JPS6187109A - Optical fiber maintaining plate of polarization - Google Patents

Optical fiber maintaining plate of polarization

Info

Publication number
JPS6187109A
JPS6187109A JP60150185A JP15018585A JPS6187109A JP S6187109 A JPS6187109 A JP S6187109A JP 60150185 A JP60150185 A JP 60150185A JP 15018585 A JP15018585 A JP 15018585A JP S6187109 A JPS6187109 A JP S6187109A
Authority
JP
Japan
Prior art keywords
optical fiber
core
birefringence
polarization
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60150185A
Other languages
Japanese (ja)
Other versions
JPS6233562B2 (en
Inventor
Toshio Katsuyama
俊夫 勝山
Hiroyoshi Matsumura
宏善 松村
Yasuo Suganuma
菅沼 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150185A priority Critical patent/JPS6187109A/en
Publication of JPS6187109A publication Critical patent/JPS6187109A/en
Publication of JPS6233562B2 publication Critical patent/JPS6233562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres

Abstract

PURPOSE:To maintain the plane of polarization and to reduce transmission losses by separating an optical transmission member from a member making the optical transmission part generate birefringence and constituting a supporting part for holding both the members so as to lap both the members. CONSTITUTION:An optical fiber consists of a circular core 1, a circular clad 2 concentrically formed around the core 1, an elliptical jacket 3 formed on the periphery of the clad, and a support part 4 formed on the periphery of the jacket 3. As to the optical refractive indexes of respective parts, only the core 1 is set up to the highest value and other parts are set up to almost equal values. Birefringence is generally generated by anisotropic stress based upon the shift of a shape from its concentrical structure. In the optical fiber, birefringence is generated only in the core of the optical fiber, light is shut in the clad 1 and the core 1 and the light transmitting part is independent of the generation part of birefringence, so that the distribution of refractive indexes around the core can be changed without reducing the distortion of birefringence.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は偏波面保存光ファイバ、更に詳しく言えば円形
の光ファイバで一方向だけの偏光を用いて光波を伝搬す
る、すなわち偏波面を保存する光ファイバに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a polarization-maintaining optical fiber, more specifically, a circular optical fiber for propagating light waves using polarization in only one direction, that is, preserving the polarization plane. Regarding optical fiber.

〔発明の背景〕[Background of the invention]

光ファイバの開発の進展に供ない、アイソレータ、スイ
ッチ回路ミキサ等の光学回路を光集積回路で実現するこ
とが開発されつつある。光集積回路に使用される導波構
造は基本的には平板(スラブ)型であり、又スイッチ回
路を集積回路で実現するためには光を偏光させる必要か
らも導波路はスラブ構造とされる。このような光集積回
路と他の光学装置とを円形の光ファイバで有効に結合す
ることか望まれるが、その場合光ファイバが偏波面を特
定方向に保持できることが必要である。
With the progress of the development of optical fibers, the realization of optical circuits such as isolators, switch circuit mixers, etc. using optical integrated circuits is being developed. The waveguide structure used in optical integrated circuits is basically a flat plate (slab) type, and in order to realize a switch circuit in an integrated circuit, it is necessary to polarize the light, so the waveguide has a slab structure. . It is desirable to effectively couple such optical integrated circuits with other optical devices using circular optical fibers, but in this case it is necessary that the optical fibers be able to maintain the plane of polarization in a specific direction.

さらに光の偏波面を利用して種々の測定を行なうことが
提案されているが、これらを実用化するためには光の偏
波面を保存して伝送することが解決されなければならな
い問題となる。特に現在実用化段階に来た円形導波管(
光ファイバ)で光偏波面を保存して伝送できることは光
エネルギーの伝送効率からも、又製造上からも望まれる
ことである。
Furthermore, it has been proposed to perform various measurements using the plane of polarization of light, but in order to put these into practical use, the problem that must be solved is preserving the plane of polarization of light and transmitting it. . In particular, circular waveguides (
It is desirable to be able to transmit light while preserving its plane of polarization through optical fibers, both from the standpoint of optical energy transmission efficiency and from the standpoint of manufacturing.

従来、偏波面を保存する円形の光ファイバとして、コア
とクラッドとジャケットで構成し、ジャケットの厚さを
不均一にすることによって、コア部に応力を誘発させ、
コア、クラッドの導波領域内の互に直交する横方向に沿
った機械的応力の差によってコア部に屈折率差(以下ひ
ずみ複屈折と呼ぶ)を−走塁上とすることによって偏波
面を保存する光ファイバが提案されている。
Conventionally, a circular optical fiber that preserves the plane of polarization is composed of a core, cladding, and jacket, and by making the thickness of the jacket uneven, stress is induced in the core.
The plane of polarization can be changed by creating a refractive index difference (hereinafter referred to as strain birefringence) in the core part (hereinafter referred to as strain birefringence) due to the difference in mechanical stress along the mutually orthogonal lateral directions in the waveguide regions of the core and cladding. Optical fiber storage has been proposed.

(パイレフリンジェンス・イン・エリブティカリ・クラ
ッド・ポロシリケイト・シングルモード・ファイバ、ア
ブライドオプテックス r B irefringence in ellip
tically cladborosillcate 
sinHlemode fibers。
(Pyrefringence in elliptical clad porosilicate single mode fiber, Abride Optex® B irefringence in ellip
tically cladborosillcate
sinHlemode fibers.

APPLIED 0PTIC5J Vol、18゜Nα
2415.DEC1979)。
APPLIED 0PTIC5J Vol, 18°Nα
2415. DEC1979).

すなわち、偏波面を保存するためには、光ファイバの互
に直交する横方向の偏光波の伝送定数の差をΔβとした
とき の値(以下結合長と呼ふ)が小さい程偏波の保存が強め
られるから、コアが円形としたとき、この定数差Δβが
偏光の2方向に対する屈折率の差の大きさΔnによって
定まり、又この屈折率の差Δnは、これら2方向におけ
る歪の差に比例し、これがジャケットとクラッドの熱膨
張係数の差を利用したものである。
In other words, in order to preserve the plane of polarization, the smaller the value (hereinafter referred to as the coupling length), where the difference in the transmission constant of the mutually orthogonal horizontal polarized waves of the optical fiber is Δβ, the better the polarization will be preserved. is strengthened, so when the core is circular, this constant difference Δβ is determined by the magnitude Δn of the difference in refractive index in the two directions of polarized light, and this difference in refractive index Δn is determined by the difference in strain in these two directions. This takes advantage of the difference in thermal expansion coefficient between the jacket and cladding.

しかしながら、上記提案のものではジャケットの厚さを
不均一とするための手段として、ジャケットを初期の工
程において、変形する必要があって、製造工程が複雑と
なり、又、実際に、結合長しとしては10IIIII1
以上のものしか得られていない。
However, in the above proposal, as a means to make the thickness of the jacket non-uniform, it is necessary to deform the jacket in the initial process, which complicates the manufacturing process. is 10III1
I've only gotten more than that.

本発明者らは、上記ジャケット、クラッド、コアからな
る光ファイバにおいて、酸化けい素を主体とするクラッ
ドに一定以上の8203を加えることによって、又その
製造も、従来の光ファイバの製造方法を若干変更するこ
とによって結合長が211I11以下となる偏波面保存
光ファイバを実現した(特願昭55−1330号「偏波
面保存単一モード光ファイバ」)。
The present inventors have developed an optical fiber consisting of the jacket, cladding, and core, by adding a certain amount of 8203 to the cladding mainly composed of silicon oxide, and by slightly improving the manufacturing method of conventional optical fibers. By making this change, a polarization-maintaining optical fiber with a coupling length of 211I11 or less was realized (Japanese Patent Application No. 1330-1988 ``Polarization-maintaining single mode optical fiber'').

しかし、B2O3を添加したガラスは5in2ガラスと
の比屈折率差が0.7%以上にならないことから、マイ
クロベンディング損失などが大きくなり低損失の光ファ
イバが得られないという問題がある。またクラッドに含
まれる酸化硼素(B203)の量が多がとなる場合、長
波長(1,2μm以上)の光で、格子振動吸収が増大し
、本来珪酸ガラスの光ファイバとして低損失な領域とさ
れる波長(1,55μm帯)で損失がldB/km以下
にならないという問題がある。
However, since the glass doped with B2O3 does not have a relative refractive index difference of 0.7% or more with the 5in2 glass, there is a problem that microbending loss and the like increase, making it impossible to obtain a low-loss optical fiber. In addition, when the amount of boron oxide (B203) contained in the cladding is large, lattice vibration absorption increases with light of long wavelengths (1.2 μm or more), which is a low-loss region for a silicate glass optical fiber. There is a problem that the loss does not become less than ldB/km at the wavelength (1.55 μm band).

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は、偏波面を保存しかつ伝送
損失が少ない光ファイバを実現することを目的とする。
Therefore, an object of the present invention is to realize an optical fiber that preserves the plane of polarization and has low transmission loss.

更に具体的には波長が1.5μm近傍の光に対し、損失
が1dB/km以下で、かつ伝搬定数の差Δβが大きな
偏波面保存光ファイバを実現することである。
More specifically, the objective is to realize a polarization-maintaining optical fiber with a loss of 1 dB/km or less and a large difference Δβ in propagation constants for light with a wavelength of around 1.5 μm.

【発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、光を伝搬する断面形
状が円形の光伝搬部材と上記光伝搬部に複屈折を生じさ
せるための部材を分混し、さらに上記光伝搬部材と複屈
折を生せしめる部材を保持部材は通常の光ファイバのよ
うに断面形状が円形となるようにし、かつ上記複屈折を
生ぜしぬる部材は上記の円形の中心を通り、互い直交す
る光学軸方向の屈折率が異なるようにするため、楕円形
のように上記直交する光学軸を線対称線とし、かつ光学
軸(すなわち直交する対称線)方向の厚さが異る非円形
状にする。父上記複屈折を生ぜしぬ部材の外周の屈折率
と同じとなるようにする。上記構成によれば、光エネル
ギは全て光伝搬部材のみに集中され、かつ非円形の部材
によって、光伝搬定数差Δβを大きなものとして、偏波
面保存性の強い光ファイバを実現できる。特に、材質の
量的に大部分を占める非円形部材、サポート部は光エネ
ルギの分布が極めて小さくなるので、光伝送損失を考慮
する必要がなく、製造が容易となる。
In order to achieve the above object, the present invention separately mixes a light propagation member with a circular cross-sectional shape for propagating light and a member for causing birefringence in the light propagation section, and furthermore, the light propagation member and the birefringence are mixed together. The holding member that causes the birefringence is made to have a circular cross-sectional shape like a normal optical fiber, and the refractive index of the member that causes the birefringence passes through the center of the circle and the refractive index in the direction of the optical axes that are perpendicular to each other. In order to make the shapes different, a non-circular shape is used, such as an ellipse, with the orthogonal optical axes as a line of symmetry, and the thickness in the direction of the optical axis (that is, the orthogonal line of symmetry) is different. The refractive index should be the same as that of the outer periphery of the member that does not cause birefringence. According to the above configuration, all of the light energy is concentrated only in the light propagation member, and the non-circular member increases the light propagation constant difference Δβ, thereby realizing an optical fiber with strong polarization preservation property. In particular, since the distribution of light energy in the non-circular member and the support part, which account for the majority of the material in terms of quantity, is extremely small, there is no need to consider optical transmission loss, and manufacturing is facilitated.

、本発明によれば、以下の実施例に示す如く結合長がi
n+m程度で、波長1.5μmの光に対しても0.3 
d B/kmの低損失の偏波面保存光ファイバが実現で
きる。
, according to the present invention, the bond length is i as shown in the following example.
At around n+m, it is also 0.3 for light with a wavelength of 1.5 μm.
A polarization-maintaining optical fiber with a low loss of dB/km can be realized.

なお、偏波保存とは光ファイバの持つ、結合長結合長が
少なくとも10mm以下のものを言う。
Note that polarization maintaining means that the optical fiber has a coupling length of at least 10 mm or less.

〔発明の実施例〕[Embodiments of the invention]

以下図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

第1図は本発明による光ファイバーの一実施例の断面構
成を示す。同図に示すように、円形コア1と上記コアに
同心状に形成された円形クラッド2と上記クラッド外周
に形成された外周が楕円のジャケット3およびジャケッ
トの外周に形成されたサポート4部からなる。上記各層
の光学的屈折率は、第2図に示すように、コア1のみが
最も高く、他の層の屈折率はほぼ等しく設定される。
FIG. 1 shows a cross-sectional configuration of an embodiment of an optical fiber according to the present invention. As shown in the figure, it consists of a circular core 1, a circular clad 2 formed concentrically around the core, a jacket 3 formed around the outer periphery of the clad and having an oval outer periphery, and 4 parts of supports formed around the outer periphery of the jacket. . As shown in FIG. 2, the optical refractive index of each of the layers is set to be the highest only in core 1, and the refractive indexes of the other layers are set approximately equal.

表現をかえて説明すればコア1とクラッド2が光伝搬部
を構成し、ジャケット3が楕円形のように上記コアの中
心を通り直交する軸を線対称線とする対称かつ、2つの
対称線方向の厚さが異なる部材で構成される。
In other words, the core 1 and the cladding 2 constitute a light propagation part, and the jacket 3 is symmetrical with an axis passing through the center of the core and orthogonal to each other like an ellipse, and two lines of symmetry. Consists of members with different thicknesses in different directions.

このような屈折率分布を得るため、コア1の材料として
は、酸化ゲルマニウム、酸化リンの一方あるいは両方を
含むSiO。ガラス(けい酸ガラス)で構成されている
。その理由は、両者のドーパントは光伝送損失が小さい
ドーパントだからである。
In order to obtain such a refractive index distribution, the material of the core 1 is SiO containing one or both of germanium oxide and phosphorus oxide. Constructed of glass (silicate glass). The reason is that both dopants are dopants with low optical transmission loss.

次に、クラッド2の望ましい材料は、S i O2ガラ
スである。5i02ガラスの吸収槁失は非常に小さく、
したがってクラッドとして5i02ガラスを用いれば、
光ファイバの伝送損失を小さくできる。また、楕円ジャ
ケット3の構成材料としては、酸化ホウ素を含むSiO
□ガラスに屈折率を高める酸化ゲルマニウムあるいは酸
化リンを添加し、楕円ジャケット3の屈折率を第2図に
示すように池のクラッド2、サポート4と同一にしたも
のが望まれる。この楕円ジャケットの材料としては、他
にフッ化物の化合物を添加したS i O2ガラスを基
礎にして、それに酸化ゲルマニウム、酸化リンなどを添
加したものでもよい。要は、サポート4との熱膨張差が
大きく、クラッド2、ジャケット3と同一の屈折率を有
するものであれば、特に限定されない。サポート4の構
成材料としては、5in2ガラスが楕円ジャケット3と
の熱膨張係数差を大きくすることから、また製造上の問
題から望ましい。具体的実施例について述べると、各層
の屈折率は、S i O2の屈折率をnとすると、コア
は100.2n、クラッド5i02の部分4はn、クラ
ッド5iQ2+B2O3+ G e○2の部分99.9
9 n、ジャケットはnである。コア径8μm、5i0
2の部分4の外径20μm、クラッド2の短軸の長さ3
5μm、長軸の長さ100μmで、ジャケット3の外径
は150μmである。この光ファイバの結合長は波長0
.633 μmで0.3 d B/kmと、極めて伝送
損失が小さくなる。
Next, a desirable material for the cladding 2 is SiO2 glass. The absorption loss of 5i02 glass is very small.
Therefore, if 5i02 glass is used as the cladding,
Optical fiber transmission loss can be reduced. In addition, as a constituent material of the elliptical jacket 3, SiO containing boron oxide is used.
□It is preferable to add germanium oxide or phosphorus oxide to the glass to increase the refractive index so that the refractive index of the elliptical jacket 3 is the same as that of the pond cladding 2 and support 4 as shown in FIG. The material for this elliptical jacket may be one based on SiO2 glass to which a fluoride compound is added, and to which germanium oxide, phosphorus oxide, etc. are added. In short, it is not particularly limited as long as it has a large thermal expansion difference with the support 4 and has the same refractive index as the cladding 2 and jacket 3. As the constituent material of the support 4, 5in2 glass is preferable because it increases the difference in coefficient of thermal expansion from the elliptical jacket 3 and from the viewpoint of manufacturing issues. To describe a specific example, the refractive index of each layer is, where n is the refractive index of SiO2, the core is 100.2n, the portion 4 of the cladding 5i02 is n, and the portion of the cladding 5iQ2+B2O3+Ge○2 is 99.9.
9 n, jacket is n. Core diameter 8μm, 5i0
The outer diameter of the part 4 of 2 is 20 μm, and the short axis length of the cladding 2 is 3
5 μm, the length of the major axis is 100 μm, and the outer diameter of the jacket 3 is 150 μm. The coupling length of this optical fiber is wavelength 0
.. The transmission loss is extremely small at 0.3 dB/km at 633 μm.

〔発明の効果〕〔Effect of the invention〕

本発明の構造の光ファイバーにおいて複屈折が生じる理
由について説明する。
The reason why birefringence occurs in the optical fiber having the structure of the present invention will be explained.

複屈折は、一般に同心円構造からの形状のずれに基づく
異方性応力によって発生する。
Birefringence is generally caused by anisotropic stress due to geometric deviation from a concentric structure.

第3図に示すような4層からなる構造の場合、コアの径
方向における屈折率nr□は Kjj=αiΔTj−αjΔTJ ni:応力印加前の屈折率 γ1.γ2:光弾性定数 E:ヤング率 シ:ボア存比 a Hb HQ g d :コ乙クラッド、ジャケット
、サポート径αj:i層の熱膨張係数 ΔTユニi層のガラスの軟化温度と室温との差で表わす
ことができる。
In the case of a structure consisting of four layers as shown in FIG. 3, the refractive index nr□ in the radial direction of the core is Kjj=αiΔTj−αjΔTJ ni: refractive index γ1 before stress application. γ2: Photoelastic constant E: Young's modulus: Bore ratio a Hb HQ g d: Co-cladding, jacket, support diameter αj: Coefficient of thermal expansion of i-layer ΔT Uni Difference between softening temperature of glass in i-layer and room temperature It can be expressed as

造の光ファイバのコアの屈折率に近似でき、同様り にy方向屈折率はy軸方向の半径がCアの第メ図に示し
た構造の光ファイバの屈折率に近似できる。
Similarly, the refractive index in the y direction can be approximated to the refractive index of an optical fiber having the structure shown in FIG.

以上の近似のもとで、コアのX軸とy軸方向の屈折率差
δ。は前記式(1)の関係からδn”n r t (C
:x)  n r 1 (Cy)となる。ここで、 C
= (CX + Cy ) / 2 。
Under the above approximation, the refractive index difference δ between the X-axis and y-axis directions of the core. is δn”n r t (C
:x) n r 1 (Cy). Here, C
= (CX + Cy) / 2.

δja=(Cx  cy)/(cx+cy)である。X
軸はCyy軸方向屈折率差δ。は、材料複屈折Mに等し
く、この値が大きい程偏波面保存特性は向〉 上する。例えば、楕円率が大きくなりb=cy、すなわ
ち、ジャケット3がクラッドを左右に分難されたような
場合も複屈折は上記(2)式で表わされる。式(2)に
はパラメータbがないから、クラッド2の大きさは複屈
折に影響しない。
δja=(Cx cy)/(cx+cy). X
The axis is the refractive index difference δ in the Cyy axis direction. is equal to the material birefringence M, and the larger this value is, the better the polarization preservation property is. For example, even when the ellipticity is large and b=cy, that is, the jacket 3 is divided into left and right cladding, the birefringence is expressed by the above equation (2). Since there is no parameter b in equation (2), the size of the cladding 2 does not affect the birefringence.

そのため、本発明の光ファイバでは光ファイバのコアの
み複屈折を生じせしめ、クラッド2とコア1(光伝送部
)の中に光エネルギーをとじ込め、8203等を含む、
複屈折を生せしめるための部材への光エネルギの分布を
著しく少なくすることができるのでジャケット3は上記
コアに大きな複屈折を生せしめる観点より選定すればよ
く、製造が極めて優利となる。すなわち、光の伝搬部と
複屈折を発生する部分が独立しているため、複屈折歪量
を低下することな°く、コア付近の屈折率分布を変化さ
せることが可能となる。光伝搬部の屈折率を設定する自
由度がある。
Therefore, in the optical fiber of the present invention, only the core of the optical fiber causes birefringence, and the optical energy is trapped in the cladding 2 and the core 1 (light transmission part).
Since the distribution of light energy to the members for producing birefringence can be significantly reduced, the jacket 3 can be selected from the viewpoint of producing large birefringence in the core, which is extremely advantageous in manufacturing. That is, since the light propagation part and the part that generates birefringence are independent, it is possible to change the refractive index distribution near the core without reducing the amount of birefringence strain. There is a degree of freedom in setting the refractive index of the light propagation section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光ファイバの一実施例のイバの断
面構成図である。 1:コア、2:クラッド、3:ジャケット、4:サポー
ト部。 代理人 弁理士 小 川 勝 男 第4凹 躬夕圀
FIG. 1 is a sectional view of a fiber of an embodiment of the optical fiber according to the present invention. 1: core, 2: cladding, 3: jacket, 4: support section. Agent: Patent Attorney Masaru Ogawa No. 4

Claims (1)

【特許請求の範囲】 1、断面形状が円形の光伝搬部材と、上記光伝搬部材の
近傍に設けられ、上記円形の中心を通り直交する2線を
対象線とし、かつ上記2線方向の厚さが異なる断面形状
が非円形の部材と、上記光発搬部材及び非円形の部材を
包むサポート部材と有して構成されたことを特徴とする
偏波面保存光ファイバ。 2、第1項記載の光ファイバにおいて、上記光伝搬部材
は断面形状が円形のコアと、上記コア外周に同心状に形
成され、かつ屈折率が上記コアのそれより低い材質から
なる外周の断面形状が円形のクラットからなり、上記非
円形の部材の屈折率が上記クラットのそれと等しい偏波
面保存光ファイバ。 3、第1項記載の光ファイバにおいて、上記非円形の部
材の外周が楕円形である偏波面保存光ファイバ。 4、第2項、又は第3項記載の光ファイバにおいて、上
記コアは酸化ゲルマニウムを含むけい酸ガラスで、上記
クラットがけい酸ガラスで、上記非円形の部材が酸化硼
素を含むけい酸ガラスで構成された偏波面保存光ファイ
バ。
[Scope of Claims] 1. A light propagation member having a circular cross-sectional shape, which is provided near the light propagation member, has two lines passing through the center of the circle and orthogonal to each other as object lines, and has a thickness in the direction of the two lines. 1. A polarization-maintaining optical fiber comprising: a member having a non-circular cross-sectional shape having different shapes; and a support member surrounding the light-transmitting member and the non-circular member. 2. In the optical fiber according to item 1, the light propagation member includes a core having a circular cross-sectional shape, and a cross section of the outer periphery formed concentrically around the outer periphery of the core and made of a material having a refractive index lower than that of the core. A polarization-maintaining optical fiber comprising a crut having a circular shape, the non-circular member having a refractive index equal to that of the crut. 3. The optical fiber according to item 1, wherein the non-circular member has an elliptical outer circumference. 4. In the optical fiber according to item 2 or 3, the core is made of silicate glass containing germanium oxide, the crat is made of silicate glass, and the non-circular member is made of silicate glass containing boron oxide. A polarization-maintaining optical fiber constructed of
JP60150185A 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization Granted JPS6187109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150185A JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150185A JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11274180A Division JPS5737305A (en) 1980-01-11 1980-08-18 Polarization plane preserving optical fiber

Publications (2)

Publication Number Publication Date
JPS6187109A true JPS6187109A (en) 1986-05-02
JPS6233562B2 JPS6233562B2 (en) 1987-07-21

Family

ID=15491368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150185A Granted JPS6187109A (en) 1985-07-10 1985-07-10 Optical fiber maintaining plate of polarization

Country Status (1)

Country Link
JP (1) JPS6187109A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130044A (en) * 1978-01-13 1979-10-09 Western Electric Co Optical waveguide and method of fabricating same
JPS5737305A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Polarization plane preserving optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130044A (en) * 1978-01-13 1979-10-09 Western Electric Co Optical waveguide and method of fabricating same
JPS5737305A (en) * 1980-08-18 1982-03-01 Hitachi Ltd Polarization plane preserving optical fiber

Also Published As

Publication number Publication date
JPS6233562B2 (en) 1987-07-21

Similar Documents

Publication Publication Date Title
WO2017002460A1 (en) Multi-core polarization maintaining fiber
JPS6012516A (en) Integrated optical polarizer and manufacture thereof
JPH01237507A (en) Absolute single polarizing optical fiber
JPS59232301A (en) Polarization holding type single-mode optical fiber
JPS6014321B2 (en) Constant polarization optical fiber
KR20010020930A (en) Method of manufacturing polarization-maintaining optical fiber coupler
JPS5816203A (en) Constant polarization type optical fiber
JPS6187109A (en) Optical fiber maintaining plate of polarization
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPH0352042B2 (en)
JPS612106A (en) Optical fiber for maintaining plane of polarization
CN104678487A (en) Gas-clad polarization-maintaining optical fiber
JPS59139005A (en) Fiber for maintaining linearly polarized light
US20240085618A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
JPH01279211A (en) Polarized wave maintaining optical fiber
JPH0350505A (en) Single polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JP2828251B2 (en) Optical fiber coupler
JPS61185703A (en) Constant polarizing optical fiber
JPS5831304A (en) Constant polarization type optical fiber
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JPWO2022172910A5 (en)
JPS59135402A (en) Single polarization optical fiber
JPH0356907A (en) Production of polarization maintaining type optical fiber coupler
JPH01287603A (en) Absolute single mode polarization optical fiber