JPS6233550A - Separation of ion exchange resin for mixed bed type desalting device - Google Patents

Separation of ion exchange resin for mixed bed type desalting device

Info

Publication number
JPS6233550A
JPS6233550A JP60173879A JP17387985A JPS6233550A JP S6233550 A JPS6233550 A JP S6233550A JP 60173879 A JP60173879 A JP 60173879A JP 17387985 A JP17387985 A JP 17387985A JP S6233550 A JPS6233550 A JP S6233550A
Authority
JP
Japan
Prior art keywords
resin layer
exchange resin
mixed
water
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60173879A
Other languages
Japanese (ja)
Other versions
JPH0450861B2 (en
Inventor
Kenji Oda
賢治 織田
Hiroshi Konno
金野 博
Ariyuki Takeda
有之 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP60173879A priority Critical patent/JPS6233550A/en
Publication of JPS6233550A publication Critical patent/JPS6233550A/en
Publication of JPH0450861B2 publication Critical patent/JPH0450861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To thoroughly separate three layers by adding a special operation in the stage of separating the layers of a mixed bed type desalting device where inert resins exist mixedly to the three layers by upward water flow. CONSTITUTION:This invention relates to the sepn. of the mixed ion exchange resin layers of the mixed bed type desalting device, in which backwashing water is first introduced into the device from a pipe 5 in the lower part of the mixed resin layers so as to fluidize the layers. The layers are settled after the water is filled up to the level between a chemical feed pipe 3 and a diffusion pipe 2. Compressed air is introduced from the pipe 3 into the device to oscillate the floating inert resins together with the backwashing water and to get rid of the foam sticking thereto. The inert resins are settled and in succession of, the backwashing water is introduced through the pipe 5 to thoroughly develop the mixed resin layers while the waste backwashing water is discharged from the pipe 2. The respective layers are then settled to be stratified and separated to an anion exchange resin layer 6, inert resin layer 7 and cation exchange resin layer 8 from above. The layer sepn. is thoroughly executed in the above-mentioned manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は温床式脱塩装置の混合イオン交換樹脂層の分離
方法に関するもので、特に陰イオン交換樹脂、陽イオン
交換樹脂及び両交換樹脂の中間の比重を有する不活性樹
脂の混合樹脂層からなる混床式脱塩装置のイオン交換樹
脂分離方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating a mixed ion exchange resin layer in a hotbed type desalination device, and particularly relates to a method for separating a mixed ion exchange resin layer of an anion exchange resin, a cation exchange resin, and both exchange resins. The present invention relates to a method for separating ion-exchange resins in a mixed bed desalination apparatus comprising a mixed resin layer of inert resins having an intermediate specific gravity.

〔従来の技術〕[Conventional technology]

陰イオン交換樹脂及び陽イオン交換樹脂の混合樹脂層か
らなる温床式脱塩装置により脱塩水を製造する方法は広
く行なわれている。脱塩水を製造し機能の低下した温床
式脱塩装置の再生に際し、混合樹脂層の陰・陽画イオン
交換樹脂層への分離は混合樹脂層の下部から導入する上
向水流により、上部が陰イオン交換樹脂層、下部が陽イ
オン交換樹脂層となるように展開分離を行い、次いで成
層分離の後、成層分離された各々のイオン交換樹脂層を
再生剤で再生することにより行なわれる。火力原子力発
電の復水処理、超純水の製造工程等で使用される混床式
脱塩装置では、特に高純度の脱塩水を要求されるだめ、
再生の際には上部に陰イオン交換樹脂層、下部に陽イオ
ン交換樹脂層とに完全に分離し、かつ分離された陰イオ
ン交換樹脂層はアルカリ水溶液、陽イオン交換樹脂層は
酸水溶液だけに接触させて再生することが必要である。
A method of producing desalinated water using a hot bed type desalination device comprising a mixed resin layer of an anion exchange resin and a cation exchange resin is widely used. When regenerating a hotbed type desalination equipment that produces desalinated water and whose functionality has deteriorated, the mixed resin layer is separated into negative and positive ion exchange resin layers by an upward water flow introduced from the bottom of the mixed resin layer. The exchange resin layer is developed and separated so that the lower part becomes a cation exchange resin layer, and then, after stratification separation, each of the stratified and separated ion exchange resin layers is regenerated with a regenerating agent. Mixed-bed desalination equipment, which is used in condensate treatment in thermal nuclear power plants and in ultrapure water production processes, requires particularly high-purity desalinated water.
During regeneration, the anion exchange resin layer is completely separated into an anion exchange resin layer at the top and a cation exchange resin layer at the bottom, and the separated anion exchange resin layer is exposed to an alkaline aqueous solution, while the cation exchange resin layer is exposed to only an acid aqueous solution. It is necessary to bring it into contact and regenerate it.

すなわち、混合樹脂層の分離が不完全な場合、苛性ソー
ダ溶液と接触した陽イオン交換樹脂はナトリウム負荷型
となり、塩酸溶液と接触した陰イオン交換樹脂は塩素負
荷型となり、これらが混床式脱塩装置に持込まれるとす
) IJウム及び塩素イオンが漏洩して高純度の脱塩水
が得られないのである。
In other words, if the separation of the mixed resin layer is incomplete, the cation exchange resin that came into contact with the caustic soda solution becomes a sodium-loaded type, and the anion exchange resin that came into contact with a hydrochloric acid solution becomes a chlorine-loaded type. If the water is brought into the equipment), IJium and chloride ions will leak, making it impossible to obtain highly pure desalinated water.

そこで、陰イオン交換樹脂層と陽イオン交換樹脂層を完
全に分離した状態で再生する方法として特公昭、30−
96’1号公報には陰イオン交換樹脂と陽イオン交換樹
脂の混床にさらに比重が陰イオン交換樹脂と陽イオン交
換樹脂の中間でかつ化学的、物理的に安定な不活性物質
を混在させた混合樹脂層を形成して脱塩を行い、再生に
あってはこの混合樹脂層を上向水流により上から順に陰
イオン交換樹脂層、不活性物質層、陽イオン交換樹脂層
の三層に成層分離させた後、各イオン交換樹脂層を常法
により再生する方法が提示されている。この方法は陰・
陽画イオン交換樹脂層は不活性物質層により完全に隔離
されているため他の再生剤に汚染されることなく再生さ
れ、比較的簡単な操作により高純度の脱塩水が得られる
ことになり従来より注目されていた。近年、不活性物質
として適合する。ポリスチレン、アクリル等の不活性樹
脂が開発されるにおよんで復水処理、超純水製造工程な
ど高純度の脱塩水を必要としている分野では、この方法
を採用した混床式脱塩装置が注目されている。
Therefore, a method of regenerating the anion exchange resin layer and the cation exchange resin layer in a completely separated state was proposed in Tokkosho, 30-
No. 96'1 discloses that a mixed bed of anion exchange resin and cation exchange resin is further mixed with an inert substance which has a specific gravity between that of anion exchange resin and cation exchange resin and is chemically and physically stable. Desalting is performed by forming a mixed resin layer, and during regeneration, this mixed resin layer is divided into three layers, an anion exchange resin layer, an inert material layer, and a cation exchange resin layer, in order from the top using an upward water flow. A method has been proposed in which each ion exchange resin layer is regenerated by a conventional method after stratified separation. This method is
Since the positive ion exchange resin layer is completely isolated by an inert material layer, it can be regenerated without being contaminated by other regenerants, and highly pure demineralized water can be obtained with relatively simple operations, making it easier than conventional methods. It was attracting attention. In recent years, it has been adapted as an inert substance. With the development of inert resins such as polystyrene and acrylic, mixed-bed desalination equipment that uses this method is attracting attention in fields that require highly purified desalinated water, such as condensate treatment and ultrapure water production processes. has been done.

ところが、この不活性樹脂を用いた混床式脱塩装置は長
期にわたシ使用していると時として脱塩水々質が低下し
、水質が安定しないという欠点があった。
However, the mixed bed desalination equipment using this inert resin has the disadvantage that when used for a long period of time, the quality of desalinated water sometimes deteriorates and the water quality is unstable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明者らが検討した結果によればこれは不活
性樹脂が多少親水性に欠けることに起因し、混合樹脂層
を上向水流により、三層に展開分離する際に、水中の微
細な気泡が不活性樹脂の一部に付着し、気泡が付着した
不活性樹脂が陰イオン交換樹脂層中に混在したり、ある
いは陰イオン交換樹脂層中を移行して陰イオン交換樹脂
層の上部に浮上することにより、不活性樹脂層の層高不
安定化に起因するものであった。
According to the results of studies conducted by the present inventors, this is due to the fact that the inert resin is somewhat lacking in hydrophilicity. The air bubbles may adhere to a part of the inert resin, and the inert resin with air bubbles may be mixed in the anion exchange resin layer, or may migrate through the anion exchange resin layer and be transferred to the upper part of the anion exchange resin layer. This was due to the destabilization of the layer height of the inert resin layer due to floating.

本発明は上述の公知技術の欠点を除去し、混床式脱塩装
置における混合樹脂層の分離をより完全に行うことによ
り高純度の脱塩水を得ようとするものである。
The present invention aims to eliminate the drawbacks of the above-mentioned known techniques and to obtain highly purified demineralized water by more completely separating the mixed resin layer in a mixed bed desalting device.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は混床式脱塩装置の不活性樹脂が混在する混合樹
脂層を上向水流により陰イオン交換樹脂層、不活性樹脂
層及び陽イオン交換樹脂層の三層に分離する際に従来の
方法に特別な操作を付加することにより、三層の分離を
完全に行なおうとするものである。
The present invention can be used to separate a mixed resin layer containing inert resin in a mixed bed desalting equipment into three layers, an anion exchange resin layer, an inert resin layer, and a cation exchange resin layer, using an upward water flow. By adding special operations to the method, it is attempted to completely separate the three layers.

即ち、本発明の要旨は、陰イオン交換樹脂、陽イオン交
換樹脂及び両交換樹脂の中間の比重を有する不活性樹脂
からなる混合樹脂層を陰イオン交換樹脂層、不活性樹脂
層及び陽イオン交換樹脂層の三層に分離するに当り、該
混合樹脂層の下部より上向流で通水し、該混合樹脂層を
流動展開させながら該混合樹脂層の上方に設けられた薬
剤注入管の位置の上位まで水張りをする第1工程、通水
を停止して該混合樹脂層を沈静させる第2工程、薬剤注
入管の位置の上位付近に浮上している不活性樹脂を揺動
させ沈降させる第3工程、該混合樹脂層の下部より上向
流で通水して上から陰イオン交換樹脂層、不活性樹脂層
及び陽イオン交換樹脂層の順で三層に展開分離する第4
工程、上向流通水を停止して陰イオン交換樹脂層、不活
性樹脂層及び陽イオン交換樹脂層を沈静させ三層に成層
分離する第S工程の各工程を順次行うことを特徴とする
温床式脱塩装置のイオン交換樹脂分離方法にある。
That is, the gist of the present invention is to combine a mixed resin layer consisting of an anion exchange resin, a cation exchange resin, and an inert resin having a specific gravity between the two exchange resins into an anion exchange resin layer, an inert resin layer, and a cation exchange resin layer. When separating the resin layer into three layers, water is passed in an upward flow from the bottom of the mixed resin layer, and while the mixed resin layer is being fluidized and developed, the position of the drug injection pipe provided above the mixed resin layer is adjusted. The first step is to fill water up to the top of the tube, the second step is to stop the water flow and settle the mixed resin layer, and the second step is to shake and settle the inert resin floating near the top of the drug injection pipe. 3rd step, the fourth step is to pass water through the mixed resin layer in an upward flow from the bottom to develop and separate it into three layers in the order of an anion exchange resin layer, an inert resin layer and a cation exchange resin layer from above.
A hotbed characterized by sequentially carrying out each step of step S, in which the upward flow of water is stopped, the anion exchange resin layer, the inert resin layer, and the cation exchange resin layer are settled and stratified into three layers. It is in the ion exchange resin separation method of the type desalination equipment.

以下、本発明を第7図に基づいて従来法と比較して説明
する。第1図は本発明方法を実施するだめの混床式脱塩
イオン交換装置の一例の縦断面略図を示す。イオン交換
塔lには陰イオン交換樹脂層6、不活性樹脂層7及び陽
イオン交換樹脂層gが形成され、その充填樹脂層の上面
はイオン交換塔lのほぼ中央付近、K位置している。こ
こで、不活性樹脂は、化学的物理的処安定なものである
。通液工程ではこれらの各層を混合状態にした混合樹脂
層に被処理水を通液して脱塩を行う。
Hereinafter, the present invention will be explained in comparison with the conventional method based on FIG. FIG. 1 shows a schematic vertical cross-sectional view of an example of a mixed-bed desalination ion exchange apparatus for carrying out the method of the present invention. An anion exchange resin layer 6, an inert resin layer 7, and a cation exchange resin layer g are formed in the ion exchange column 1, and the upper surface of the filled resin layer is located approximately at the center of the ion exchange column 1, K. . Here, the inert resin is one that is chemically and physically processable. In the liquid passing step, the water to be treated is passed through the mixed resin layer in which these layers are mixed to perform desalination.

そこで、脱塩水を製造する通液工程では、被処理水を管
ワから弁10/、分散管コを経てイオン交換塔/に導入
する。被処理水は混合樹脂層によりイオン交換され、底
部の集液管3から弁106、管/4’を経て脱塩水とし
てイオン交換塔/外にとり出される。
Therefore, in the flow process for producing desalted water, the water to be treated is introduced from the pipe through the valve 10/ and the dispersion pipe into the ion exchange tower/. The water to be treated is ion-exchanged by the mixed resin layer, and is taken out of the ion exchange tower/outside as demineralized water from the liquid collecting pipe 3 at the bottom via the valve 106 and the pipe 4'.

通液工程は脱塩水の純度が低下し所定の値で採水できな
くなった時、あるいは所定量の脱塩水を採取した時に被
処理水の通液な停止し終了する。
The flow process ends when the purity of the desalinated water decreases and water cannot be sampled at a predetermined value, or when a predetermined amount of desalinated water has been sampled, the flow of the water to be treated is stopped and completed.

次いで、イオン交換機能が低下した陰・陽画イオン交換
樹脂を再生するために混合樹脂層の分離工程が行なわれ
るが、この分離工程の前工程として、通常スクラビング
工程が行なわれる。
Next, a step of separating the mixed resin layer is carried out to regenerate the negative and positive ion exchange resins whose ion exchange function has deteriorated, but a scrubbing step is usually carried out as a pre-step to this separation step.

この工程は、被処理水に同伴してイオン交換塔/内に持
込まれ、混合樹脂層の表層部に付着した懸濁物を剥離し
除去するために行う。それは薬剤注入管3より弁103
、管//よりイオン交換塔/内に残留する被処理水を排
出した後、管13、弁10!;、集液管Sを経て加圧空
気を注入して混合樹脂層を過激に流動させることにより
行う。
This step is carried out to peel off and remove suspended matter that is carried into the ion exchange tower/inside the water to be treated and adheres to the surface layer of the mixed resin layer. It is the valve 103 from the drug injection pipe 3.
After draining the water remaining in the ion exchange tower/ from the pipe //, the pipe 13 and the valve 10! This is carried out by injecting pressurized air through the liquid collecting pipe S to radically fluidize the mixed resin layer.

このスクラビング工程が終了すると、従来法では直ちに
管/3、弁ios、集液管Sより逆洗水を導入して、分
散管コ、弁102、管IOより逆洗水に剥離した懸濁物
を同伴させて塔外に排出すると同時に流動展開する混合
樹脂層を上から陰イオン交換樹脂層6、不活性樹脂層7
、陽イオン交換樹脂層gに展開分離させる分離工程を行
う。ところが、その際不活性樹脂の表面にはスクラビン
グ工程で使用した空気が微細な気泡となって付着して、
そのため不活性樹脂の浮力が増大してその一部のものは
流動展開している陰イオン交換樹脂層中及び陰イオン交
換樹脂層の上部空間までも移行する。
When this scrubbing step is completed, in the conventional method, backwash water is immediately introduced from pipe 3, valve ios, and collection pipe S, and the separated suspended water is introduced into the backwash water from dispersion pipe 7, valve 102, and pipe IO. The mixed resin layer, which is fluidized and expanded at the same time as it is discharged outside the tower, is layered from above with an anion exchange resin layer 6 and an inert resin layer 7.
, a separation step is performed in which the cation exchange resin layer g is developed and separated. However, at that time, the air used in the scrubbing process forms fine bubbles and adheres to the surface of the inert resin.
Therefore, the buoyancy of the inert resin increases, and some of the inert resin migrates into the anion exchange resin layer that is being fluidized and even into the upper space of the anion exchange resin layer.

その結果、次工程の逆洗水の導入を停止して流動展開し
ていた樹脂層を沈静させ、三層の樹脂層に成層分離する
際に、不活性樹脂の一部が陰イオン交換樹脂層内に混在
したり、陰イオン交換樹脂層の上部に積層することにな
り、不活性樹脂層の層高が不安定であり、完全な分離が
行なえない欠点を有していた。
As a result, when the introduction of backwash water in the next step was stopped and the flowing resin layer was allowed to settle down, and when stratified and separated into three resin layers, part of the inert resin was transferred to the anion exchange resin layer. This results in the inert resin layer being mixed in the anion exchange resin layer or being stacked on top of the anion exchange resin layer, resulting in unstable layer height of the inert resin layer, which has the disadvantage that complete separation cannot be performed.

そこで、本発明法ではスクラビング工程後、第1工程と
して管/3、弁iosを経て集液管Sより逆洗水を混合
樹脂層が流動するような流速で導入し、逆洗水の水位が
充填樹脂層の上部(例えば充填樹脂層より30−1,0
cm上方の位置)に設置された薬剤注入管3と分散管コ
の間になるまで水張シする操作を行う。逆洗水の水位は
、通常、薬剤注入管Jの位置の上位約S〜/!;爪にな
るようにする。この第1工程は、混合樹脂層内に残留し
ている空気をイオン交換塔/外に排出するために行う。
Therefore, in the method of the present invention, after the scrubbing process, as a first step, backwash water is introduced from the collection pipe S through pipe /3 and valve ios at a flow rate such that the mixed resin layer flows, and the water level of the backwash water is The upper part of the filled resin layer (for example, 30-1,0 from the filled resin layer)
Perform an operation to fill the tube with water until it is between the drug injection tube 3 and the dispersion tube installed at a position above 1.5 cm. The water level of the backwash water is usually approximately S~/! above the position of the drug injection pipe J. ;Make it look like a nail. This first step is performed in order to discharge the air remaining in the mixed resin layer to the outside of the ion exchange tower.

続いて、弁iosを閉じて逆洗水の導入を停止して流動
展開した混合樹脂層を沈静させる第2工程を3〜10分
間程度行う。この工程の間に気泡の付着した不活性樹脂
はイオン交換塔l内に保持されている逆洗水の水位面付
近まで浮上工程で浮上させた不活性樹脂を逆洗水と共洸
揺動させ付着している気泡を取り除き不活性樹脂を沈降
させる第3工程をO,S〜70分間程度行う。この第3
工程では浮上している不活性樹脂がその性質により少量
の場合には分散管−より水を流入させその衝撃により揺
動沈降させてもよい。
Subsequently, a second step is performed for about 3 to 10 minutes in which the valve ios is closed to stop the introduction of backwash water and the fluidized mixed resin layer is calmed down. During this process, the inert resin with air bubbles attached to it is brought to the surface near the water level of the backwash water held in the ion exchange tower l. The third step of removing attached air bubbles and settling the inert resin is carried out for about 70 minutes. This third
In the process, if there is a small amount of floating inert resin due to its nature, water may be introduced from a dispersion tube to cause the resin to oscillate and settle due to its impact.

続いて、管/3、弁10Sを経て集液管Sより逆洗水を
導入し、逆洗廃水を分散管コより弁102、管10より
排出させながら混合樹脂層を十分に流動展開させ、上部
から陰イオン交換樹脂層6、不活性樹脂層7、陽イオン
交換樹脂層gの順に展開分離する第4工程を行う。この
第9工程を行うにあたり、不活性樹脂は第3工程により
付着した気泡は完全に追放されているので、すべての不
活性樹脂は陰イオン交換樹脂層6と陽イオン交換樹脂層
gとの間に懸垂状態で保持される。この工程の逆洗水導
入流速は/ 0〜/ !; 771/hrで、/ 0−
.20分間程度行なえば各樹脂層は完全に展開分離され
る。
Next, backwash water is introduced from the collection pipe S through pipe 3 and valve 10S, and the mixed resin layer is sufficiently fluidized while discharging the backwash wastewater from the dispersion pipe 1 through valve 102 and pipe 10. A fourth step is performed in which the anion exchange resin layer 6, the inert resin layer 7, and the cation exchange resin layer g are developed and separated in this order from the top. In carrying out this ninth step, all the inert resin is removed between the anion exchange resin layer 6 and the cation exchange resin layer g, since the air bubbles attached to the inert resin in the third step have been completely expelled. is held in a suspended position. The flow rate of backwash water introduction in this process is / 0 ~ / ! ; 771/hr, / 0-
.. Each resin layer is completely developed and separated by carrying out the process for about 20 minutes.

次いで、集液管Sからの逆洗水の導入を停止して展開分
離した各樹脂層を沈静させ、上部から陰イオン交換樹脂
層6、不活性樹脂層7、陽イオン交換樹脂層gの順に成
層分離する第S工程を行う。この第S工程は5〜70分
間行うことにより各樹脂層への成層分離は完成する。
Next, the introduction of backwash water from the liquid collecting pipe S is stopped, and each developed and separated resin layer is allowed to settle down, and the anion exchange resin layer 6, the inert resin layer 7, and the cation exchange resin layer g are formed in order from the top. An S-th step of stratified separation is performed. By carrying out this Sth step for 5 to 70 minutes, the stratification separation into each resin layer is completed.

以上第1工程から第5工程までの操作を順次行うことに
より各樹脂層は完全に成層分離され、分離された陰イオ
ン交換樹脂層乙にはアルカリ水溶液を分散管ツより注入
し、陽イオン交換樹脂層gには鉱酸水溶液を集液管Sよ
り注入して再生廃液は再生廃液排出管7、弁1olI、
管/2により排出して再生を行なった後、水洗をし、再
び混合樹脂層を形成させた後、通液工程に供される。
By sequentially performing the above operations from the first step to the fifth step, each resin layer is completely stratified and separated, and an alkaline aqueous solution is injected into the separated anion exchange resin layer B through the dispersion pipe, and the cation exchange An aqueous mineral acid solution is injected into the resin layer g from the liquid collecting pipe S, and the recycled waste liquid is discharged through the recycled waste liquid discharge pipe 7, the valve 1olI,
After being discharged through pipe 2 and regenerated, it is washed with water and a mixed resin layer is again formed, after which it is subjected to a liquid passage step.

このように本発明法により、混床式脱塩装置の混合樹脂
層の分離を行なうことにより不活性樹脂層と陽イオン交
換樹脂層の間に常に一定の層高を保持することになり、
そのため陰・陽両イオン交換樹脂層は再生工程時には互
いに他の再生剤により汚染されることなく再生されるの
で、高純度の脱塩水を安定して供給することができる。
In this way, according to the method of the present invention, by separating the mixed resin layer of the mixed bed desalination equipment, a constant layer height is always maintained between the inert resin layer and the cation exchange resin layer.
Therefore, both the negative and positive ion exchange resin layers are regenerated without being contaminated by other regenerants during the regeneration process, so that highly purified demineralized water can be stably supplied.

なお、本発明法は陰・陽両イオン交換樹脂及び不活性樹
脂の混合樹脂層で脱塩する混床式脱塩装置の混合樹脂層
を分離する場合に適用されるが、陰・陽両イオン交換樹
脂の混合樹脂層で脱塩する混床式脱塩装置において、分
離工程時にイオン交換塔外に待機させていた不活性樹脂
を添加して形成された混合樹脂層を分離する場合にも利
用できる。
The method of the present invention is applied to the case of separating the mixed resin layer of a mixed bed type desalination equipment that desalinates with a mixed resin layer of both anion and cation exchange resins and an inert resin. In a mixed bed desalination equipment that desalinates with a mixed resin layer of exchange resin, it can also be used to separate the mixed resin layer formed by adding an inert resin that was kept outside the ion exchange tower during the separation process. can.

〔実施例〕〔Example〕

実施例/ 第1図に示すような混床式脱塩装置において内径り5θ
玉、直筒部3000mmのイオン交換塔に9001の強
酸性陽イオン交換樹脂ダイヤイオン(三菱化成工業株式
会社登録商標) PK2コffL、弘、3i011の強
塩基性陰イオン交換樹脂ダイヤイオンFA、? / 2
及び2001の不活性樹脂ダイヤイオンPE320を充
填し、イオン交換塔底部集水管より脱塩水を注入してそ
の水位が薬剤注入管付近になるまで注入した後、続いて
加圧空気を導入して混合樹脂層を形成した後、以下本発
明法により混合樹脂層の分離を行なった。この際混合樹
脂層の上方にはかなりの量の不活性樹脂が浮上していた
Example/ In a mixed bed desalination equipment as shown in Fig. 1, the inner diameter is 5θ.
9001 strong acidic cation exchange resin Diaion (registered trademark of Mitsubishi Chemical Industries, Ltd.) PK2 KoffL, Hiro, 3i011 strong basic anion exchange resin Diamond FA, ? / 2
and 2001 inert resin Diaion PE320, and injected desalinated water from the water collection pipe at the bottom of the ion exchange tower until the water level reached the vicinity of the drug injection pipe, then pressurized air was introduced and mixed. After forming the resin layer, the mixed resin layer was separated by the method of the present invention. At this time, a considerable amount of inert resin was floating above the mixed resin layer.

イオン交換塔底部の集水管より脱塩水を9./71ph
rでS分間導入し、混合樹脂層を流動展開させながら、
薬剤注入管の位置より約1ocrrt上位まで水張シし
た後、脱塩水の導入を停止し、流動した混合樹脂層を3
分間沈静させた。浮上する不活性樹脂の士が若干増大し
だ、ついで、薬剤注入管より加圧空気を/、 1INr
rj/miRで7分間注入して塔内の脱塩水を揺動させ
浮上している不活性樹脂を沈降させた。
9. Pour desalinated water from the water collection pipe at the bottom of the ion exchange tower. /71ph
While introducing at r for S minutes and fluidizing the mixed resin layer,
After filling with water to about 1 ocrrrt above the position of the drug injection tube, the introduction of demineralized water was stopped, and the fluidized mixed resin layer was
Let it settle for a minute. When the amount of floating inert resin started to increase slightly, pressurized air was added from the drug injection tube to 1INr.
The demineralized water in the tower was injected for 7 minutes at rj/miR, and the floating inert resin was sedimented.

ついで、イオン交換塔底部の集水管より脱塩水を9./
m/hrの上向流でlS分間導入して、強塩基性陰イオ
ン交換樹脂層、不活性樹脂層、強塩性陰イオン交換樹脂
層の三層に展開分離した後、脱塩水の導入を停止した後
S分間沈静させ成層分離した。
Next, pour desalinated water into the water collecting pipe at the bottom of the ion exchange column in step 9. /
After the introduction of demineralized water for 1S minutes with an upward flow of m/hr to develop and separate three layers: a strong basic anion exchange resin layer, an inert resin layer, and a strong salt anion exchange resin layer, demineralized water is introduced. After stopping, the mixture was allowed to settle for S minutes and stratified and separated.

成層分離した強塩基性陰イオン交換樹脂層及び強酸性陽
イオン交換樹脂層を常法により再生後、水洗してから混
合樹脂層を形成させた後、電気伝導度SμS/ぼの脱塩
水を通水してNaイオンとClイオンのリークを測定し
た。なお、再生剤の使用量は強塩基性陰イオン交換樹脂
の場合tI%NaOH溶液を2009−NaOH/l−
樹脂、強酸性陽イオン交換樹脂の場合5%HCII溶液
is。
After regenerating the stratified and separated strong basic anion exchange resin layer and strong acid cation exchange resin layer by a conventional method, washing with water and forming a mixed resin layer, demineralized water with an electrical conductivity of SμS/Bon was passed through. The leakage of Na ions and Cl ions was measured. In addition, the amount of regenerant used is 2009-NaOH/l-2009-NaOH/l-
resin, 5% HCII solution is for strongly acidic cation exchange resins.

1−HQI/ l−樹脂とした。その結果を第2図に示
す。図中実線で示す曲線が実施例に於ける結果である。
1-HQI/l-resin. The results are shown in FIG. The curve shown by the solid line in the figure is the result in the example.

比較例/ 実施例/で用いた温床式脱塩装置に実施例/と同銘柄の
イオン交換樹脂と不活性樹脂を同量充填し、実施例/と
同一操作により混合樹脂層を形成させた後従来法により
この混合樹脂層の分離を行なった。すなわち、イオン交
換塔底部集水管より脱塩水を9 、 / 711/h 
rの上向流でlS分間導入して三層に展開分離した後、
脱塩水の導入を停止し、樹脂層をS分間沈静させた。そ
の際の不活性樹脂層は実施例/のそれと比較して薄かっ
た。沈静後は実施例/と同一条件にて再生、水洗後、再
び混合樹脂層を形成し、電気伝導度SμS /anの脱
塩水を通水してNaイオンとClイオンのリークを測定
した。
Comparative Example / After filling the same amount of ion exchange resin and inert resin of the same brand as Example / into the hotbed desalination equipment used in Example /, and forming a mixed resin layer by the same operation as Example /. This mixed resin layer was separated by conventional methods. In other words, desalinated water is collected from the water collecting pipe at the bottom of the ion exchange tower at a rate of 9,/711/h.
After introducing it for 1S minutes with an upward flow of r and developing and separating it into three layers,
The introduction of demineralized water was stopped and the resin layer was allowed to settle for S minutes. The inert resin layer at that time was thinner than that of Example. After settling, the mixture was regenerated and washed under the same conditions as in Example, and a mixed resin layer was formed again. Demineralized water with an electrical conductivity of SμS/an was passed through it, and the leakage of Na ions and Cl ions was measured.

その結果を第Ω図に示す。図中破線で示す曲線が比較例
に於ける結果である。
The results are shown in Figure Ω. The curve shown by the broken line in the figure is the result in the comparative example.

第一図に見られるように、本発明法による分離を行なっ
た後再生を行なえば、Clイオン、Naイオンともその
リーク量は従来法にくらべて小さく高純度の脱塩水が得
られる。
As seen in FIG. 1, if regeneration is performed after separation by the method of the present invention, highly purified demineralized water can be obtained with a smaller leakage amount of both Cl ions and Na ions than in the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、混床式脱塩装置における混合樹脂
層の分離をより完全に行うことができ、高純度の脱塩水
を得ることができる。
According to the method of the present invention, the mixed resin layer in the mixed bed desalination apparatus can be more completely separated, and highly purified desalinated water can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する混床式脱塩装置の一例の
縦断面略図で混合樹脂層が分離された状態を示しである
。 図中/はイオン交換塔、λは分散管、3は薬剤注入管、
9は再生廃液排出管、Sは集液管、6は陰イオン交換樹
脂層、7は不活性樹脂層、gは陽イオン交換樹脂層、9
、io、ii、/2.13及び/qは管、10ISlO
ユ、10.3、/θII、 10!及びlθ6は弁を示
す。 第Ω図は実施例/及び比較例/における通水結果を示す
図であり、縦軸にCIイオン量、Naイオン量、横軸に
通水時間を示す。 なお、図中、実線は本発明法、破線は従来法を示す。
FIG. 1 is a schematic vertical cross-sectional view of an example of a mixed bed desalination apparatus for carrying out the method of the present invention, showing a state in which the mixed resin layer is separated. In the figure / is an ion exchange tower, λ is a dispersion tube, 3 is a drug injection tube,
9 is a recycled waste liquid discharge pipe, S is a liquid collection pipe, 6 is an anion exchange resin layer, 7 is an inert resin layer, g is a cation exchange resin layer, 9
, io, ii, /2.13 and /q are tubes, 10ISlO
Yu, 10.3, /θII, 10! and lθ6 indicates a valve. Figure Ω is a diagram showing the water flow results in Examples/Comparative Examples/, in which the vertical axis shows the amount of CI ions and the amount of Na ions, and the horizontal axis shows the water flow time. In addition, in the figure, the solid line shows the method of the present invention, and the broken line shows the conventional method.

Claims (1)

【特許請求の範囲】[Claims] (1)陰イオン交換樹脂、陽イオン交換樹脂及び両交換
樹脂の中間の比重を有する不活性樹脂からなる混合樹脂
層を陰イオン交換樹脂層、不活性樹脂層及び陽イオン交
換樹脂層の三層に分離するに当り、該混合樹脂層の下部
より上向流で通水し、該混合樹脂層を流動展開させなが
ら該混合樹脂層の上方に設けられた薬剤注入管の位置よ
り上位まで水張りをする第1工程、通水を停止して該混
合樹脂層を沈静させる第2工程、薬剤注入管の位置より
上位付近に浮上している不活性樹脂を揺動させ沈降させ
る第3工程、該混合樹脂層の下部より上向流で通水して
上から陰イオン交換樹脂層、不活性樹脂層及び陽イオン
交換樹脂層の順で三層に展開分離する第4工程、上向流
通水を停止して陰イオン交換樹脂層、不活性樹脂層及び
陽イオン交換樹脂層を沈静させ三層に成層分離する第5
工程の各工程を順次行うことを特徴とする混床式脱塩装
置のイオン交換樹脂分離方法。
(1) A mixed resin layer consisting of an anion exchange resin, a cation exchange resin, and an inert resin having a specific gravity between the two exchange resins is formed into three layers: an anion exchange resin layer, an inert resin layer, and a cation exchange resin layer. In order to separate the mixed resin layer, water is passed in an upward flow from the bottom of the mixed resin layer, and while the mixed resin layer is being fluidized and expanded, water is filled to a level above the position of the drug injection pipe provided above the mixed resin layer. The first step is to stop the flow of water to settle the mixed resin layer, the third step is to shake and settle the inert resin floating above the position of the drug injection tube, and the mixing step is performed. The fourth step is to pass water in an upward flow from the bottom of the resin layer and develop and separate it into three layers in the order of anion exchange resin layer, inert resin layer, and cation exchange resin layer from above, and stop the upward flow of water. The fifth step is to settle the anion exchange resin layer, the inert resin layer and the cation exchange resin layer and separate them into three layers.
An ion exchange resin separation method for a mixed bed desalination apparatus, characterized in that each step of the process is carried out sequentially.
JP60173879A 1985-08-07 1985-08-07 Separation of ion exchange resin for mixed bed type desalting device Granted JPS6233550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60173879A JPS6233550A (en) 1985-08-07 1985-08-07 Separation of ion exchange resin for mixed bed type desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173879A JPS6233550A (en) 1985-08-07 1985-08-07 Separation of ion exchange resin for mixed bed type desalting device

Publications (2)

Publication Number Publication Date
JPS6233550A true JPS6233550A (en) 1987-02-13
JPH0450861B2 JPH0450861B2 (en) 1992-08-17

Family

ID=15968812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173879A Granted JPS6233550A (en) 1985-08-07 1985-08-07 Separation of ion exchange resin for mixed bed type desalting device

Country Status (1)

Country Link
JP (1) JPS6233550A (en)

Also Published As

Publication number Publication date
JPH0450861B2 (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US4519917A (en) Counter-current adsorption filters for the treatment of liquids and a method of operating the filter
US3582504A (en) Method for separating and isolating ion exchange resins
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
US3527718A (en) Regenerating mixed bed anion and cation exchange resins
JP6873972B2 (en) Regeneration of mixed floor resin
US3826761A (en) Method of separating cation and anion exchange resins
JPH0286849A (en) Ion exchange method and apparatus for especially regenerating aqueous solution after softening/demineralization
FI68975B (en) REFERENCE FORM OF CHARACTERISTICS OF CHROME CONDITIONS AND BLANKING EQUIPMENT OF ANCHORS AND CHARACTERISTICS
JPS6233550A (en) Separation of ion exchange resin for mixed bed type desalting device
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JPH0478344B2 (en)
JP2002361247A (en) Method for manufacturing pure water
JP3963025B2 (en) Ion exchange resin separation and regeneration method
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
GB2063094A (en) Water purification by ion exchange
JP3837762B2 (en) Ion exchange resin separation and regeneration method
US4163717A (en) Removal of silica from mixed bed demineralizer
US3585127A (en) Method for treating water by ion exchange
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2654053B2 (en) Condensate desalination equipment
JPS5969152A (en) Regenerating method of cl type strongly basic anion exchange resin
JPS582431Y2 (en) Ion exchange tower used for upstream regeneration
JPH01127048A (en) Method for regenerating mixed ion-exchange resin