後ちに、長軸方向に引っ張って十
分に口径を小さくすることで両者を密着させると、この
固定を容易に行うことができる。
The reticulated tubular fluororesin body obtained as described above is coated on the outer surface of the PTFE porous tube and heated to a temperature above the melting point of the fluororesin to melt and bond them. At this time, the reticulated tubular fluororesin body is made to have a larger diameter than the PTFE porous tube to be coated in advance, and after being coated on the PTFE porous tube, it is pulled in the long axis direction to sufficiently reduce the diameter. If both are brought into close contact with each other, this fixing can be easily performed.

【0026】両者の接着は、網状管状弗素樹脂体の表面
が溶ける程度の加熱条件を選ぶと、人工血管全体に対す
る屈曲や圧迫が加えられた場合には、容易に剥れない
が、網状管状弗素樹脂体の一部の支柱を引っ張ると、そ
の部分の被覆部のみを比較的容易に剥離することが可能
である。
When the heating conditions are selected such that the surface of the reticulated tubular fluororesin body is melted, the two are not easily peeled off when they are bent or pressed against the entire artificial blood vessel, but the reticulated tubular fluororesin is bonded. By pulling a part of the support of the resin body, it is possible to relatively easily peel off only the covering part of the part.

【0027】網状管状弗素樹脂体は、単体では、長軸方
向に引っ張っても単に細長く伸びるだけであるが、PT
FE多孔質チューブに固定後は、網状構造に基づく擬弾
性を保ちつつ、形状に制限を受けるようになる。そこ
で、全体を手で掴むなどして保持した状態で、一部の網
状管状弗素樹脂体の支柱のみを引っ張ると、その支柱の
すぐ隣の切れ込みが深くなっていき、ついには円周方向
に並んだ切れ込み同士がつながって、円周方向に分離す
ることが可能となる。
Although the reticulated tubular fluororesin body alone stretches in a slender shape when pulled in the long axis direction, PT
After being fixed to the FE porous tube, the shape is restricted while maintaining the pseudoelasticity based on the network structure. Therefore, if you hold only the whole column by hand and pull on only some of the braided tubular fluororesin bodies, the notches right next to the braces become deeper and finally line up in the circumferential direction. The notches are connected to each other and can be separated in the circumferential direction.

【0028】このように、円周方向の切れ込みを引き延
ばした形状の管状弗素樹脂体の網状構造は、前述のの
特性、即ち、縫合部で部分的に補強物の除去が容易に行
えるという特性においても有利に働く。
As described above, the tubular structure of the tubular fluororesin body having a shape in which the notch in the circumferential direction is extended has the above-mentioned characteristic, that is, the characteristic that the reinforcing material can be easily partially removed at the seam. Also works to your advantage.

【0029】以上のような特性を発揮しうる網状補強体
の材質は、生体への埋植や人工血管の材質であるPTF
Eとの接着性を考えると、弗素樹脂が望ましく、中でも
PTFE、FEP(四弗化エチレン−六弗化プロピレン
共重合体)、PFA(四弗化エチレン−全弗化アルキル
ビニルエーテル共重合体)、ETFE(四弗化エチレン
−エチレン共重合体)などが特に望ましい。
The material of the reticulated reinforcing body capable of exhibiting the above-mentioned characteristics is PTF which is a material for implantation in a living body or an artificial blood vessel.
Considering the adhesiveness with E, a fluorine resin is preferable, and among them, PTFE, FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-fully-fluorinated alkyl vinyl ether copolymer), ETFE (tetrafluoroethylene-ethylene copolymer) and the like are particularly desirable.

【0030】本発明の人工血管を得る第二の方法とし
て、前述した特公昭58−1656号に記載の方法、即
ち、加熱燒結工程でPTFE多孔質体の一部分を他の部
分よりも高い温度で処理するか、あるいは全体を均一に
加熱燒結した後、さらにPTFE多孔質体の一部分を加
熱して、微細繊維の切断や融着合体、結節間の収縮によ
る結節の融着合体等を起こさせる方法を利用することが
できる。
As the second method for obtaining the artificial blood vessel of the present invention, the method described in Japanese Patent Publication No. 58-1656 mentioned above, that is, a part of the PTFE porous body is heated at a higher temperature than other parts in the heating and sintering step. After treating or uniformly heating and sintering the whole, a part of the PTFE porous body is further heated to cause cutting of fine fibers, fusion bonding, fusion bonding of nodules due to contraction between nodules, etc. Can be used.

【0031】この方法によりPTFE多孔質体の一部分
を約327℃以上に加熱すると、熱によってPTFE繊
維の切断が起こって広がった結節間が凹部となり、他の
結節間は収縮し、結節間が寄り集まって強度の強い凸部
が形成される。一般に、PTFE多孔質チューブの場
合、繊維はチューブの長軸方向、結節は円周方向に配向
した構造となるため、凸部は円周方向に長い山脈状に形
成される。この山脈は、その所々が接合したり、合流・
分岐したような構造となるため、形・大きさは不揃いな
がら、前述の第一の方法で形成される「木の葉状の孔」
と同様の形状の凹部が形成される。このため、この方法
を用いても、圧迫や屈曲に対して十分耐性のあるPTF
E多孔質チューブを形成可能であるが、全体的に硬くな
るため、縫合性が悪いという欠点がある。
When a portion of the PTFE porous body is heated to about 327 ° C. or higher by this method, the PTFE fibers are cut by the heat to spread the internodal spaces into recesses, and the other internodal spaces shrink and the internodal spaces shift. Collectively, a strong protrusion is formed. Generally, in the case of a PTFE porous tube, the fibers have a structure oriented in the long axis direction of the tube, and the nodules are oriented in the circumferential direction, so that the convex portions are formed in a mountain range long in the circumferential direction. In this mountain range, the places are joined or joined.
Since it has a branched structure, it is a "leaf-like hole" formed by the first method described above, although the shape and size are not uniform.
A recess having a shape similar to that of is formed. Therefore, even if this method is used, PTF that is sufficiently resistant to pressure and bending.
E It is possible to form a porous tube, but it has the drawback of poor sutureability because it becomes stiff overall.

【0032】この欠点は、PTFE多孔質チューブを2
層化してから、熱処理して、外層のみに凹凸構造を形成
する方法を採用することにより解決することができる。
つまり、特公昭58−1656号に記載の方法により、
2層構成のPTFE多孔質チューブを熱処理して表面加
工すると、処理温度等を制御することで、外層のみに必
要な凹凸構造を付与することが可能である。そして、熱
処理時に表面から形成されていく凹部を外層の管壁を貫
通して内層との積層界面にまで到達するようにすると、
外層を網目状の孔を有する管状弗素樹脂体の被覆層とす
ることが可能である。
The drawback is that the PTFE porous tube is
This can be solved by adopting a method of forming a concavo-convex structure only on the outer layer by heat treatment after layering.
In other words, according to the method described in Japanese Patent Publication No. 58-1656,
When the PTFE porous tube having a two-layer structure is subjected to a heat treatment for surface treatment, it is possible to impart a necessary uneven structure only to the outer layer by controlling the treatment temperature and the like. Then, when the concave portion formed from the surface during heat treatment is penetrated through the tube wall of the outer layer to reach the laminated interface with the inner layer,
The outer layer can be a coating layer of a tubular fluororesin body having mesh holes.

【0033】この表面加工による凹凸構造形成は、使用
しているPTFEの分子量に大きく依存しており、低分
子量のPTFEでは、凹凸の形成に必要な熱量が小さ
く、高分子量のPTFEになるほど必要熱量が大きくな
る。そこで、本発明では、この現象を利用して、(1)
PTFE多孔質チューブを製造する押出工程において、
高分子量のPTFEを含む内層と、低分子量のPTFE
を含む外層とからなる積層チューブを作成し、延伸した
後、外層の熱処理を行うか、あるいは(2)PTFE多
孔質チューブを、それより低分子量のPTFEを用いて
作成されたPTFE多孔質チューブで被覆し、次いで、
外層を熱処理することにより、外層に微細繊維状組織の
切断・収縮及び/または分解除去された部分を形成す
る。
The formation of the concavo-convex structure by the surface processing largely depends on the molecular weight of the PTFE used, and the low molecular weight PTFE requires a small amount of heat to form the concavities and convexities. Grows larger. Therefore, in the present invention, by utilizing this phenomenon, (1)
In the extrusion process of manufacturing PTFE porous tube,
Inner layer containing high molecular weight PTFE and low molecular weight PTFE
After making a laminated tube consisting of an outer layer containing the, and stretching, heat treatment of the outer layer, or (2) PTFE porous tube is a PTFE porous tube made by using PTFE having a lower molecular weight than that. Coated, then
By heat-treating the outer layer, the cut / shrinked and / or decomposed and removed portion of the fine fibrous tissue is formed in the outer layer.

【0034】この方法で外層に凹凸構造を形成させれ
ば、網状管状弗素樹脂体の形成とPTFE多孔質チュー
ブとの固定を一度に行うことができる。つまり、被覆し
たPTFE多孔質チューブが低分子量のため、熱処理時
により早く表面処理され、被覆された内層の高分子量の
PTFE多孔質チューブの多孔質構造が変化を起こす前
に、被覆したPTFE多孔質チューブの網状構造化を完
了させることが可能である。
By forming the concavo-convex structure on the outer layer by this method, formation of the reticulated tubular fluororesin body and fixing to the PTFE porous tube can be performed at once. That is, since the coated PTFE porous tube has a low molecular weight, it is surface-treated more quickly during the heat treatment, and the coated PTFE porous tube is coated before the porous structure of the high molecular weight PTFE porous tube of the coated inner layer changes. It is possible to complete the reticulation of the tube.

【0035】本発明者の検討結果によれば、内層と外層
のPTFE間に1.5倍程度の分子量に差があれば、こ
れらの製法を容易に実施することができる。例えば、市
販のPTFEでは、CD123、CD1、CD4(旭硝
子社製、分子量は、各々1200〜1500万、200
〜300万、20〜30万)、F104(ダイキン社
製、分子量約400万)などがあり、CD123/F1
04(分子量比=3〜4倍)、CD123/CD1(分
子量比=4〜8倍)、CD123/CD4(分子量比=
40〜75倍)、F104/CD1(分子量比=1.3
〜2倍)、F104/CD4(分子量比=4〜8倍)、
CD1/CD4(分子量比=7〜15倍)などいずれの
組み合わせでも可能である。ただし、CD4程度に低分
子量となると、表面処理の加熱条件が非常に限定され、
また、CD123/CD4の組み合わせのように極端に
分子量差があると、押出時に多層化する方法では、内層
のCD123の燒結に必要な熱量を与えると、外層のC
D4がほとんど分解してしまい、多孔質構造をなさない
ため、燒結後被覆する方法のみが可能である。逆に、分
子量の差が小さいF104/CD1の組み合わせでは、
CD1層のみに凹凸構造を付与する加熱条件が限定され
る。
According to the results of the study by the present inventor, these manufacturing methods can be easily carried out if there is a difference in molecular weight of about 1.5 times between the PTFE of the inner layer and the PTFE of the outer layer. For example, commercially available PTFE includes CD123, CD1 and CD4 (manufactured by Asahi Glass Co., Ltd., molecular weights of 1200 to 15 million and 200 million, respectively).
~ 123 million, 20-300,000), F104 (manufactured by Daikin, molecular weight of about 4 million), etc., CD123 / F1
04 (molecular weight ratio = 3 to 4 times), CD123 / CD1 (molecular weight ratio = 4 to 8 times), CD123 / CD4 (molecular weight ratio =
40-75 times), F104 / CD1 (molecular weight ratio = 1.3
~ 2 times), F104 / CD4 (molecular weight ratio = 4 to 8 times),
Any combination such as CD1 / CD4 (molecular weight ratio = 7 to 15 times) is possible. However, when the molecular weight is as low as CD4, the heating conditions for the surface treatment are very limited,
Further, if there is an extremely large difference in molecular weight like the combination of CD123 / CD4, in the method of forming multiple layers at the time of extrusion, when the heat amount necessary for sintering CD123 of the inner layer is given, the C of the outer layer is
Since D4 is almost decomposed and does not form a porous structure, only a method of coating after sintering is possible. On the contrary, in the combination of F104 / CD1 with a small difference in molecular weight,
The heating conditions for providing the uneven structure only on the CD1 layer are limited.

【0036】したがって、組み合わせる2種のPTFE
の分子量比は、1.5倍以上、好ましくは2〜40倍で
あることが望ましく、操作性からいって、3〜8倍の範
囲にあることがさらに好ましい。
Therefore, two kinds of PTFE to be combined
The molecular weight ratio is preferably 1.5 times or more, preferably 2 to 40 times, and more preferably 3 to 8 times in terms of operability.

【0037】この分子量の差によって処理時間をずらす
方法以外には、外挿する管状四弗化エチレン樹脂多孔質
体の外面に予め微細繊維状組織の切断・収縮及び/また
は分解除去された部分を設けておく方法がある。外面加
熱による微細繊維状組織の切断・収縮及び/または分解
除去は、外面から徐々に内面に向けて進行して行くが、
その速度は、内面に存在する物体への熱伝達が大きく関
わる。つまり、金属など熱伝達のよいものが内面に存在
すると、内面近傍に伝達された熱は金属に逃げるため、
温度が上がらず内外面で温度勾配ができる。この温度勾
配によって処理は比較的ゆっくりと外面から内面に進行
し、工業的に制御可能となる。この方法で形成された外
面に微細繊維状組織の切断・収縮及び/または分解除去
された凹凸をもつ管状多孔質体の内面に四弗化エチレン
樹脂多孔質体のように熱伝達が悪いものを密着させ、か
つ、接しているだけで接着していない状態とすると、加
熱によりこの微細繊維状組織の切断・収縮及び/または
分解除去は、内面に至るまで一気に進むことになる。
In addition to the method of shifting the treatment time depending on the difference in the molecular weight, the portion of the tubular tetrafluoroethylene resin porous body to be extrapolated on which the fine fibrous tissue has been cut / contracted and / or decomposed / removed in advance is removed. There is a way to set it up. Cutting / shrinking and / or decomposition and removal of the fine fibrous tissue by heating the outer surface gradually progresses from the outer surface to the inner surface.
The speed is largely related to heat transfer to the object existing on the inner surface. In other words, if there is a good heat transfer material such as metal on the inner surface, the heat transferred near the inner surface escapes to the metal.
The temperature does not rise and there is a temperature gradient inside and outside. This temperature gradient allows the process to proceed relatively slowly from the outer surface to the inner surface, making it industrially controllable. If the outer surface formed by this method has a fine fibrous structure cut and shrunk and / or decomposed and removed, the tubular porous body with irregularities should have a poor heat transfer property such as a tetrafluoroethylene resin porous body. When they are brought into close contact with each other and only in contact with each other but not in contact with each other, the cutting / shrinking and / or decomposition / removal of the fine fibrous tissue proceeds to the inner surface all at once by heating.

【0038】そこで、被覆する管状四弗化エチレン樹脂
多孔質体を、予めその外面に微細繊維状組織の切断・収
縮及び/または分解除去しておき、被覆後少なくとも約
327℃以上の温度に加熱すると、被覆した多孔質体の
外面から内面に至る全体に微細繊維状組織の切断・収縮
及び/または分解除去された部分を設けることでき、内
層と外層が同じ分子量の管状四弗化エチレン樹脂多孔質
体を用いても、また、処理時間及び壁厚などが多少ばら
ついても、管状四弗化エチレン樹脂多孔質体の外面に、
網目状の孔を有する管状弗素樹脂体の被覆層が均一に設
けられた構造の人工血管を工業的に生産することが可能
である。
Then, the tubular tetrafluoroethylene resin porous body to be coated is previously cut, shrunk and / or decomposed and removed on the outer surface of the porous body, and after coating, it is heated to a temperature of at least about 327 ° C. or higher. Then, the cut and shrunk and / or decomposed and removed portion of the fine fibrous tissue can be provided on the entire surface of the coated porous body from the outer surface to the inner surface, and the inner layer and the outer layer are tubular tetrafluoroethylene resin porous materials having the same molecular weight. Even if a porous material is used, or if the treatment time and wall thickness vary somewhat, the outer surface of the tubular tetrafluoroethylene resin porous material
It is possible to industrially produce an artificial blood vessel having a structure in which a tubular fluororesin covering layer having mesh-like holes is uniformly provided.

【0039】このようにして得られた本発明品は、特公
昭58−1656号に記載の方法で得られるものと同様
の高い管腔構造の維持性を持ち、しかも外面を覆う補強
部はその一部のみを引っ張ることで比較的容易に除去す
ることが可能である。ただし、この特公昭58−165
6号に記載の方法の応用では、網目形状が不揃いである
ため、補強部の切除部分断端は不揃いとなり易いこと、
製法上PTFEの分解を伴うこと、凸部の厚みを500
μm以上にすることが困難であること等から、管状弗素
樹脂体に切り込みを入れる第一の方法の方が、圧縮や屈
曲に対する強度が強く、相対的には有利である。
The product of the present invention thus obtained has the same high maintainability of the lumen structure as that obtained by the method described in Japanese Patent Publication No. 58-1656, and the reinforcing portion covering the outer surface is the same. It is possible to remove relatively easily by pulling only a part. However, this Japanese Patent Sho 58-165
In the application of the method described in No. 6, since the mesh shape is not uniform, the cut end of the reinforcing portion is likely to be uneven,
Due to the manufacturing process, PTFE is decomposed, and the thickness of the protrusion is 500.
Since it is difficult to make the thickness of μm or more, the first method of making a cut in the tubular fluororesin body is stronger in compression and bending, and is relatively advantageous.

【0040】本発明の人工血管には、次のような特徴が
ある。 (1)円周方向に形状維持強度が高く、圧縮に対する管
状の維持性が高い。 (2)長軸方向に適当な弾性的な可撓性を持ち、屈曲に
対応が可能である。 (3)部分的な補強層の除去が容易で、縫合性を妨げな
い。 また、本発明品は、従来の補強法に比して、長軸方向の
連結があるために、補強物の横倒れなどが起こらず、圧
縮に対する耐性が高い。
The artificial blood vessel of the present invention has the following features. (1) The shape-maintaining strength is high in the circumferential direction, and the tubular shape retainability against compression is high. (2) It has appropriate elastic flexibility in the long axis direction and can cope with bending. (3) The partial reinforcing layer can be easily removed without impairing the sutureability. Further, since the product of the present invention has the connection in the long axis direction as compared with the conventional reinforcing method, the reinforcing product does not fall sideways and has high resistance to compression.

【0041】[0041]

【実施例】以下、本発明について、実施例及び比較例を
挙げて具体的に説明するが、本発明は、これらの実施例
のみに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0042】なお、物性の測定方法は以下の通りであ
る。 〈バブルポイント〉人工血管をイソプロピルアルコール
に含浸し、管壁の孔内をイソプロピルアルコールで充満
した後、チューブの内側より徐々に空気圧を負荷したと
きに、初めて気泡が出てくるときの圧力。 〈漏水圧〉人工血管の内側から徐々に水圧を負荷したと
きに、初めて水が人工血管外壁から出てくる時の水圧。 〈耐圧縮強度〉2枚の並行な板の間に人工血管を挟んで
外径の1/2の幅まで圧縮した際の、最大抗力を人工血
管の単位長さで割った値。 〈キンク径〉ある値の円柱に人工血管外壁を添わせるよ
うに巻き付けた時に、人工血管外径が最低となる部分の
径が元の80%となる時の円柱の外径。
The methods for measuring the physical properties are as follows. <Bubble point> The pressure at which bubbles first appear when the artificial blood vessel is impregnated with isopropyl alcohol and the inside of the tube wall is filled with isopropyl alcohol, and then air pressure is gradually applied from the inside of the tube. <Leakage pressure> The water pressure when water comes out from the outer wall of the artificial blood vessel for the first time when the water pressure is gradually applied from the inside of the artificial blood vessel. <Compressive strength> A value obtained by dividing the maximum drag force by the unit length of the artificial blood vessel when the artificial blood vessel is sandwiched between two parallel plates and compressed to a width of 1/2 of the outer diameter. <Kink diameter> The outer diameter of the cylinder when the diameter of the portion where the outer diameter of the artificial blood vessel is the minimum is 80% of the original diameter when the outer wall of the artificial blood vessel is wound around the cylinder of a certain value.

【0043】[実施例1]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、ドライゾール23重量部を
助剤として混合し、ラム押出機によってチューブ状に成
形した後に、ドライゾールを50℃、48時間で乾燥さ
せた。この押出チューブを電気炉中、炉温350℃、炉
内滞在時間120秒の条件で加熱しながら350%延伸
し、気孔率75%、平均繊維長30μm、内径6mm
φ、外径7.5mmφのPTFE多孔質チューブを得
た。
[Example 1] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) With respect to 100 parts by weight, 23 parts by weight of dryzole was mixed as an auxiliary agent, and the mixture was molded into a tube by a ram extruder, and then the dryzole was dried at 50 ° C. for 48 hours. This extruded tube was stretched by 350% while being heated in an electric furnace under the conditions of a furnace temperature of 350 ° C. and a residence time in the furnace of 120 seconds, a porosity of 75%, an average fiber length of 30 μm, and an inner diameter of 6 mm.
A PTFE porous tube having a diameter of φ and an outer diameter of 7.5 mm was obtained.

【0044】一方、内径8mmφ、外径10mmφのP
TFE無孔質チューブに、円周方向に間の距離を1mm
として15mm弱の切れ込みを2つ入れた。この円周か
ら1mm離れた円周上に、先の切れ込みからチューブ長
軸を中心として90度回転した位置に同じ大きさの切れ
込みを同じく2つ入れた。この操作をPTFE無孔質チ
ューブの長軸方向の全長にわたって行い、図2−1に示
すような多数の切れ込みを有する管状弗素樹脂体を得
た。
On the other hand, P having an inner diameter of 8 mmφ and an outer diameter of 10 mmφ
TFE non-porous tube, 1mm distance in the circumferential direction
As a result, two notches of less than 15 mm were made. On the circumference 1 mm away from this circumference, two cuts of the same size were also made at the position rotated 90 degrees about the tube long axis from the previous cut. This operation was performed over the entire length of the PTFE non-porous tube in the long axis direction to obtain a tubular fluororesin body having a large number of cuts as shown in FIG.

【0045】PTFE多孔質チューブの内腔に6mmφ
ステンレス棒を挿入した後、管状弗素樹脂体を被せ、管
状弗素樹脂体を長軸方向に4倍に引き延ばして、切れ込
みを図2−2に示すように網状に開口させると同時に、
内径を減少させてPTFE多孔質チューブに密着させて
固定し、350℃の高温槽に2分間入れて熱融着させ
た。
6 mmφ in the lumen of PTFE porous tube
After inserting the stainless steel rod, the tubular fluororesin body is covered, and the tubular fluororesin body is stretched four times in the long axis direction, and at the same time the notches are opened like a mesh as shown in Fig. 2-2.
The inner diameter was reduced, and the PTFE porous tube was brought into close contact with and fixed to a PTFE porous tube, and placed in a high temperature bath at 350 ° C. for 2 minutes for heat fusion.

【0046】その結果、内径6mmφ、網状管状弗素樹
脂体被覆部外径9.5mmφ、非被覆部外径7.5mm
φ、被覆した網状管状弗素樹脂体の厚みが1mm、長軸
方向の最大孔幅3mm、円周方向の孔数2、各支柱の長
軸方向となす角度約20度の人工血管を得た。
As a result, the inner diameter was 6 mmφ, the reticulated tubular fluororesin body covered portion outer diameter was 9.5 mmφ, and the uncoated portion outer diameter was 7.5 mm.
An artificial blood vessel having a diameter of φ, a thickness of the covered reticulated tubular fluororesin body of 1 mm, a maximum hole width in the major axis direction of 3 mm, a number of holes in the circumferential direction of 2 and an angle of about 20 degrees with the major axis direction of each strut was obtained.

【0047】[実施例2]管状弗素樹脂体の内径を8m
mφ、外径を9mmφ、切れ込みを6.5mm長で円周
方向に4つ配置し、隣の切れ込みとの幅を0.5mm、
ずれ角度を45度とし、切れ込みの開口のための引き延
ばしを2倍としたこと以外は、実施例1と同様にして、
内径6mmφ、網状管状弗素樹脂体被覆部外径8.5m
mφ、非被覆部外径7.5mmφ、被覆した網状管状弗
素樹脂体の厚みが0.5mm、長軸方向の最大孔幅1m
m、円周方向の孔数4、各支柱の長軸方向となす角度約
20度の人工血管を得た。
[Example 2] The inner diameter of the tubular fluororesin body was 8 m.
mφ, outer diameter is 9mmφ, 4 notches with 6.5mm length are arranged in the circumferential direction, and the width between the notches next to them is 0.5mm,
In the same manner as in Example 1, except that the shift angle was 45 degrees and the extension for the slit opening was doubled.
Inner diameter 6 mmφ, reticulated tubular fluororesin body coating outer diameter 8.5 m
mφ, non-coated portion outer diameter 7.5 mmφ, coated reticulated tubular fluororesin body thickness 0.5 mm, maximum axial width 1 m
m, the number of holes in the circumferential direction was 4, and an artificial blood vessel having an angle of about 20 degrees with the long axis direction of each column was obtained.

【0048】[実施例3]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、ドライゾール25重量部を
助剤として混合したものと、PTFEファインパウダー
(旭硝子社製PTFEファインパウダーCD4)100
重量部に対して、ドライゾール18重量部を助剤として
混合したものを、前者が外層になるように予備成形し、
ラム押出機によって内外層比1:1の2層チューブ状に
成形した後に、ドライゾールを50℃、48時間で乾燥
させた。この押出チューブを電気炉中、炉温350℃、
炉内滞在時間120秒の条件で加熱しながら350%延
伸し、平均気孔率75%、内面繊維長30μm、内径6
mmφ、外径9.5mmφのPTFE多孔質チューブを
得た。
[Example 3] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) A mixture of 100 parts by weight of DRYSOL and 25 parts by weight of an auxiliary agent, and PTFE fine powder (PTF fine powder CD4 manufactured by Asahi Glass Co., Ltd.) 100
A mixture of 18 parts by weight of dryzole as an auxiliary agent with respect to parts by weight is preformed so that the former is an outer layer,
After molding into a two-layer tube having an inner / outer layer ratio of 1: 1 by a ram extruder, DRYSOL was dried at 50 ° C. for 48 hours. This extruded tube was placed in an electric furnace at a furnace temperature of 350 ° C.
350% stretching while heating under the condition that the residence time in the furnace is 120 seconds, average porosity 75%, inner surface fiber length 30 μm, inner diameter 6
A PTFE porous tube having a diameter of mmφ and an outer diameter of 9.5 mmφ was obtained.

【0049】このPTFE多孔質チューブの内腔に6m
mφステンレス棒を挿入し両端を固定した後に、内径3
5mmφの石英ガラス円筒を炉芯に挿入した電気炉中、
炉温500℃、炉内滞在時間10秒の条件にて熱処理
し、チューブ外層を図3に示す過程で網状構造に加工し
た。
6 m in the lumen of this PTFE porous tube
After inserting the mφ stainless steel rod and fixing both ends,
In an electric furnace with a 5 mmφ quartz glass cylinder inserted in the furnace core,
Heat treatment was performed under the conditions of a furnace temperature of 500 ° C. and a residence time in the furnace of 10 seconds, and the tube outer layer was processed into a net-like structure in the process shown in FIG.

【0050】[実施例4]PTFEファインパウダー
(旭硝子社製PTFEファインパウダーCD123)1
00重量部に対して、ドライゾール25重量部を助剤と
して混合し、ラム押出機によってチューブ状に成形した
後に、ドライゾールを50℃、48時間で乾燥させた。
この押出チューブを電気炉中、炉温360℃、炉内滞在
時間180秒の条件で加熱しながら600%延伸し、気
孔率75%、平均繊維長30μm、内径6mmφ、外径
7.5mmφのPTFE多孔質チューブを得た。
[Example 4] PTFE fine powder (PTFE fine powder CD123 manufactured by Asahi Glass Co., Ltd.) 1
25 parts by weight of dryzole was mixed with 00 parts by weight as an auxiliary agent and molded into a tube by a ram extruder, and then the dryzole was dried at 50 ° C. for 48 hours.
This extruded tube was stretched 600% in an electric furnace while being heated at a furnace temperature of 360 ° C. and a residence time in the furnace of 180 seconds, and was stretched 600% to have a porosity of 75%, an average fiber length of 30 μm, an inner diameter of 6 mmφ, and an outer diameter of 7.5 mmφ. A porous tube was obtained.

【0051】PTFEファインパウダー(旭硝子社製P
TFEファインパウダーCD1)100重量部に対し
て、ドライゾール20重量部を助剤として混合し、ラム
押出機によってチューブ状に成形した後に、ドライゾー
ルを50℃、48時間で乾燥させた。この押出チューブ
を電気炉中、炉温350℃、炉内滞在時間100秒の条
件で加熱しながら350%延伸し、内径7.5mmφ、
外径9.5mmφのPTFE多孔質チューブを得た。こ
のチューブ内腔に外径8mmφのステンレス棒を徐々に
挿入した後にこれを抜去し、内径を7.8mmφに膨張
させた。
PTFE fine powder (P made by Asahi Glass Co., Ltd.
20 parts by weight of DRYSOL was mixed with 100 parts by weight of TFE fine powder CD1) as an auxiliary agent and molded into a tube by a ram extruder, and then DRYSOL was dried at 50 ° C. for 48 hours. This extruded tube was stretched by 350% while being heated in an electric furnace under conditions of a furnace temperature of 350 ° C. and a residence time in the furnace of 100 seconds, and an inner diameter of 7.5 mmφ,
A PTFE porous tube having an outer diameter of 9.5 mmφ was obtained. A stainless steel rod having an outer diameter of 8 mmφ was gradually inserted into this tube lumen, and then this was removed to expand the inner diameter to 7.8 mmφ.

【0052】上記2種類のPTFE多孔質チューブのう
ち、前者の内腔に6mmφのステンレス棒を挿入し、次
いで後者の内腔に全体を挿入して両端を固定した。次い
で、内径35mmφの石英ガラス円筒を炉芯に挿入した
電気炉中、炉温500℃、炉内滞在時間300秒の条件
にて熱処理し、チューブ外層を図3に示す過程で網状構
造に加工した。
Of the above two types of PTFE porous tubes, a 6 mmφ stainless rod was inserted into the former lumen, and then the latter was entirely inserted to fix both ends. Then, heat treatment was performed in an electric furnace in which a quartz glass cylinder having an inner diameter of 35 mmφ was inserted in a furnace core under the conditions of a furnace temperature of 500 ° C. and a residence time in the furnace of 300 seconds, and the tube outer layer was processed into a reticulated structure in the process shown in FIG. .

【0053】[実施例5]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、液状潤滑剤(エッソ社製S
Sドライゾール)25重量部を混合し、ラム押出機にて
チューブ状に成形した後に、液状潤滑剤を乾燥させた。
この押出チューブを電気炉中、炉温350℃、炉内滞在
時間100秒の条件で加熱しながら350%延伸し、内
径3.5mmφ、外径4.3mmφのPTFE多孔質チ
ューブを得た。このチューブの内腔に4mmφステンレ
ス棒を挿入した。
[Example 5] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) Liquid lubricant (S manufactured by Esso Co.) with respect to 100 parts by weight.
25 parts by weight of S dry sol) was mixed and molded into a tube by a ram extruder, and then the liquid lubricant was dried.
This extruded tube was stretched by 350% in an electric furnace while heating at a furnace temperature of 350 ° C. and a residence time in the furnace of 100 seconds to obtain a porous PTFE tube having an inner diameter of 3.5 mmφ and an outer diameter of 4.3 mmφ. A 4 mmφ stainless rod was inserted into the lumen of this tube.

【0054】このチューブのの外面に、微細繊維状組織
の切断・収縮及び/または分解除去された部分を外面に
もつ内径5mmφの四弗化エチレン樹脂製人工血管(住
友電気工業製テクノグラフト)を被覆し、約3〜4cm
/周のピッチで円周方向にねじることで内挿チューブと
密着させた。次いで、内径35mmφの石英ガラス円筒
を炉芯に挿入した電気炉中、炉温750℃、炉内滞在時
間50秒の条件で熱処理し、チューブ外層を図3の3−
2から3−3に示す過程で網状構造に加工した。
On the outer surface of this tube, an artificial blood vessel made of tetrafluoroethylene resin having an inner diameter of 5 mmφ (Technograft manufactured by Sumitomo Electric Industries, Ltd.) having a portion where the fine fibrous tissue is cut, shrunk and / or decomposed and removed is formed on the outer surface. Coated, about 3-4 cm
It was attached to the insertion tube by twisting in the circumferential direction at a pitch of / circle. Next, heat treatment was performed in an electric furnace in which a quartz glass cylinder having an inner diameter of 35 mmφ was inserted into the furnace core under the conditions of a furnace temperature of 750 ° C. and a residence time in the furnace of 50 seconds, and the tube outer layer was treated as shown in FIG.
It was processed into a reticulated structure in the process shown from 2 to 3-3.

【0055】[比較例1]実施例1で用いた、気孔率7
5%、平均繊維長30μm、内径6mmφ、外径7.5
mmφのPTFE多孔質チューブを比較例1とした。
Comparative Example 1 Porosity of 7 used in Example 1
5%, average fiber length 30 μm, inner diameter 6 mmφ, outer diameter 7.5
A PTFE porous tube of mmφ was used as Comparative Example 1.

【0056】[比較例2]実施例4において、石英ガラ
ス円筒を炉芯に挿入した電気炉による熱処理条件を、炉
温350℃、炉内滞在時間120秒とし、内外層のPT
FE多孔質チューブを熱融着させるのみで、外層を網状
構造化しなかった。
[Comparative Example 2] In Example 4, the heat treatment conditions in an electric furnace in which a quartz glass cylinder was inserted in the furnace core were a furnace temperature of 350 ° C., a residence time in the furnace of 120 seconds, and PT of the inner and outer layers.
Only the FE porous tube was heat-sealed, and the outer layer was not reticulated.

【0057】[比較例3]実施例1で用いたPTFE無
孔質チューブの代わりに、内径7.3mmφ、外径9.
3mmφのPTFE無孔質チューブを1mm幅のリング
状に切取り、これを3mm間隔で、実施例1で用いたP
TFE多孔質チューブ外面に被覆し、実施例1と同様の
熱処理を行ったこと以外は、実施例1と同様にし、リン
グ状のフッソ樹脂体を補強手段とした人工血管を得た。
Comparative Example 3 Instead of the PTFE non-porous tube used in Example 1, an inner diameter of 7.3 mmφ and an outer diameter of 9.
A 3 mmφ PTFE non-porous tube was cut into a ring shape having a width of 1 mm, and the P-shaped tube used in Example 1 was cut at 3 mm intervals.
An artificial blood vessel was prepared in the same manner as in Example 1 except that the outer surface of the TFE porous tube was coated and the same heat treatment as in Example 1 was performed, and a ring-shaped fluororesin body was used as a reinforcing means.

【0058】[比較例4]比較例3で用いたリング状P
TFE無孔質体を1cm間隔で被覆したこと以外は、比
較例2と同様にして人工血管を得た。
[Comparative Example 4] The ring-shaped P used in Comparative Example 3
An artificial blood vessel was obtained in the same manner as in Comparative Example 2 except that the TFE non-porous body was coated at 1 cm intervals.

【0059】[比較例5]実施例1で用いたPTFE無
孔質チューブを1mm幅でスパイラル状に切り、これを
3mm間隔のピッチで、実施例1で用いたPTFE多孔
質チューブ外面に巻き付けて被覆し、実施例1と同様の
熱処理を行なったこと以外は、実施例1と同様にし、ス
パイラル状の弗素樹脂体を補強手段とした人工血管を得
た。
[Comparative Example 5] The PTFE non-porous tube used in Example 1 was cut into a spiral shape with a width of 1 mm, which was wound around the outer surface of the PTFE porous tube used in Example 1 at a pitch of 3 mm. An artificial blood vessel was obtained in the same manner as in Example 1 except that the coating and the same heat treatment as in Example 1 were performed, and a spiral fluororesin body was used as a reinforcing means.

【0060】[比較例6]比較例5で用いたスパイラル
状PTFE無孔質体を1cm間隔のピッチで巻き付けて
被覆したこと以外は、比較例2と同様にして人工血管を
得た。
[Comparative Example 6] An artificial blood vessel was obtained in the same manner as in Comparative Example 2 except that the spiral PTFE non-porous material used in Comparative Example 5 was wound and coated at a pitch of 1 cm.

【0061】<物性の測定結果> (1)実施例1〜5、及び比較例1〜6の人工血管につ
いて、バブルポイント及び漏水圧を測定したところ、い
ずれも0.10〜0.12、0.25〜0.30の範囲
内であり、有意な差はなかった。
<Results of Measurement of Physical Properties> (1) Bubble points and water leak pressures of the artificial blood vessels of Examples 1 to 5 and Comparative Examples 1 to 6 were measured and found to be 0.10 to 0.12, 0. It was within the range of 0.25 to 0.30 and there was no significant difference.

【0062】(2)耐圧縮強度の測定結果は、比較例
1、2、4、6の人工血管では、それぞれ61g/c
m、93g/cm、179g/cm、185g/cmで
あったのに対して、実施例1〜5の人工血管では、それ
ぞれ535g/cm、645g/cm、247g/c
m、376g/cm、499g/cmと非常に高かっ
た。比較例3と5の人工血管については、それぞれ32
3g/cm、277g/cmと実施例におけると同様で
あった。
(2) The measurement results of the compression strength are 61 g / c for the artificial blood vessels of Comparative Examples 1, 2, 4, and 6, respectively.
m, 93 g / cm, 179 g / cm, and 185 g / cm, whereas the artificial blood vessels of Examples 1 to 5 have 535 g / cm, 645 g / cm, and 247 g / c, respectively.
m, 376 g / cm, 499 g / cm, which was extremely high. For the artificial blood vessels of Comparative Examples 3 and 5, each 32
3 g / cm and 277 g / cm, which were similar to those in the example.

【0063】(3)キンク径測定の結果では、実施例3
〜5の人工血管が、共に6.5mmφであり、曲げても
管腔構造の維持性が高く、次いで、実施例1と2の人工
血管では、それぞれ8mmφ、7.5mmφであった。
これらに対して、比較例1、2、4、6の人工血管で
は、それぞれ25mmφ、21mmφ、12mmφ、1
6mmφであり、管腔構造の維持性が悪かった。また、
比較例3と5の人工血管については、管壁が剛直なた
め、曲げに対する抗力は非常に強いものの、一旦曲がる
と座屈するようになるため、キンク径は、ともに40m
mφ以上で、湾曲が必要とされる部位への適用は不可能
と考えられた。
(3) As a result of measuring the kink diameter,
The artificial blood vessels of ˜5 each had a diameter of 6.5 mmφ, and the lumen structure was highly maintainable even when bent, and the artificial blood vessels of Examples 1 and 2 had a diameter of 8 mmφ and 7.5 mmφ, respectively.
On the other hand, in the artificial blood vessels of Comparative Examples 1, 2, 4, and 6, 25 mmφ, 21 mmφ, 12 mmφ, 1
It was 6 mmφ, and the maintainability of the lumen structure was poor. Also,
Regarding the artificial blood vessels of Comparative Examples 3 and 5, since the tube wall is rigid, the resistance against bending is very strong, but once bent, the artificial blood vessels will buckle. Therefore, both kink diameters are 40 m.
Above mφ, it was considered impossible to apply it to a site that requires bending.

【0064】(4)補強部の弗素樹脂体の剥離性につい
て評価したところ、実施例1〜5と比較例1、2、5の
人工血管では、15mmRの曲げを30回繰り返したあ
とでも外層と内層の剥離及び離脱が見られなかったのに
対し、比較例3、4、6の人工血管では、補強部の弗素
樹脂体の剥離が見られ、特に比較例4の人工血管では、
一部のリングが完全に脱離してしまった。
(4) When the releasability of the fluororesin body of the reinforced portion was evaluated, the artificial blood vessels of Examples 1 to 5 and Comparative Examples 1, 2 and 5 were treated with the outer layer even after repeating bending of 15 mmR 30 times. In the artificial blood vessels of Comparative Examples 3, 4, and 6, peeling of the fluororesin body of the reinforcing portion was observed, whereas peeling and separation of the inner layer were not observed, and particularly in the artificial blood vessel of Comparative Example 4,
Some rings have completely detached.

【0065】外層または補強部の端をピンセットでつま
み、引っ張ったところ、比較例5と6の人工血管を除い
てどの例でも、引っ張った部分から先の外層または補強
部が取れて除去が可能であった。比較例5と6の人工血
管では、スパイラルが解けて取れてくるため、縫合部で
補強部が邪魔なときは、不用な部分のスパイラルを剥し
てハサミで切りとることが可能であると考えられるが、
内層のPTFE多孔質チューブを傷つけずに切りとるの
は困難で、逆に、十分剥してから切ると、残ったスパイ
ラルの端がPTFE多孔質チューブから離れた状態とな
った。このように比較例5と6の人工血管は、補強部の
除去作業が煩雑で、操作性において劣るものであった。
When the end of the outer layer or the reinforcing portion was pinched with tweezers and pulled, in any of the examples except the artificial blood vessels of Comparative Examples 5 and 6, it was possible to remove the outer layer or the reinforcing portion from the pulled portion. there were. In the artificial blood vessels of Comparative Examples 5 and 6, since the spiral is dissolved and taken out, it is considered possible to peel off the unnecessary portion of the spiral and cut it with scissors when the reinforcing portion is an obstacle at the sutured portion. ,
It was difficult to cut off the PTFE porous tube of the inner layer without damaging it. On the contrary, when the PTFE porous tube was peeled off sufficiently and cut, the end of the remaining spiral was separated from the PTFE porous tube. As described above, the artificial blood vessels of Comparative Examples 5 and 6 were inferior in operability because the work of removing the reinforcing portion was complicated.

【0066】また、実施例1〜5のうち実施例5は、網
状構造の外層の円周方向の連絡がよく、ピンセットで外
層を摘んだ幅だけの網状外層がリング状に取ることが比
較的容易で操作性が最もよかった。以上のように、本発
明の実施例の人工血管は、いずれも耐圧縮性と曲げに対
する管腔構造の維持性の両方を満足するものであるが、
比較例の人工血管は、どちらか一方の特性が優れると他
方が成立しない。また、補強部の除去性においても実施
例のものの方が優れていることがわかる。
In Example 5 of Examples 1 to 5, the outer layer of the net-like structure is well connected in the circumferential direction, and the net-like outer layer having a width corresponding to the width of the outer layer picked with tweezers is relatively ring-shaped. Easy and easy to operate. As described above, the artificial blood vessels of the examples of the present invention both satisfy both the compression resistance and the maintainability of the lumen structure against bending,
In the artificial blood vessel of the comparative example, if one of the characteristics is excellent, the other does not hold. Further, it can be seen that also in the removability of the reinforcing part, the example is superior.

【0067】[0067]

【発明の効果】本発明の人工血管は、次の特性をもつ。 (1)円周方向に十分な形状維持強度を持つため、圧縮
に対して管腔構造の維持性が高い。 (2)長軸方向に適当な弾性的な可撓性を持つため、曲
部に応じて屈曲が可能であり、小さなRで屈曲しても管
腔構造の維持性が高い。 (3)補強物が一体物であるため全体としての接着力は
強く、形状を変えても補強物が剥離・脱離しないが、縫
合部で補強物が邪魔になる場合には、部分的に補強物の
除去が容易に行える。
The artificial blood vessel of the present invention has the following characteristics. (1) Since the shape maintaining strength is sufficient in the circumferential direction, the lumen structure is highly maintainable against compression. (2) Since it has appropriate elastic flexibility in the long axis direction, it can be bent according to the bent portion, and the lumen structure is highly maintainable even when bent with a small radius R. (3) Since the reinforcing material is an integral one, the adhesive strength as a whole is strong, and the reinforcing material does not peel off or come off even if the shape is changed. The reinforcement can be easily removed.

【0068】したがって、本発明品は、生体内に移植さ
れる人工血管、特に関節や骨を越える血管置換、バイパ
ス形成など、圧迫や屈曲に対する順応性、耐性の必要な
場合に使用される人工血管として特に有効である。ま
た、本発明品の目的は、人工血管にあるが、本発明品の
特徴がその管腔構造の高い維持性であることを考えれ
ば、生体内のあらゆる管状器官、例えば、消化管、気
管、胆道、尿管、尿道などにおける再建術に応用が可能
である。
Therefore, the product of the present invention is an artificial blood vessel to be transplanted in a living body, particularly an artificial blood vessel used when adaptability and resistance to pressure and flexion are required, such as blood vessel replacement over joints and bones and bypass formation. Is especially effective as Further, although the object of the present invention is an artificial blood vessel, considering that the characteristic of the present invention is high maintainability of its luminal structure, all tubular organs in the living body, for example, digestive tract, trachea, It can be applied to reconstruction of the biliary tract, ureter and urethra.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の人工血管の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an artificial blood vessel of the present invention.

【図2】本発明の構成要素である網状管状弗素樹脂体の
作製方法の一例を示す模式図である。図2−1は、管状
弗素樹脂体に多数の切れ込みを入れたものを示す。図2
−2は、図2−1の管状弗素樹脂体を長軸方向に引っ張
って、切れ込みを開口させ、網状とした状態を示す。
FIG. 2 is a schematic view showing an example of a method for producing a reticulated tubular fluororesin body that is a constituent element of the present invention. FIG. 2-1 shows a tubular fluororesin body having a large number of cuts. Figure 2
Reference numeral -2 shows a state in which the tubular fluororesin body of FIG. 2-1 is pulled in the long axis direction to open the notches to form a net shape.

【図3】図1の点線で囲ったA部分(断面)を拡大した
断面図である。図3−1は、実施例3と4における熱処
理前の状態を示し、図3−2は、外側からの熱によって
外層の管状弗素樹脂体が凹凸化し、網状構造が形成され
ていく過程を示し、図3−3は、完成された本発明品の
断面を示す。
FIG. 3 is an enlarged cross-sectional view of a portion A (cross section) surrounded by a dotted line in FIG. FIG. 3-1 shows a state before heat treatment in Examples 3 and 4, and FIG. 3-2 shows a process in which the tubular fluororesin body of the outer layer becomes uneven due to heat from the outside to form a network structure. 3-3 shows a cross section of the completed product of the present invention.

【符号の説明】[Explanation of symbols]

1 管状PTFE多孔質体 2 網状管状弗素樹脂体 3 網状管状弗素樹脂体の網状構造の連結部(または凸
部) 4 網状管状弗素樹脂体の網状構造の孔(または凹部) 5 管状弗素樹脂体に入れる切れ込み線 6 切れ込みを開口させるための延伸方向 7 PTFE繊維 8 結節 9 熱処理前の管状弗素樹脂体 10 外面からの熱エネルギー
1 Tubular PTFE porous body 2 Reticulated tubular fluororesin body 3 Reticulated tubular fluororesin body's reticulated structure connection part (or convex portion) 4 Reticulated tubular fluororesin body reticulated structure hole (or recess) 5 Tubular fluororesin body Cut line to be inserted 6 Stretching direction for opening the cut 7 PTFE fiber 8 Nodule 9 Tubular fluororesin body before heat treatment 10 Thermal energy from the outer surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する管状四弗化エチ
レン樹脂多孔質体で構成された人工血管において、該管
状四弗化エチレン樹脂多孔質体の外面に、網目状の孔を
有する管状弗素樹脂体の被覆層が設けられていることを
特徴とする人工血管。
1. An artificial blood vessel composed of a tubular tetrafluoroethylene resin porous body having a fine fibrous tissue composed of fibers and nodules connected to each other by the tubular tetrafluoroethylene resin porous body. An artificial blood vessel characterized in that a coating layer of a tubular fluororesin body having mesh-like holes is provided on the outer surface of the body.
【請求項2】 (1)管状弗素樹脂体の円周に沿って、
それぞれ同じ長さの切れ込みを2〜4個の範囲内で等間
隔に配置してなる切れ込み群〔A〕と、該円周から一定
距離離れた位置にある他の円周に沿って、前記と同じ長
さと個数の切れ込みを、180度を前記切れ込みの個数
で割った角度だけずらした位置に配置してなる切れ込み
群〔B〕とを、管状弗素樹脂体の長軸方向に沿って、交
互に等間隔で多数配置した構造の管状弗素樹脂体を作成
し、次いで、(2)該管状弗素樹脂体を、繊維と該繊維
によって互いに連結された結節とからなる微細繊維状組
織を有する管状四弗化エチレン樹脂多孔質体の外面に被
せて、長軸方向に引っ張ることにより、切れ込みを開口
させて網目状の孔を形成させると共に、口径を縮小させ
て管状四弗化エチレン樹脂多孔質体の外面に密着させ、
しかる後、(3)管状弗素樹脂体を形成する弗素樹脂の
融点以上の温度で加熱して、網目状の孔を有する管状弗
素樹脂体の被覆層を管状四弗化エチレン樹脂多孔質体の
外面に固定することを特徴とする人工血管の製造方法。
2. (1) Along the circumference of the tubular fluororesin body,
Along with the group of notches [A] in which the notches of the same length are arranged at equal intervals within the range of 2 to 4, along the other circumference at a position separated from the circumference by a certain distance, A group of cuts [B] in which cuts having the same length and the same number are arranged at positions shifted by an angle obtained by dividing 180 degrees by the number of cuts are alternately arranged along the long axis direction of the tubular fluororesin body. A tubular fluororesin body having a structure in which a large number are arranged at equal intervals is prepared, and then (2) the tubular fluororesin body has a fine fibrous structure composed of fibers and nodules interconnected by the fibers. The outer surface of the tubular tetrafluoroethylene resin porous body is covered by covering the outer surface of the porous ethylene resin porous body and pulling in the long axis direction to open the notches to form a mesh-like hole and reduce the diameter. Close to
Then, (3) heating at a temperature equal to or higher than the melting point of the fluororesin forming the tubular fluororesin body to form a coating layer of the tubular fluororesin body having mesh-like pores on the outer surface of the tubular tetrafluoroethylene resin porous body. A method for producing an artificial blood vessel, characterized in that
【請求項3】 (1)高分子量の四弗化エチレン樹脂未
燒結粉末と液状潤滑剤との混和物と、低分子量の四弗化
エチレン樹脂未燒結粉末と液状潤滑剤との混和物とを同
時押出して、高分子量の四弗化エチレン樹脂を含む内層
と、低分子量の四弗化エチレン樹脂を含む外層とからな
る積層チューブを作成し、(2)該積層チューブを、液
状潤滑剤を除去し、または除去することなく、少なくと
も一軸方向に延伸して、繊維と該繊維によって互いに連
結された結節とからなる微細繊維状組織を有する積層管
状四弗化エチレン樹脂多孔質体とし、(3)得られた積
層管状四弗化エチレン樹脂多孔質体を熱収縮防止状態に
て、加熱燒結する際、または加熱燒結した後、少なくと
も外層を約327℃以上の温度に加熱して、外層に微細
繊維状組織の切断・収縮及び/または分解除去された部
分を設けることにより、網目状の孔を有する被覆層を形
成することを特徴とする人工血管の製造方法。
3. (1) A mixture of a non-sintered powder of a high molecular weight tetrafluoroethylene resin and a liquid lubricant, and a mixture of a low-molecular weight unsintered powder of a tetrafluoroethylene resin and a liquid lubricant. Co-extruded to form a laminated tube consisting of an inner layer containing a high molecular weight tetrafluoroethylene resin and an outer layer containing a low molecular weight tetrafluoroethylene resin, and (2) removing the liquid lubricant from the laminated tube. (3) a laminated tubular tetrafluoroethylene resin porous body having a fine fibrous structure consisting of fibers and nodules connected to each other by stretching in at least one axial direction without removing or When the obtained laminated tubular tetrafluoroethylene resin porous body is heat-sintered in a heat shrinkage-preventive state, or after heat-sintering, at least the outer layer is heated to a temperature of about 327 ° C. or more to form fine fibers in the outer layer. Cutting of tissue A method for producing an artificial blood vessel, which comprises forming a coating layer having a mesh-like hole by providing a portion that has been contracted and / or decomposed and removed.
【請求項4】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する管状四弗化エチ
レン樹脂多孔質体(a)を、該多孔質体(a)を形成す
る四弗化エチレン樹脂より低分子量の四弗化エチレン樹
脂を用いて作成され、同様の微細繊維状組織を有する管
状四弗化エチレン樹脂多孔質体(b)で被覆し、次い
で、少なくとも該多孔質体(b)を約327℃以上の温
度に加熱して、多孔質体(b)に微細繊維状組織の切断
・収縮及び/または分解除去された部分を設けることに
より、網目状の孔を有する被覆層を形成することを特徴
とする人工血管の製造方法。
4. A tubular tetrafluoroethylene resin porous body (a) having a fine fibrous structure composed of fibers and nodules connected to each other by the tetrafluoride forming the porous body (a). Prepared by using a tetrafluoroethylene resin having a lower molecular weight than that of a fluorinated ethylene resin, and coated with a tubular tetrafluorinated ethylene resin porous body (b) having a similar fine fibrous structure, and then at least the porous body ( A coating layer having reticulated pores by heating b) to a temperature of about 327 ° C. or higher to provide the porous body (b) with a portion where fine fibrous tissue is cut / contracted and / or decomposed and removed. A method for producing an artificial blood vessel, which comprises:
【請求項5】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する管状四弗化エチ
レン樹脂多孔質体(a)を、予めその外面に微細繊維状
組織の切断・収縮及び/または分解除去された部分をも
つ同様の管状四弗化エチレン樹脂多孔質体(b)で被覆
し、次いで、少なくとも該多孔質体(b)を約327℃
以上の温度に加熱して、多孔質体(b)の外面から内面
に至る全体に微細繊維状組織の切断・収縮及び/または
分解除去された部分を設けることにより、網目状の孔を
有する被覆層を形成することを特徴とする人工血管の製
造方法。
5. A tubular tetrafluoroethylene resin porous body (a) having a fine fibrous tissue composed of fibers and nodules connected to each other is previously cut and shrunk on the outer surface thereof. And / or coating with a similar tubular tetrafluoroethylene resin porous body (b) having a portion that has been decomposed and removed, and then at least the porous body (b) is about 327 ° C.
By heating to the above temperature and providing a portion where the fine fibrous tissue is cut / contracted and / or decomposed and removed over the entire surface from the outer surface to the inner surface of the porous body (b), a coating having mesh-like holes A method for producing an artificial blood vessel, which comprises forming a layer.
JP5117881A 1992-11-09 1993-04-21 Artificial blood vessel and manufacture thereof Pending JPH06189984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117881A JPH06189984A (en) 1992-11-09 1993-04-21 Artificial blood vessel and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32487992 1992-11-09
JP4-324879 1992-11-09
JP5117881A JPH06189984A (en) 1992-11-09 1993-04-21 Artificial blood vessel and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06189984A true JPH06189984A (en) 1994-07-12

Family

ID=26455923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117881A Pending JPH06189984A (en) 1992-11-09 1993-04-21 Artificial blood vessel and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06189984A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607478A (en) * 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
US7413540B2 (en) 1997-02-13 2008-08-19 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US9375326B2 (en) 2010-05-20 2016-06-28 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
JP2018024189A (en) * 2016-08-11 2018-02-15 東京インキ株式会社 Network resin molded article and application method of the network resin molded article
CN108066044A (en) * 2016-11-07 2018-05-25 大连科万维医疗科技有限公司 There is the accommodating intraocular blood vessel of anti-bleeding
JP2021097909A (en) * 2019-12-23 2021-07-01 グンゼ株式会社 Artificial blood vessel, and manufacturing method of artificial blood vessel
CN113908334A (en) * 2021-10-28 2022-01-11 江苏集萃新型药物制剂技术研究所有限公司 3D printing blood vessel transplantation material, composition and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607478A (en) * 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
US6080198A (en) * 1996-03-14 2000-06-27 Meadox Medicals, Inc. Method for forming a yarn wrapped PTFE tubular prosthesis
US8790238B2 (en) 1997-02-13 2014-07-29 Boston Scientific Scimed, Inc. Systems, devices, and methods for minimally invasive pelvic surgery
US9314323B2 (en) 1997-02-13 2016-04-19 Boston Scientific Scimed, Inc. Systems, devices and methods for minimally invasive pelvic surgery
US7621865B2 (en) 1997-02-13 2009-11-24 Boston Scientific Scimed, Inc. Systems, devices, and methods for minimally invasive pelvic surgery
US7691052B2 (en) 1997-02-13 2010-04-06 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US7691050B2 (en) 1997-02-13 2010-04-06 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US8172744B2 (en) 1997-02-13 2012-05-08 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US8636641B2 (en) 1997-02-13 2014-01-28 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US8727962B2 (en) 1997-02-13 2014-05-20 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US7413540B2 (en) 1997-02-13 2008-08-19 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US7614999B2 (en) 1997-02-13 2009-11-10 Boston Scientific Scimed, Inc. Systems, devices, and methods for minimally invasive pelvic surgery
US9375326B2 (en) 2010-05-20 2016-06-28 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
US9956069B2 (en) 2010-05-20 2018-05-01 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
JP2018024189A (en) * 2016-08-11 2018-02-15 東京インキ株式会社 Network resin molded article and application method of the network resin molded article
CN108066044A (en) * 2016-11-07 2018-05-25 大连科万维医疗科技有限公司 There is the accommodating intraocular blood vessel of anti-bleeding
CN108066044B (en) * 2016-11-07 2023-12-29 大连科万维医疗科技有限公司 Adjustable artificial blood vessel with hemorrhage preventing function
JP2021097909A (en) * 2019-12-23 2021-07-01 グンゼ株式会社 Artificial blood vessel, and manufacturing method of artificial blood vessel
CN113908334A (en) * 2021-10-28 2022-01-11 江苏集萃新型药物制剂技术研究所有限公司 3D printing blood vessel transplantation material, composition and preparation method thereof
CN113908334B (en) * 2021-10-28 2022-08-19 江苏集萃新型药物制剂技术研究所有限公司 3D printing blood vessel transplantation material, composition and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2167708C (en) A thin-wall polytetrafluoroethylene tube
JP3660355B2 (en) Intraluminal stent graft
US7279208B1 (en) Thin-wall polytetrafluoroethylene tube
US5972441A (en) Thin-wall polytetrafluoroethylene tube
AU727411B2 (en) Multi-stage prosthesis
US4728328A (en) Cuffed tubular organic prostheses
JP4444942B2 (en) Method for producing porous polytetrafluoroethylene tube
EP0714270B1 (en) A tubular intraluminally insertable graft
DE69834425T3 (en) SUPPORTED IMPLANT
JP6297023B2 (en) Kink resistant stent graft
US9649186B2 (en) Tubular conduit
CA2380754A1 (en) Tubular stent-graft composite device and method of manufacture
JPH06189984A (en) Artificial blood vessel and manufacture thereof
JP2005152181A (en) Embedding-type tubular treating tool
JPS62152467A (en) Production of tubular organ prosthetic material
CN115281888A (en) Covered stent
EP1767169A1 (en) Tubular stent-graft composite device and method of manufacture
AU1674501A (en) Multi-stage prosthesis
JP2000503874A (en) Radially supported polytetrafluoroethylene vascular graft