JPS6233562B2 - - Google Patents

Info

Publication number
JPS6233562B2
JPS6233562B2 JP60150185A JP15018585A JPS6233562B2 JP S6233562 B2 JPS6233562 B2 JP S6233562B2 JP 60150185 A JP60150185 A JP 60150185A JP 15018585 A JP15018585 A JP 15018585A JP S6233562 B2 JPS6233562 B2 JP S6233562B2
Authority
JP
Japan
Prior art keywords
core
optical fiber
cladding
birefringence
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60150185A
Other languages
Japanese (ja)
Other versions
JPS6187109A (en
Inventor
Toshio Katsuyama
Hiroyoshi Matsumura
Yasuo Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150185A priority Critical patent/JPS6187109A/en
Publication of JPS6187109A publication Critical patent/JPS6187109A/en
Publication of JPS6233562B2 publication Critical patent/JPS6233562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は偏波面保存光フアイバ、更に詳しく言
えば円形の光フアイバで一方向だけの偏光を用い
て光波を伝搬する、すなわち偏波面を保存する光
フアイバに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a polarization-preserving optical fiber, more specifically, a circular optical fiber for propagating light waves using polarization in only one direction, that is, preserving the polarization plane. Regarding optical fiber.

〔発明の背景〕[Background of the invention]

光フアイバの開発の進展に供ない、アイソレー
タ、スイツチ回路ミキサ等の光学回路を光集積回
路で実現することが開発されつつある。光集積回
路に使用される導波構造は基本的には平板(スラ
ブ)型であり、又スイツチ回路を集積回路で実現
するためには光を偏光させる必要からも導波路は
スラブ構造とされる。このような光集積回路と他
の光学装置とを円形の光フアイバで有効に結合す
ることが望まれるが、その場合光フアイバが偏波
面を特定方向に保持できることが必要である。
As the development of optical fibers progresses, efforts are being made to realize optical circuits such as isolators and switch circuit mixers using optical integrated circuits. The waveguide structure used in optical integrated circuits is basically a flat plate (slab) type, and in order to realize a switch circuit with an integrated circuit, it is necessary to polarize the light, so the waveguide has a slab structure. . It is desired to effectively couple such optical integrated circuits and other optical devices with a circular optical fiber, but in this case it is necessary that the optical fiber can maintain the plane of polarization in a specific direction.

さらに光の偏波面を利用して種々の測定を行な
うことが提案されているが、これらを実用化する
ためには光の偏波面を保存して伝送することが解
決されなければならない問題となる。特に現在実
用化段階に来た円形導波管(光フアイバ)で光偏
波面を保存して伝送できることは光エネルギーの
伝送効率からも、又製造上からも望まれることで
ある。
Furthermore, it has been proposed to perform various measurements using the plane of polarization of light, but in order to put these into practical use, the problem that must be solved is preserving the plane of polarization of light and transmitting it. . In particular, it is desirable from the viewpoint of optical energy transmission efficiency and manufacturing to be able to transmit light while preserving the plane of polarization using circular waveguides (optical fibers), which are currently in the stage of practical use.

従来、偏波面を保存する円形の光フアイバとし
て、コアとクラツドとジヤケツトで構成し、ジヤ
ケツトの厚さを不均一にすることによつて、コア
部に応力を誘発させ、コア、クラツドの導波領域
内の互に直交する軸方向に沿つた機械的応力の差
によつてコア部に屈折率差(以下ひずみ複屈折と
呼ぶ)を一定以上とすることによつて偏波面を保
存する光フアイバが提案されている。
Conventionally, a circular optical fiber that preserves the plane of polarization is composed of a core, a cladding, and a jacket, and by making the thickness of the jacket uneven, stress is induced in the core and the waveguide between the core and the cladding. An optical fiber that preserves the plane of polarization by creating a refractive index difference (hereinafter referred to as strain birefringence) in the core part above a certain level due to the difference in mechanical stress along mutually orthogonal axes within the region. is proposed.

(バイレフリンジエンス・イン・エリブテイカ
リ・クラツド・ボロシリケイト・シングルモー
ド・フアイバ・アプライド オプテツクス 「Birefringence in elliptically clad
borosillcate singlemode fibers. APPLIED OPTICS」Vol.18,No.2415,
DEC1979)。
(Birefringence in elliptically clad borosilicate single mode fiber applied optics)
borosillcate singlemode fibers. APPLIED OPTICS” Vol.18, No.2415,
DEC1979).

すなわち、偏波面を保存するためには、光フア
イバの互に直交する横方向の偏光波の伝送定数の
差をΔβとしたとき 2π/Δβ=L の値(以下結合長と呼ぶ)が小さい程偏波の保存
が強められるから、コアが円形としたとき、この
定数差Δβが偏光の2方向に対する屈折率の差の
大きさΔnによつて定まり、又この屈折率の差Δ
nは、これら2方向における歪の差に比例し、こ
れはジヤケツトとクラツドの熱膨脹係数の差を利
用したものである。
In other words, in order to preserve the polarization plane, the smaller the value of 2π/Δβ=L (hereinafter referred to as the coupling length), the smaller the value of 2π/Δβ=L (hereinafter referred to as the coupling length), where Δβ is the difference in the transmission constant of the mutually orthogonal lateral polarized waves of the optical fiber. Since the conservation of polarization is strengthened, when the core is circular, this constant difference Δβ is determined by the magnitude Δn of the difference in refractive index in the two directions of polarized light, and this difference in refractive index Δ
n is proportional to the difference in strain in these two directions, and this takes advantage of the difference in coefficient of thermal expansion between the jacket and the cladding.

しかしながら、上記提案のものではジヤケツト
の厚さを不均一とするための手段として、ジヤケ
ツトを初期の工程において、変形する必要があつ
て、製造工程が複雑となり、又、実際に、結合長
Lとしては10mm以上のものしか得られていない。
However, in the above proposal, as a means to make the thickness of the jacket non-uniform, it is necessary to deform the jacket in the initial process, which complicates the manufacturing process. Only those with a diameter of 10 mm or more have been obtained.

本発明者らは、上記ジヤケツト、クラツド、コ
アからなる光フアイバにおいて、酸化けい素を主
体とするクラツドに一定以上のB2O3を加えるこ
とによつて、又その製造も、従来の光フアイバの
製造方法を若干変更することによつて結合長が2
mm以下となる偏波面保存光フアイバを実現した
(特願昭55−1330号「偏波面保存単一モード光フ
アイバ」)。
The present inventors have developed an optical fiber consisting of the jacket, cladding, and core by adding a certain amount of B 2 O 3 to the cladding mainly composed of silicon oxide. By slightly changing the manufacturing method, the bond length can be reduced to 2.
We have realized a polarization-maintaining optical fiber with a diameter of less than mm (Patent Application No. 1330-1988 ``Polarization-maintaining single mode optical fiber'').

しかし、B2O3を添加したガラスはSiO2ガラス
との比屈折率差が0.7%以上にならないことか
ら、マイクロベンデイング損失などが大きくな
り、低損失の光フアイバが得られないという問題
がある。またクラツドに含まれる酸化硼素
(B2O3)の量が多量となる場合、長波長(1.2μm
以上)の光で、格子振動吸収が増大し、本来硅酸
ガラスの光フアイバとして低損失な領域とされる
波長(1.55μm帯)で損失が1dB/Km以下になら
ないという問題がある。
However, since glass doped with B 2 O 3 does not have a relative refractive index difference of 0.7% or more with SiO 2 glass, microbending loss increases, making it impossible to obtain a low-loss optical fiber. be. In addition, if the amount of boron oxide (B 2 O 3 ) contained in the cladding is large, the long wavelength (1.2 μm)
There is a problem in that the lattice vibration absorption increases with the above light, and the loss does not fall below 1 dB/Km at the wavelength (1.55 μm band), which is originally a low-loss region for silicate glass optical fibers.

〔発明の目的〕[Purpose of the invention]

したがつて、本発明の目的は、偏波面を保存し
かつ伝送損失が少ない光フアイバを実現すること
を目的とする。更に具体的には波長が1.5μm近
傍の光に対し、損失が1dB/Km以下で、かつ伝搬
定数の差Δβが大きな偏波面保存光フアイバを実
現することである。
Therefore, an object of the present invention is to realize an optical fiber that preserves the plane of polarization and has low transmission loss. More specifically, the objective is to realize a polarization-maintaining optical fiber with a loss of 1 dB/Km or less and a large difference in propagation constant Δβ for light with a wavelength of around 1.5 μm.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、光を伝搬す
る断面形状が円形の光伝搬部材と上記光伝搬部に
複屈折を生じさせるための部材を分離し、さらに
上記光伝搬部材と複屈折を生ぜしめる部材を保持
するためのサポート部を上記光伝搬部材と複屈折
を生ぜしめる部材を包んで構成する。上記光伝搬
部材は通常の光フアイバのように断面形状が円形
となるようにし、かつ上記複屈折を生ぜしめる部
材は上記の円形の中心を通り、互い直交する光学
軸方向の屈折率が異なるようにするため、楕円形
のように上記直交する光学軸を線対称線とし、か
つ光学軸(すなわち直交する対称線)方向の厚さ
が異る非円形状にする。又上記複屈折を生ぜしめ
る部材の中に光エネルギーが多量に分布しないよ
うにするため、その屈折率は実質的に上記光伝搬
部材の外周の屈折率と同じとなるようにする。上
記構成によれば、光エネルギは全て光伝搬部材の
みに集中され、かつ非円形の部材によつて、光伝
搬部の直交する光学軸方向に異つた歪応力が加わ
るためコアの直交する軸方向の屈折率が異なつ
て、複屈折を生ぜしめ位相伝搬定数差Δβを大き
なものとして、偏波面保存性の強い光フアイバを
実現できる。特に、材質の量的に大部分を占める
非円形部材、サポート部は光エネルギの分布が極
めて小さくなるので、光伝送損失を考慮する必要
がなく、製造が容易となる。本発明によれば、以
下の実施例に示す如く結合長が1mm程度で、波長
1.5μmの光に対しても0.3dB/Kmの低損失の偏波
面保存光フアイバが実現できる。
In order to achieve the above object, the present invention separates a light propagation member having a circular cross-sectional shape for propagating light and a member for causing birefringence in the light propagation section, and further separates a light propagation member having a circular cross-sectional shape for propagating light and a member for causing birefringence to occur in the light propagation member. A support portion for holding the fastening member is constructed by wrapping the light propagation member and the member that causes birefringence. The light propagation member is made to have a circular cross-sectional shape like a normal optical fiber, and the member that causes birefringence passes through the center of the circle and has different refractive indexes in the directions of optical axes that are orthogonal to each other. In order to achieve this, it is made into a non-circular shape, such as an ellipse, which has a line of symmetry with the orthogonal optical axes, and has a different thickness in the direction of the optical axis (that is, the orthogonal line of symmetry). Further, in order to prevent a large amount of light energy from being distributed in the member that causes birefringence, its refractive index is made to be substantially the same as the refractive index of the outer periphery of the light propagating member. According to the above configuration, all the light energy is concentrated only in the light propagation member, and the non-circular member applies different strain stresses in the orthogonal optical axis direction of the light propagation part, so that the optical energy is concentrated in the orthogonal axial direction of the core. The difference in refractive index causes birefringence and increases the phase propagation constant difference Δβ, making it possible to realize an optical fiber with strong polarization preservation property. In particular, since the distribution of light energy in the non-circular member and the support part, which account for the majority of the material in terms of quantity, is extremely small, there is no need to consider optical transmission loss, and manufacturing is facilitated. According to the present invention, as shown in the example below, the coupling length is about 1 mm, and the wavelength
A polarization-maintaining optical fiber with a low loss of 0.3 dB/Km can be realized even for 1.5 μm light.

なお、偏波保存とは光フアイバの持つ、結合長
L=2π/Δβの程度を表現するが、以下の説明では、 結合長が少なくとも10mm以下のものを言う。
Note that polarization preservation expresses the degree of coupling length L=2π/Δβ of an optical fiber, but in the following explanation, it refers to a coupling length of at least 10 mm or less.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明による光フアイバーの一実施例
の断面構成を示す。同図に示すように、円形コア
1と上記コアに同心状に形成された円形クラツド
2と上記クラツド外周に形成された外周が楕円の
ジヤケツト3およびジヤケツトの外周に形成され
たサポート4部からなる。上記各属の光学的屈折
率は、第2図に示すように、コア1のみが最も高
く、他の層の屈折率はほぼ等しく設定される。
FIG. 1 shows a cross-sectional configuration of an embodiment of an optical fiber according to the present invention. As shown in the figure, it consists of a circular core 1, a circular cladding 2 formed concentrically around the core, a jacket 3 formed on the outer periphery of the cladding and having an oval outer periphery, and 4 parts of supports formed on the outer periphery of the jacket. . As shown in FIG. 2, the optical refractive index of each of the above-mentioned groups is the highest in only the core 1, and the refractive indexes of the other layers are set to be approximately equal.

表現をかえて説明すればコア1とクラツド2が
光伝搬部を構成し、ジヤケツト3が楕円形のよう
に上記コアの中心を通り直交する軸を線対称線と
する対称かつ、2つの対称線方向の厚さが異なる
部材で構成される。
In other words, the core 1 and the cladding 2 constitute a light propagation section, and the jacket 3 is symmetrical with the axis passing through the center of the core and orthogonal to each other, like an ellipse, and having two lines of symmetry. Consists of members with different thicknesses in different directions.

このような屈折率分布を得るため、コア1の材
料としては、酸化ゲルマニウム、酸化リンの一方
あるいは両方を含むSiO2ガラス(けい酸ガラ
ス)で構成されている。その理由は、両者のドー
パントは光伝送損失が小さいドーパントだからで
ある。
In order to obtain such a refractive index distribution, the core 1 is made of SiO 2 glass (silicate glass) containing one or both of germanium oxide and phosphorus oxide. The reason is that both dopants are dopants with low optical transmission loss.

次に、クラツド2の望ましい材料は、SiO2
ラスである。SiO2ガラスの吸収損失は非常に小
さく、したがつてクラツドとしてSiO2ガラスを
用いれば、光フアイバの伝送損失を小さくでき
る。また、楕円ジヤケツト3の構成材料として
は、酸化ホウ酸を含むSiO2ガラスに屈折率を高
める酸化ゲルマニウムあるいは酸化リンを添加
し、楕円ジヤケツト3の屈折率を第2図に示すよ
うに他のクラツド2、サポート4と同一にしたも
のが望まれる。要は、サポート4との熱膨脹差が
大きく、クラツド2、ジヤケツト3と同一の屈折
率を有するものであれば、特に限定されない。サ
ポート4の構成材料としては、SiO2ガラスが楕
円ジヤケツト3との熱膨脹係数差を大きくするこ
とから、また製造上の問題から望ましい。具体的
実施例について述べると、各層の屈折率は、
SiO2の屈折率をnとすると、コアは100.2n、クラ
ツドSiO2の部分2はn、クラツドSiO2+B2O3
GeO2の部分3は99.99n、ジヤケツトはnであ
る。コア径8μm、SiO2の部分4の外径20μ
m、クラツド2の短軸の長さ35μm、長軸の長さ
100μmで、ジヤケツト3の外径は150μmであ
る。この光フアイバの結合長は波長0.633μmの
光に対して、0.8mm、又伝送損失は波長1.55μm
で0.3dB/Kmと、極めて伝送損失が小さくなる。
Next, a desirable material for the cladding 2 is SiO 2 glass. The absorption loss of SiO 2 glass is very small, so if SiO 2 glass is used as the cladding, the transmission loss of the optical fiber can be reduced. Furthermore, as the constituent material of the elliptical jacket 3, germanium oxide or phosphorus oxide to increase the refractive index is added to SiO 2 glass containing boric oxide, and the refractive index of the elliptical jacket 3 is changed from that of other claddings as shown in FIG. 2. It is desirable that the support be the same as 4. In short, it is not particularly limited as long as it has a large thermal expansion difference with the support 4 and has the same refractive index as the clad 2 and jacket 3. As the constituent material of the support 4, SiO 2 glass is preferable because it increases the difference in coefficient of thermal expansion from the elliptical jacket 3 and from the viewpoint of manufacturing problems. Describing a specific example, the refractive index of each layer is
If the refractive index of SiO 2 is n, then the core is 100.2n, the portion 2 of the clad SiO 2 is n, and the clad SiO 2 +B 2 O 3 +
Part 3 of GeO 2 is 99.99n and the jacket is n. Core diameter 8 μm, outer diameter of SiO 2 part 4 20 μm
m, the length of the short axis of Clad 2 is 35 μm, the length of the long axis
100 μm, and the outer diameter of the jacket 3 is 150 μm. The coupling length of this optical fiber is 0.8 mm for light with a wavelength of 0.633 μm, and the transmission loss is 1.55 μm.
The transmission loss is extremely small at 0.3dB/Km.

〔発明の効果〕〔Effect of the invention〕

本発明の構造の光フアイバーにおいて複屈折が
生じる理由について説明する。
The reason why birefringence occurs in the optical fiber having the structure of the present invention will be explained.

複屈折は、一般に同心円構造からの形状のずれ
に基づく異方性応力によつて発生する。
Birefringence is generally caused by anisotropic stress due to geometric deviation from a concentric structure.

第3図に示すような4層からなる構造の場合、
コアの径方向における屈折率nr1は nr1=n1+(γ+3γ)E/2(1−ν)[(a
/d−1)K12 +(b/d−1)K23+(c/d−1)K
34]−(1) Kij=αiΔTi−αjΔTj n1:応力印加前の屈折率 γ,γ:光弾性定数 E:ヤング率、 ν:ポアソン比 a,b,c,d:コア、クラツド、ジヤケツ
ト、サポート径 αi:i層の熱膨脹係数 ΔTi:i層のガラスの軟化温度と室温との差 で表わすことができる。
In the case of a structure consisting of four layers as shown in Figure 3,
The refractive index n r1 in the radial direction of the core is n r1 = n 1 + (γ 1 + 3γ 2 )E/2 (1-ν) [(a
2 / d2-1 ) K12 +( b2 / d2-1 ) K23 +( c2 / d2-1 )K
34 ] − (1) K ij = α i ΔT i −α j ΔT j n 1 : Refractive index before stress application γ 1 , γ 2 : Photoelastic constant E: Young's modulus, ν: Poisson's ratio a, b, c , d: Core, cladding, jacket, support diameter α i : Coefficient of thermal expansion of i-layer ΔT i : Can be expressed as the difference between the softening temperature of the glass of i-layer and room temperature.

従つて、コアのxおよびy方向の屈折率をnx
およびny、コア1、クラツド、ジヤケツトおよ
びサポートのxおよびy方向の径をax,ay,b
x,by,cx,cyおよびdx,dyとすると、(1)式
にこれらを代入すると nx=n1+(γ+3γ)E/2(1−ν)[(a
/d−1)K12 +(b /d−1)K23+(c /d−1
)K34]−(2) ny=n1+(γ+3γ)E/2(1−ν)[(a
/d−1)K12 +(b /d−1)K23+(c /d−1
)K34]−(3) となり、コアのx方向とy方向のコアの屈折率差
δo=nx−nyは、 δo=nx−ny=(γ+3γ)E/2(1−ν) [(a −a )K12+(b −b )K23+(c −c )K34/d] −(4) となる。
Therefore, the refractive index of the core in the x and y directions is n x
and n y , the x and y diameters of core 1, cladding, jacket and support are a x , a y , b
Assuming that x , b y , c x , c y and d x , d y , substituting these into equation (1) gives n x = n 1 + (γ 1 + 3γ 2 )E/2 (1-ν) [( a
x2
/ d2-1 ) K12 + ( bx2 / d2-1 ) K23 + ( cx2 / d2-1
)K 34 ]-(2) ny = n 1 + (γ 1 +3γ 2 )E/2(1-ν) [(a
y2
/ d2-1 ) K12 +( by2 / d2-1 ) K23 +( cy2 / d2-1
)K 34 ]−(3), and the refractive index difference between the core in the x direction and the y direction, δ o = n xny , is δ o = n xny = (γ 1 + 3γ 2 )E/ 2( 1-ν) [(ax2-ay2)K12 + ( bx2 - by2 ) K23 + ( cx2 - cy2 ) K34 / d2 ] -(4) becomes.

前述の実施例について上記(4)式を具体的に表わ
せば δo=0.36A(a −a )+A・MB203{−(b −b )+(c −c )}/d
−(5) となる。(但し、A1・M1=K12、 A・MB203=−K23=K34で、A1,Aは比例定数、
M1,MB203はそれぞれコアとジヤケツト内のドー
パントの濃度) この式は、3層の構成のときの複屈折が 0.36A・MB203 −(b −b )+(c −c )/d
と表わされ、これに、更に中心層の1つが加わり
4層となるため、単にA1・M1(ax −ay
が加わつたに過ぎない。
Specifically expressing the above formula (4) for the above-mentioned example, δ o =0.36A 1 M 1 ( ax 2 - a y 2 ) + A・M B203 {-(b x 2 - b y 2 )+( c x 2 - c y 2 )}/d 2
−(5). (However, A 1・M 1 = K 12 , A・M B203 = −K 23 = K 34 , and A 1 and A are proportional constants,
M 1 and M B203 are the dopant concentrations in the core and jacket, respectively.) This formula shows that the birefringence in the three-layer structure is 0.36A・M B203 - (b x 2 - b y 2 ) + (c x 2 −cy 2 )/d
2 , and one of the central layers is added to this, resulting in 4 layers, so simply A 1・M 1 (a x 2 − a y 2 )
It's just an addition.

以上の近似のもとで、コアのx軸とy軸方向の
屈折率差δoは前記式(5)において、本発明の光フ
アイバはコア、クラツドは円形であるからax
y、bx=byとなり、 δo=0.36A・MB203)(c −c )/d−(6
) となる。この値δoが大きい程偏波面保存特性
は向上する。式(6)にはパラメータbがないから、
クラツド2の大きさは複屈折に影響しない。
Based on the above approximation, the refractive index difference δ o of the core in the x-axis and y-axis directions is expressed as ax = a x =
a y , b x =b y , and δ o =0.36A・M B203 )(c x 2 - c y 2 )/d 2 -(6
) becomes. The larger this value δ o is, the better the polarization preservation characteristic is. Since there is no parameter b in equation (6),
The size of cladding 2 does not affect birefringence.

上述の如く、本発明の光フアイバでは光フアイ
バのコアのみ複屈折を生じせしめ、クラツド2と
コア1(光伝送部)の中に光エネルギーをとじ込
め、B2C3等を含む、複屈折を生ぜしめるための
部材への光エネルギの分布を著しく少なくするこ
とができるのでジヤケツト3は上記コアに大きな
複屈折を生ぜしめる観点より選定すればよく、製
造が極めて優利となる。すなわち、光の伝搬部と
複屈折を発生する部分が独立しているため、複屈
折歪量を低下することなく、コア付近の屈折率分
布を変化させることが可能となる。光伝搬部の屈
折率を設定する自由度がある。
As mentioned above, in the optical fiber of the present invention, only the core of the optical fiber causes birefringence, and the optical energy is trapped in the cladding 2 and the core 1 (light transmission part), and birefringence including B 2 C 3 etc. Since the distribution of light energy to the members for producing this can be significantly reduced, the jacket 3 can be selected from the viewpoint of producing a large birefringence in the core, which is extremely advantageous in manufacturing. That is, since the light propagation part and the part that generates birefringence are independent, it is possible to change the refractive index distribution near the core without reducing the amount of birefringence distortion. There is a degree of freedom in setting the refractive index of the light propagation section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光フアイバの一実施例の
断面構造を示す図、第2図は本発明による光フア
イバの一実施例の屈折率分布を示す図、第3図は
本発明の効果を説明するための4層構造の光フア
イバの断面構成図である。 1:コア、2:クラツド、3:ジヤケツト、
4:サポート部。
FIG. 1 is a diagram showing a cross-sectional structure of an embodiment of an optical fiber according to the present invention, FIG. 2 is a diagram showing a refractive index distribution of an embodiment of an optical fiber according to the present invention, and FIG. 3 is a diagram showing the effect of the present invention. FIG. 2 is a cross-sectional configuration diagram of an optical fiber having a four-layer structure for explanation. 1: core, 2: cladding, 3: jacket,
4: Support department.

Claims (1)

【特許請求の範囲】 1 断面形状が円形のコアと、上記コアの外周部
に設けられ、上記コアの屈折率より低い屈折率を
有し、断面の外周が円形のクラツドと、上記クラ
ツドに近接して配置され、上記コアに熱膨脹によ
る複屈折を生ぜしめる複屈折付与部材と、上記コ
ア、クラツドおよび複屈折付与部材を囲むサポー
トとを有し、かつ、上記クラツドが、上記複屈折
付与部材より光損失の少ない材質で構成されたこ
とを特徴とする偏波面保存光フアイバ。 2 上記クラツドの材質がけい酸ガラスである第
1項記載の偏波面保存光フアイバ。 3 上記複屈折付与部材はけい酸ガラスの屈折率
と実質的等しい屈折率を有する材質で構成された
第2項記載の偏波面保存光フアイバ。 4 上記複屈折付与部材は上記クラツド層をかこ
み、その外周が楕円形である第2項又は第3項記
載の偏波面保存光フアイバ。
[Scope of Claims] 1. A core having a circular cross-sectional shape, a cladding provided on the outer periphery of the core, having a refractive index lower than the refractive index of the core, and having a circular outer periphery in cross-section, and a cladding adjacent to the cladding. a birefringence-imparting member that is arranged to produce birefringence in the core due to thermal expansion; and a support that surrounds the core, a cladding, and the birefringence-imparting member; A polarization-maintaining optical fiber characterized by being made of a material with low optical loss. 2. The polarization preserving optical fiber according to item 1, wherein the material of the cladding is silicate glass. 3. The polarization-maintaining optical fiber according to item 2, wherein the birefringence imparting member is made of a material having a refractive index substantially equal to that of silicate glass. 4. The polarization-maintaining optical fiber according to item 2 or 3, wherein the birefringence imparting member surrounds the cladding layer and has an elliptical outer periphery.
JP60150185A 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization Granted JPS6187109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150185A JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150185A JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11274180A Division JPS5737305A (en) 1980-01-11 1980-08-18 Polarization plane preserving optical fiber

Publications (2)

Publication Number Publication Date
JPS6187109A JPS6187109A (en) 1986-05-02
JPS6233562B2 true JPS6233562B2 (en) 1987-07-21

Family

ID=15491368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150185A Granted JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Country Status (1)

Country Link
JP (1) JPS6187109A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130044A (en) * 1978-01-13 1979-10-09 Western Electric Co Optical waveguide and method of fabricating same
JPS5737305A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Polarization plane preserving optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130044A (en) * 1978-01-13 1979-10-09 Western Electric Co Optical waveguide and method of fabricating same
JPS5737305A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Polarization plane preserving optical fiber

Also Published As

Publication number Publication date
JPS6187109A (en) 1986-05-02

Similar Documents

Publication Publication Date Title
US9897751B2 (en) Multicore polarization-maintaining fiber
EP0109604B1 (en) Polarised plane-maintaining optical fiber
US4179189A (en) Single polarization optical fibers and methods of fabrication
IL102713A (en) Mount for polarization-maintaining optical fiber coupler
JPS59232301A (en) Polarization holding type single-mode optical fiber
US4717225A (en) Form polarizing fibers and method of fabrication
US20180088360A1 (en) Polarization Maintaining Optical Fiber With Non-Symmetric Stress Applying Parts
US4711525A (en) Polarizing optical fiber with absorbing jacket
JPS6233562B2 (en)
JPS5816203A (en) Constant polarization type optical fiber
JPH0352042B2 (en)
JPS59164505A (en) Single-polarization single-mode optical fiber
CN104678487A (en) Gas-clad polarization-maintaining optical fiber
JPS612106A (en) Optical fiber for maintaining plane of polarization
JPS59139005A (en) Fiber for maintaining linearly polarized light
JP2828251B2 (en) Optical fiber coupler
JPS6328857B2 (en)
JPS61228404A (en) Optical fiber for constant polarized wave
JPH0350505A (en) Single polarization optical fiber
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber
JPH01279211A (en) Polarized wave maintaining optical fiber
JPS59197001A (en) Stress applying base material for optical fiber maintaining polarization
JPWO2022172910A5 (en)
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer