JPS6234143B2 - - Google Patents

Info

Publication number
JPS6234143B2
JPS6234143B2 JP57199204A JP19920482A JPS6234143B2 JP S6234143 B2 JPS6234143 B2 JP S6234143B2 JP 57199204 A JP57199204 A JP 57199204A JP 19920482 A JP19920482 A JP 19920482A JP S6234143 B2 JPS6234143 B2 JP S6234143B2
Authority
JP
Japan
Prior art keywords
metal
protrusion
lead
electrode
metal protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57199204A
Other languages
Japanese (ja)
Other versions
JPS5988861A (en
Inventor
Kenzo Hatada
Isamu Kitahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57199204A priority Critical patent/JPS5988861A/en
Publication of JPS5988861A publication Critical patent/JPS5988861A/en
Publication of JPS6234143B2 publication Critical patent/JPS6234143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体素子上の電極と外部リードとを
接合する場合の金属突起物を介しての金属リード
と電極の接続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for connecting metal leads and electrodes via metal protrusions when connecting electrodes on a semiconductor element and external leads.

従来例の構成とその問題点 近年、IC,LSI等の半導体素子は各種の家庭電
化製品、産業用機器の分野へ導入されている。
Conventional configurations and their problems In recent years, semiconductor elements such as ICs and LSIs have been introduced into the fields of various home appliances and industrial equipment.

これら家庭電化製品、産業用機器は省資源化、
省電力化のためにあるいは利用範囲を拡大させる
ために、小型化、薄型化のいわゆるポータブル化
が促進されてきている。
These home appliances and industrial equipment are resource-saving and
In order to save power or expand the scope of use, miniaturization and thinning of devices, so-called portable devices, are being promoted.

半導体素子においてもポータブル化に対応する
ために、パツケージングの小型化、薄型化が要求
されてきている。拡散工程、電極配線工程の終了
したシリコンスライスは半導体素子単位のチツプ
に切断され、チツプの周辺に設けられたアルミ電
極端子から外部端子へ電極リードを取出して取扱
いやすくしまた機械的保護のためにパツケージン
グされる。通常、これら半導体素子のパツケージ
ングにはDIL、チツプキヤリヤ、テープキヤリヤ
方式等が用いられている。この中で接続箇所の信
頼性が高く、小型化、薄型化のパツケージングを
提供できるものとして、テープキヤリヤ方式があ
る。テープキヤリヤ方式による半導体素子のパツ
ケージングは半導体素子上の電極端子上にバリヤ
メタルと呼ばれる多層金属膜を設け、さらに、こ
の多層金属膜上に電気メツキ法により金属突起を
設ける。そして、一定幅の長尺のポリイミドテー
プ上に金属リード端子を設け、半導体素子の電極
端子上の金属突起とリード端子とを、電極端子数
に無関係に同時に一括接続するものである。
In order to make semiconductor devices portable, there has been a demand for smaller and thinner packaging. After the diffusion process and electrode wiring process have been completed, the silicon slice is cut into chips for each semiconductor element, and electrode leads are taken out from the aluminum electrode terminals provided around the chip to external terminals for ease of handling and for mechanical protection. packaged. Usually, DIL, chip carrier, tape carrier methods, etc. are used for packaging these semiconductor devices. Among these, the tape carrier method is one that has high reliability at connection points and can provide smaller, thinner packaging. In packaging a semiconductor device using the tape carrier method, a multilayer metal film called a barrier metal is provided on the electrode terminals on the semiconductor device, and metal protrusions are further provided on this multilayer metal film by electroplating. Then, metal lead terminals are provided on a long polyimide tape of a constant width, and the metal protrusions on the electrode terminals of the semiconductor element and the lead terminals are simultaneously connected at once regardless of the number of electrode terminals.

しかしながら従来のテープキヤリヤ方式も種々
の問題を含んでいる。そこで本発明者らは特願昭
56―37499号(特開昭57―152147号公報)におい
てテープキヤリヤ方式を基本にした新規なる接合
方法(以下転写バンプ方式と呼称する)を提案し
た。
However, conventional tape carrier systems also include various problems. Therefore, the inventors of the present invention
In No. 56-37499 (Japanese Unexamined Patent Publication No. 57-152147), we proposed a new bonding method (hereinafter referred to as the transfer bump method) based on the tape carrier method.

この発明の主な特徴は半導体素子上に金属突起
を形成する必要がないとともに、さらに金属突起
を転写方式により金属リード側に形成することに
ある。
The main feature of the present invention is that there is no need to form metal protrusions on the semiconductor element, and furthermore, the metal protrusions are formed on the metal lead side by a transfer method.

第1図で本発明者らの先に提案した上記発明の
一実施例の方法をのべる。
FIG. 1 shows a method according to an embodiment of the above invention previously proposed by the present inventors.

まず長尺のポリイミイド樹脂テープ21上に電
極リード22が形成される。電極リード22は例
えば35μm厚さのCu箔に0.2〜1.0μm程度のSn
メツキを施こしたもので、通常のフイルムキヤリ
ヤ方式に用いる構成と同一のものである。次に基
板23上に金属リード22の間隔と同一寸法に金
属突起24が電解メツキ法で形成される(第1図
a)。
First, electrode leads 22 are formed on a long polyimide resin tape 21 . The electrode lead 22 is made of, for example, Cu foil with a thickness of 35 μm and Sn of about 0.2 to 1.0 μm.
It is plated and has the same structure as that used in normal film carrier systems. Next, metal protrusions 24 are formed on the substrate 23 by electrolytic plating to have the same dimensions as the spacing between the metal leads 22 (FIG. 1a).

金属突起24と金属リード22とを位置合せ
し、ツール26で矢印27のごとく加熱、加圧す
れば(第1図b)、仮に金属突起24がAuで構成
されておれば、金属リード22に形成されている
Snと共晶を起こし、完全な接合を得ることがで
きる。加圧27を取り去れば、金属突起24は基
板23側から剥離され、金属リード22に接合さ
れた状態となる(第1図c)。第1図cの状態は
基板23の金属突起24を、金属リード22側に
転写したことになる。
If the metal protrusion 24 and the metal lead 22 are aligned and heated and pressurized as shown by the arrow 27 using the tool 26 (FIG. 1b), if the metal protrusion 24 is made of Au, the metal lead 22 will be is formed
A perfect bond can be obtained by forming eutectic formation with Sn. When the pressure 27 is removed, the metal protrusion 24 is peeled off from the substrate 23 side and becomes bonded to the metal lead 22 (FIG. 1c). In the state shown in FIG. 1c, the metal protrusions 24 of the substrate 23 are transferred to the metal leads 22 side.

次に半導体素子25上のアルミニウム電極28
に金属突起24を位置合せし、ツール26′で2
7′のごとく加熱、加圧する(第1図d)。この動
作により、金属突起24のAuと半導体素子25
上のアルミニウム電極28とは合金化し、完全な
接合を得ることができる。この状態を第1図eに
示した。
Next, the aluminum electrode 28 on the semiconductor element 25
Align the metal protrusion 24 with the
Heat and pressurize as shown in step 7' (Fig. 1d). By this operation, the Au of the metal protrusion 24 and the semiconductor element 25
It can be alloyed with the upper aluminum electrode 28 to obtain a perfect bond. This state is shown in FIG. 1e.

この第1図の方法において、金属リード22の
間隔、基板23上に形成した金属突起24の間隔
さらに半導体素子25上のアルミニウム電極28
の間隔は同一値である。
In the method shown in FIG.
The intervals of are the same value.

以上のべた本発明者らが先に提案した方法は通
常用いられているフイルムキヤリヤのリードに、
別の基板上に形成した金属突起とを接合せしめ、
この段階でリードに金属突起を転写するものであ
る。そしてリードに形成された金属突起は半導体
素子上のアルミニウム電極と容易に接合される。
前記転写バンプ方式は基本的にはネイルヘツドの
ワイヤボンデイングの金ボールを一括して多数個
同時に接合せんとする思想である。したがつてア
ルミニウム電極上の酸化物をいかに瞬時に除去
し、アルミニウムとAuとの接合を得るかが重要
である。本発明者らは、多数個の金属突起と半導
体素子のアルミニウム電極とを同時に熱圧着法で
接合する転写バンプ方式の場合、前記接合強度が
高く、信頼性の高い接合を得るためには、前記金
属リードと金属突起間において、お互いの材料の
性質、投影平面寸法におけるお互いの巾、寸法の
関係が著じるしく重要である新しい事実を見い出
した。
The method previously proposed by the inventors described above is based on the lead of the commonly used film carrier.
Joining metal protrusions formed on another substrate,
At this stage, the metal protrusions are transferred to the leads. The metal protrusions formed on the leads are easily joined to aluminum electrodes on the semiconductor element.
The transfer bump method is basically based on the idea of simultaneously bonding a large number of gold balls for wire bonding of nail heads. Therefore, it is important how to instantly remove the oxide on the aluminum electrode and obtain a bond between aluminum and Au. The present inventors have discovered that in the case of a transfer bump method in which a large number of metal protrusions and an aluminum electrode of a semiconductor element are simultaneously bonded by thermocompression bonding, in order to obtain a bond with high bonding strength and high reliability, We have discovered a new fact that between a metal lead and a metal projection, the relationship between the properties of each other's materials, their widths in projected plane dimensions, and dimensions is extremely important.

発明の目的 本発明は、このような前記問題に鑑み、金属リ
ードと金属突起の相互の材料の性質および電極と
金属突起との接合方法をより適切にせしめる事に
よつて、接合強度が高く、信頼性のより高い接合
方法を提供せんとするものである。
Purpose of the Invention In view of the above-mentioned problems, the present invention improves the mutual material properties of the metal lead and the metal protrusion and the bonding method between the electrode and the metal protrusion, thereby achieving high bonding strength. The aim is to provide a more reliable joining method.

発明の構成 本発明の方法を第2図で例示しつつ説明する。
多数個の金属リード30は前記金属リード30に
第1図の方法で転写されるが、このリード30は
金属突起31よりも加圧、加熱時において、材料
の塑性変形度合が小さい材料で構成されている。
また、この場合の実施態様として前記金属リード
30の幅寸法は加圧、加熱32を行う側の幅寸法
Aよりも金属突起31と接する側の幅寸法Bが小
さい構成が望ましい。又、前記金属リードの幅寸
法Aよりも金属突起の幅寸法Cの方がより大きい
寸法に形成すると、より確実に半導体素子上のア
ルミニウム電極上の酸化物を確実に除去し、加
圧、加熱の均一性を高め、強固な接合を得る事が
できるものである。
Structure of the Invention The method of the present invention will be explained with reference to FIG. 2 as an example.
A large number of metal leads 30 are transferred to the metal leads 30 by the method shown in FIG. 1, but the leads 30 are made of a material whose degree of plastic deformation is smaller than that of the metal protrusions 31 when pressurized and heated. ing.
Further, as an embodiment in this case, it is desirable that the width dimension of the metal lead 30 is such that the width dimension B on the side in contact with the metal protrusion 31 is smaller than the width dimension A on the side where pressure and heating 32 are applied. Furthermore, if the width dimension C of the metal protrusion is larger than the width dimension A of the metal lead, the oxide on the aluminum electrode on the semiconductor element can be more reliably removed, and the pressure and heating It is possible to improve the uniformity of the bond and obtain a strong bond.

実施例の説明 第2図、第3図で本発明の実施例を説明する。
金属突起31はAuで、金属リード30は0.4μm
程度のSnメツキを施こしたCuで構成される。こ
の実施例の構成において、Auの方が塑性変形を
起こしやすいから加圧、加熱時32には、殆んど
Auのみが塑性変形を起こし、金属リード30は
前記転写した金属突起31を半導体素子のアルミ
ニウム電極34上で押しつぶす状態を得る(第3
図b)。すなわちこの実施例においては、Auの金
属突起に対し、金属リード30はCuであり、加
圧、加熱時においてAuの方がより塑性変形を起
こしやすい材質であるため、リード30からAu
突起31に、突起31を変形させる圧力を加える
ことにより突起31を押しつぶし、電極上の絶縁
物を確実に除去することが可能となる。金属突起
がAu、半田、Sn、Al等で構成されるならば、金
属リードは、Cu,Fe,Ni,SuS等の材質が適す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 2 and 3.
The metal protrusion 31 is made of Au, and the metal lead 30 is 0.4 μm.
Consists of Cu with a certain amount of Sn plating. In the configuration of this embodiment, since Au is more likely to cause plastic deformation, most
Only Au undergoes plastic deformation, and the metal lead 30 obtains a state in which the transferred metal protrusion 31 is crushed on the aluminum electrode 34 of the semiconductor element (third
Figure b). That is, in this embodiment, the metal lead 30 is made of Cu, whereas the metal protrusion is made of Au, and since Au is a material that more easily causes plastic deformation during pressurization and heating, the metal protrusion is made of Au.
By applying pressure to the protrusion 31 to deform the protrusion 31, the protrusion 31 is crushed, and the insulator on the electrode can be reliably removed. If the metal protrusion is made of Au, solder, Sn, Al, etc., materials such as Cu, Fe, Ni, SuS, etc. are suitable for the metal lead.

又、第2図において、たとえば金属突起31に
接する側の厚さ35μmの金属リード30の幅寸法
Bを40μm加圧、加熱する側の金属リード30の
幅寸法Aを50〜60μmとする。すなわち、金属リ
ード幅寸法AとBの関係はA>Bと設定するもの
と、前記金属リード30が金属突起31に対して
くさび状の形となるため、より確実に金属リード
30が金属突起31を押しつぶす状態(第3図
b)を得ることができる。
Further, in FIG. 2, for example, the width dimension B of the metal lead 30 having a thickness of 35 μm on the side in contact with the metal protrusion 31 is pressurized by 40 μm, and the width dimension A of the metal lead 30 on the side to be heated is set to 50 to 60 μm. That is, if the relationship between the metal lead width dimensions A and B is set as A>B, the metal lead 30 will have a wedge shape with respect to the metal protrusion 31, so that the metal lead 30 will be more securely attached to the metal protrusion 31. It is possible to obtain a state in which the material is crushed (Fig. 3b).

更に、金属リード30の幅寸法Aに対し、金属
突起31の幅寸法Cを大きく設定(C>A)する
ことにより、金属突起31を金属リード30へ転
写する際の位置合せ、および、転写した金属突起
31を半導体素子上のアルミニウム電極34への
位置合せが著じるしく容易になる。すなわち、前
記金属リードと金属突起を位置合せする際、位置
合せの為の観察は、前記金属リード上から行なう
から、前記金属リードの幅よりも、金属突起の幅
が大きいために、前記金属突起が金属リードにか
くれる事なく、確実に位置合せが実施できるもの
である。
Furthermore, by setting the width C of the metal protrusion 31 larger than the width A of the metal lead 30 (C>A), the positioning when transferring the metal protrusion 31 to the metal lead 30 and the transfer The alignment of the metal protrusion 31 to the aluminum electrode 34 on the semiconductor element becomes significantly easier. That is, when aligning the metal lead and the metal protrusion, observation for alignment is performed from above the metal lead, so the width of the metal protrusion is larger than the width of the metal lead. Positioning can be performed reliably without being hidden behind metal leads.

この様に本実施例は、金属突起を半導体素子上
のアルミニウム電極に接合する際の、加圧、加熱
時に金属リードにより金属突起に充分に塑性変形
を起させ、前記半導体素子上のアルミニウム電極
上に形成されている酸化膜を、前記金属突起の塑
性変形に従つて除去させつつ、金属突起の材質と
前記アルミニウム電極表面に露出した新鮮なアル
ミニウム材質と熱圧着を行なわしめるものであ
る。
In this way, in this embodiment, when the metal protrusion is bonded to the aluminum electrode on the semiconductor element, the metal protrusion is sufficiently plastically deformed by the metal lead during pressurization and heating, and the metal protrusion is bonded to the aluminum electrode on the semiconductor element. While removing the oxide film formed on the metal protrusion according to the plastic deformation of the metal protrusion, thermocompression bonding is performed between the material of the metal protrusion and the fresh aluminum material exposed on the surface of the aluminum electrode.

すなわち本発明は加圧、加熱時に前記金属突起
を充分に塑性変形させるために、金属リードの方
が金属突起よりも塑性変形量が小さい材質であ
り、この構成を用いてリードにより金属突起の変
形を積極的に行わせて確実な接合を得るものであ
る。又、本発明では、金属リードの断面形状は第
3図に示すごとく金属突起方向に対しくさび状を
有しており、くさび効果により、一層強固な接合
を容易に得ることが可能となる。更に前記金属突
起と金属リードとの位置合せおよび半導体素子上
のアルミニウム電極との位置合せを容易ならしめ
るために、金属突起の寸法幅が金属リードの寸法
幅よりも大きい寸法に形成されており、大量製造
に好適である。
That is, in the present invention, in order to sufficiently plastically deform the metal protrusion during pressurization and heating, the metal lead is made of a material with a smaller amount of plastic deformation than the metal protrusion, and using this configuration, the metal protrusion is deformed by the lead. This method actively performs this process to obtain a reliable bond. Further, in the present invention, the cross-sectional shape of the metal lead has a wedge shape in the direction of the metal protrusion as shown in FIG. 3, and the wedge effect makes it possible to easily obtain a stronger bond. Furthermore, in order to facilitate the alignment between the metal protrusion and the metal lead and the alignment with the aluminum electrode on the semiconductor element, the dimensional width of the metal protrusion is formed to be larger than the dimensional width of the metal lead, Suitable for mass production.

発明の効果 以上の様に、本発明により、転写バンプ方式に
おける金属突起は半導体素子上のアルミニウム電
極と確実に強固に接合でき、信頼性の高い接合を
量産性良く得る工業的にすぐれた効果を有するも
のである。
Effects of the Invention As described above, according to the present invention, the metal protrusions in the transfer bump method can be reliably and firmly bonded to the aluminum electrodes on the semiconductor element, and the industrially excellent effect of achieving highly reliable bonding with good mass production can be achieved. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明者らが先に提案した転写
バンプ方式の製造工程断面図、第2図は本発明の
一実施例による接合方法を示す断面図、第3図
a,bは本発明の実施例における転写バンプ方式
による金属突起の塑性変形状態を示す図である。 30……金属リード、31……金属突起、34
……アルミニウム電極。
Figures 1 a to e are cross-sectional views of the manufacturing process of the transfer bump method previously proposed by the present inventors, Figure 2 is a cross-sectional view showing a bonding method according to an embodiment of the present invention, and Figures 3 a and b are FIG. 3 is a diagram showing a state of plastic deformation of a metal protrusion by a transfer bump method in an embodiment of the present invention. 30...Metal lead, 31...Metal protrusion, 34
...Aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に形成された金属突起を、加圧、加熱
時に前記金属突起よりも塑性変形度合が小さい材
料で構成されるとともに前記突起の幅よりも小さ
い幅を有し前記金属突起と接する一方の面の幅が
他方の面の幅よりも小さい金属リードに転写し、
前記金属突起と電極を位置合せし前記リードを加
熱、加圧して前記リードにより前記電極上で前記
金属突起を押しつぶし、前記電極と金属突起を接
合させることを特徴とする金属リードと電極との
接合方法。
1 A metal protrusion formed on a substrate is made of a material that has a smaller degree of plastic deformation than the metal protrusion when pressurized and heated, and has a width smaller than the width of the protrusion, and one of the metal protrusions in contact with the metal protrusion. Transfer to a metal lead where the width of one side is smaller than the width of the other side,
Joining of a metal lead and an electrode, characterized in that the metal protrusion and the electrode are aligned, the lead is heated and pressurized, the lead crushes the metal protrusion on the electrode, and the electrode and the metal protrusion are joined. Method.
JP57199204A 1982-11-12 1982-11-12 Formation of metallic projection to metallic lead Granted JPS5988861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57199204A JPS5988861A (en) 1982-11-12 1982-11-12 Formation of metallic projection to metallic lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57199204A JPS5988861A (en) 1982-11-12 1982-11-12 Formation of metallic projection to metallic lead

Publications (2)

Publication Number Publication Date
JPS5988861A JPS5988861A (en) 1984-05-22
JPS6234143B2 true JPS6234143B2 (en) 1987-07-24

Family

ID=16403867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57199204A Granted JPS5988861A (en) 1982-11-12 1982-11-12 Formation of metallic projection to metallic lead

Country Status (1)

Country Link
JP (1) JPS5988861A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014111A (en) * 1987-12-08 1991-05-07 Matsushita Electric Industrial Co., Ltd. Electrical contact bump and a package provided with the same
EP0327996A3 (en) * 1988-02-09 1990-12-27 National Semiconductor Corporation Tape automated bonding of bumped tape on bumped die
EP0791960A3 (en) * 1996-02-23 1998-02-18 Matsushita Electric Industrial Co., Ltd. Semiconductor devices having protruding contacts and method for making the same

Also Published As

Publication number Publication date
JPS5988861A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US6627480B2 (en) Stacked semiconductor package and fabricating method thereof
KR100470897B1 (en) Method for manufacturing dual die package
US6368896B2 (en) Method of wafer level chip scale packaging
JP4294161B2 (en) Stack package and manufacturing method thereof
JPS6149432A (en) Manufacture of semiconductor device
US4616412A (en) Method for bonding electrical leads to electronic devices
JPH1154552A (en) Semiconductor device, tab tape for semiconductor device and manufacturing method therefor, and manufacturing method for semiconductor device
JPS59139636A (en) Bonding method
US4438181A (en) Electronic component bonding tape
JPS6234143B2 (en)
JPH0214779B2 (en)
JPS59222947A (en) Semiconductor device and manufacture thereof
JPS60130132A (en) Manufacture of semiconductor device
TWI283048B (en) New package system for discrete devices
JPH0158863B2 (en)
JP2748759B2 (en) Method of manufacturing film carrier tape
KR100422271B1 (en) beam lead of micro BGA type semiconductor package
JPH0671034B2 (en) Method and jig for forming metal projection
JPH04154137A (en) Manufacture of film carrier tape
JP3550946B2 (en) TAB type semiconductor device
JPH08250545A (en) Semiconductor device and manufacture thereof
JPH0719797B2 (en) Semiconductor device mounting tool
JP2000164646A (en) Semiconductor device and manufacture thereof
JPS61212034A (en) Manufacture of semiconductor device
JPH04299544A (en) Manufacture of film carrier semiconductor device