JPS6233156B2 - - Google Patents

Info

Publication number
JPS6233156B2
JPS6233156B2 JP15600279A JP15600279A JPS6233156B2 JP S6233156 B2 JPS6233156 B2 JP S6233156B2 JP 15600279 A JP15600279 A JP 15600279A JP 15600279 A JP15600279 A JP 15600279A JP S6233156 B2 JPS6233156 B2 JP S6233156B2
Authority
JP
Japan
Prior art keywords
amount
flow rate
shipping
overshipment
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15600279A
Other languages
Japanese (ja)
Other versions
JPS5684298A (en
Inventor
Tooru Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP15600279A priority Critical patent/JPS5684298A/en
Publication of JPS5684298A publication Critical patent/JPS5684298A/en
Publication of JPS6233156B2 publication Critical patent/JPS6233156B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は設定された一定量だけ流体を出荷す
る定量出荷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative shipping device that ships a fixed amount of fluid.

例えばタンクローリーなどに流体を予め設定さ
れた設定量だけ出荷する場合には、その出荷しつ
つある流量を流量計により測定し、その流量を積
算してその積算値が設定した一定値に達すると、
操作弁を閉じて出荷を停止するようにされてい
る。この場合、その操作弁を急に閉じると被測定
流体の水槌作用のため水圧が急上昇してその流体
路の機器が破壊されるおそれがある。このような
点よりその出荷量を積算し、その値が定量設定
値、いわゆるバツチ量より一定量少ない値、いわ
ゆるプリバツチ量に達した時に操作弁を徐々に閉
じて半開状態とし、その後前記バツチ量に達した
時に完全に弁を閉じるようにすることが行なわれ
ている。
For example, when shipping a preset amount of fluid to a tank truck, etc., the flow rate that is being shipped is measured with a flowmeter, and when the flow rate is integrated and the integrated value reaches a preset constant value,
Shipping is stopped by closing the operation valve. In this case, if the operation valve is suddenly closed, the water pressure will rise rapidly due to the water hammer action of the fluid to be measured, which may destroy the equipment in the fluid path. From these points, the amount to be shipped is integrated, and when the value reaches the pre-batch amount, which is a certain amount less than the quantitative setting value, the so-called batch amount, the operating valve is gradually closed to a half-open state, and then the batch amount is increased. The current practice is to completely close the valve when the temperature is reached.

このような制御によれば水槌現象は防止するこ
とができるが、操作弁の応答遅れのために定量設
定量、つまりバツチ量よりも僅か多く出荷し、即
ち過出荷を行なつてしまう。このような過出荷を
防止するため、その過出荷量を予想して過出荷量
を予めバツチ量より差引いたものを設定量とする
ことによつて正しい量の出荷を行なうことが提案
されている。しかし、この場合その出荷バツチ量
が変更されたり、その流体を送るポンプの吐出圧
の変動などによつて流速が変化すると過出荷量が
変化してしまう。よつて最適の過出荷量を決定し
てその量に対応した値だけバツチ量から予め差引
いておくことは困難である。又操作弁を全開状態
より徐々に閉じて半開状態にするが、その時の弁
開度が変ると過出荷量も変化する。流速の制御を
流量調節計で行なえば徐々に弁を閉じる際の流速
いわゆるスローダウン時の流速は一定に保たれる
が、同一流速でも弁の開度が異ると過出荷量が変
化するなどの欠点があつた。
Although such control can prevent the water hammer phenomenon, due to the delay in the response of the operating valve, slightly more than the fixed amount, that is, the batch amount, will be shipped, that is, overshipment will occur. In order to prevent such overshipping, it has been proposed to ship the correct amount by anticipating the overshipment amount and subtracting the overshipment amount from the batch amount in advance to set the set amount. . However, in this case, if the shipping batch amount is changed or the flow rate changes due to fluctuations in the discharge pressure of the pump that sends the fluid, the overshipment amount will change. Therefore, it is difficult to determine the optimal overshipment amount and subtract in advance a value corresponding to that amount from the batch amount. Further, the operation valve is gradually closed from the fully open state to a half open state, but if the valve opening at that time changes, the overshipment amount also changes. If the flow rate is controlled using a flow controller, the flow rate when the valve is gradually closed, the so-called slowdown flow rate, will be kept constant, but even if the flow rate is the same, if the opening degree of the valve is different, the overshipment amount will change. There were some shortcomings.

この発明の目的は被出荷流体の流速が変動して
も、又スローダウン時における弁の開度が異なつ
ても過出荷を正確に防止することができ、正しい
定量出荷を行なうことを可能とする定量出荷装置
を提供することにある。
The purpose of this invention is to accurately prevent over-shipping even if the flow velocity of the fluid to be shipped changes or the opening degree of the valve during slowdown is different, and to make it possible to carry out accurate fixed-quantity shipping. Our objective is to provide quantitative shipping equipment.

この発明によればスローダウン時の際の出荷流
速が検出され、又、出荷量を制御する操作弁の弁
開度が検出され、これら出荷流速及び弁開度、更
にその操作弁の応答速度から過出荷量を予測演算
する。その演算された過出荷量を定量設定値、つ
まりバツチ量から減じてその減じた値と出荷量の
積算値とを比較して両者が一致した場合に弁の締
切りを行なう全閉指令を発するようにされる。こ
のようにすれば流速が変動してもこれに応じて、
又その時の弁開度が変化してもこれに応じて操作
弁の応答速度を考慮して過出荷量が予測され、そ
の分だけ差引いたものをバツチ量とするため、常
に正しい定量出荷が可能となる。
According to this invention, the shipping flow rate at the time of slowdown is detected, and the valve opening degree of the operation valve that controls the shipping amount is detected, and from these shipping flow rate and valve opening degree, and further the response speed of the operation valve. Predict and calculate overshipment amount. The calculated overshipment amount is subtracted from the quantitative set value, that is, the batch amount, and the subtracted value is compared with the integrated value of the shipment amount, and when the two match, a full close command is issued to close the valve. be made into In this way, even if the flow velocity changes,
In addition, even if the valve opening changes at that time, the overshipment amount is predicted by taking into account the response speed of the operating valve, and the amount subtracted by that amount is used as the batch amount, so it is possible to always ship the correct amount of quantity. becomes.

次にこの発明による定量出荷装置を図面を参照
して説明しよう。第1図は定量出荷装置の流速設
定値、弁開度及び実際の流速を示すタイムチヤー
トであつて、時刻t0において出荷が開始されると
流速調節計に与えられる流速設定値は第1図Aに
示すように時刻t0より或る一定の傾斜を持つて上
昇して一定値qとされる。これに伴つて第1図B
に示すようにその調節計の出力、つまり操作弁の
開度がこの流速設定値に追従して変化する。ま
た。弁がこのように制御されて出荷される流体の
流速は第1図Cに示すように調節計の出力に応じ
て追従して変化し、定常状態では一定の流速qで
出荷される。
Next, a quantitative shipping device according to the present invention will be explained with reference to the drawings. Figure 1 is a time chart showing the flow rate set value, valve opening degree, and actual flow rate of the quantitative shipping device.When shipping starts at time t0 , the flow rate set value given to the flow rate controller is shown in Figure 1. As shown in A, it rises at a certain slope from time t 0 to a constant value q. Along with this, Figure 1B
As shown in , the output of the controller, that is, the opening degree of the operating valve changes in accordance with this flow rate setting value. Also. The flow rate of the fluid shipped when the valve is controlled in this manner varies according to the output of the controller as shown in FIG. 1C, and the fluid is shipped at a constant flow rate q in a steady state.

この出荷流体は積算されて出荷量Q=∫q
(t)dtが測定される。この出荷量Qが設定され
た定量設定値、つまりバツチ量よりも一定量だけ
少ない量、いわゆるプリバツチ量に達すると、そ
の時刻t1より流速設定値は第1図Aに示すように
徐々に下げられ、従つて弁も同様に徐々に閉じ、
流速も下り、設定流速q′になると弁は半開状態と
なる。この状態でその出荷流量の積算値Qがバツ
チ量になるとその時刻t2において締切り指令、つ
まり全閉指令が出されて流速設定値はゼロとな
り、又調節計の出力もゼロとなる。しかし操作弁
の応答遅れによつて実際に全閉となるまでに△Q
だけの流量が余計に出荷され、これが過出荷量△
Qとなる。この全閉にする際の時刻t2より全閉に
なるまでの時間を△tとすると、過出荷量△Qは
約1/2q′△tになる。
This shipped fluid is integrated and shipped amount Q = ∫q
(t) dt is measured. When this shipping amount Q reaches the pre-batch amount, which is a certain amount less than the fixed quantity setting value, that is, the batch amount, the flow rate setting value is gradually lowered from time t 1 as shown in Figure 1A. and therefore the valve also gradually closes,
The flow rate also decreases, and when the set flow rate q' is reached, the valve becomes half-open. In this state, when the integrated value Q of the shipping flow rate reaches the batch amount, a cutoff command, that is, a fully closed command is issued at time t2 , the flow rate set value becomes zero, and the output of the controller also becomes zero. However, due to the response delay of the control valve, it took △Q
This is the excess shipment amount △
It becomes Q. If the time from time t 2 to full closure is Δt, the overshipment amount ΔQ will be approximately 1/2q'Δt.

第2図はこの発明による定量出荷装置の一例を
示すが、従来装置に対応する部分をまず説明す
る。出荷しようとする流体が流される流路11に
流量計12が装着され、その流量計12の下流側
には操作弁13が取付けられて出荷される流量を
制御している。流量計12よりはその流体流量に
応じたパルスが出力され、これは流量を積算する
積算回路、例えばカウンタ14に供給される。こ
のカウンタ14における出荷流量の積算値は比較
器15において定量設定回路16よりの設定値と
比較される。バツチ量設定器17には定量設定
値、つまりバツチ量が設定記憶されており、又そ
のバツチ量に対して一定量だけ少ない値、つまり
スローダウン指令を発するまでの出荷量、いわゆ
るプリバツチ量がプリバツチ量設定器18に記憶
されている。
FIG. 2 shows an example of a quantitative shipping device according to the present invention, but first, parts corresponding to the conventional device will be explained. A flow meter 12 is attached to a flow path 11 through which fluid to be shipped flows, and an operating valve 13 is attached downstream of the flow meter 12 to control the flow rate to be shipped. The flowmeter 12 outputs a pulse corresponding to the fluid flow rate, which is supplied to an integrating circuit, for example, a counter 14, which integrates the flow rate. The integrated value of the shipping flow rate in the counter 14 is compared with the set value from the quantitative setting circuit 16 in the comparator 15. The batch amount setter 17 stores a quantitative setting value, that is, a batch amount, and a value that is a certain amount smaller than the batch amount, that is, the amount shipped until a slowdown command is issued, the so-called pre-batch amount. It is stored in the amount setter 18.

制御回路19にはスタート信号や比較器15か
らの出荷流量が設定されたプリバツチ量に達した
時の信号、或いは設定したバツチ量に達した時の
信号が与えられて、この制御回路19の制御のも
とに流速設定器21において例えば第1図Aに示
すような流速設定値が作られる。この流速設定値
が流速調節計22に供給される。一方流量計12
よりのパルスは周波数電流変換器23においてそ
のパルス周波数、つまり流量に応じたアナログ信
号、つまり流速信号に変換されて調節計22に供
給される。調節計22で入力された流速信号と流
速設定器21よりの流速設定値との差がとられ、
その差に基づく比例及び積分などの演算が行なわ
れ、この調節計22の出力は操作弁13の制御信
号として与えられ、この制御信号は第1図Bに示
すようになり、流路11の流体流速は第1図Cに
示すようになる。操作弁13の弁開度は調節計2
2の出力と対応している。
The control circuit 19 is given a start signal, a signal from the comparator 15 when the shipping flow rate reaches a set pre-batch amount, or a signal when the set batch amount is reached, and controls the control circuit 19. For example, a flow rate set value as shown in FIG. 1A is created in the flow rate setter 21 under the following conditions. This flow rate set value is supplied to the flow rate controller 22. One hand flow meter 12
The pulses are converted by the frequency-current converter 23 into an analog signal corresponding to the pulse frequency, that is, the flow rate, that is, a flow velocity signal, and then supplied to the controller 22. The difference between the flow rate signal inputted by the controller 22 and the flow rate set value from the flow rate setter 21 is taken,
Calculations such as proportional and integral calculations are performed based on the difference, and the output of the controller 22 is given as a control signal for the operation valve 13, and this control signal becomes as shown in FIG. The flow velocity is as shown in FIG. 1C. The valve opening degree of the operation valve 13 is determined by the controller 2.
This corresponds to the output of 2.

以上が従来の調節計を用いた定量出荷装置の動
作例である。この発明においては今までに説明し
た定量出荷装置に対して設定器24、過出荷量演
算器25、AD変換器26、減算器27が新たに
加えられている。設定器24には操作弁13の弁
応答速度が設定されている。この弁応答速度は調
節計22と組み合わされる制御弁13が決まると
定まる定数であり、例えば操作弁13の全開から
全閉に要する応答時間Tとして設定される。過出
荷量演算器25には周波数電流変換器23からの
流速信号と調節計22の弁開度出力と設定器24
からの弁応答速度とが入力され、過出荷量△Qが
演算される。スローダウンのときの流速をq′、調
節計22の出力である弁開度に対応した値をVと
すると、過出荷量△QはTVq′/Kなる演算によ
り求めることができる。ここで、Kは補正定数で
ある。
The above is an example of the operation of a quantitative shipping device using a conventional controller. In this invention, a setter 24, an overshipment amount calculator 25, an AD converter 26, and a subtracter 27 are newly added to the quantitative shipping apparatus described above. The valve response speed of the operating valve 13 is set in the setting device 24 . This valve response speed is a constant that is determined once the control valve 13 to be combined with the controller 22 is determined, and is set as, for example, the response time T required for the operating valve 13 to fully close from fully open. The overshipment amount calculator 25 includes the flow rate signal from the frequency/current converter 23, the valve opening output of the controller 22, and the setting device 24.
The valve response speed is input, and the overshipment amount ΔQ is calculated. If the flow velocity at the time of slowdown is q', and the value corresponding to the valve opening degree which is the output of the controller 22 is V, the overshipment amount ΔQ can be determined by the calculation TVq'/K. Here, K is a correction constant.

次に動作を説明する。まづ、出荷量を積算して
いるカウンタ14の積算値がプリバツチ量に達す
る(t1)と比較器15がこれを検出しこれを制御
回路19に比較出力として伝達する。制御回路1
9はこの比較出力により流速設定器21に弁開度
を小さくする減速指令を出す。この減速指令によ
り流体の流速が減速されて一定流速q′に達するま
での十分な時間をとつた後、過出荷量演算器25
に過出荷量△Qを演算する演算指令を出す。この
演算が終了した時点で制御回路19はAD変換器
26に過出荷量△Qを取り込んで減算器27に出
力する減算指令を出し、これを受けてAD変換器
26はこの取り込まれた過出荷量△Qをバツチ量
設定器17の定量設定値の設定単位のデジタル量
に変換して減算器27に送出する。減算器27は
バツチ量設定器17の定量設定値Qから過出荷量
△Qを減算して補正定量設定値を求め、これを比
較器15に出力する。比較器15はこの補正定量
設定値(Q−△Q)とカウンタ14からの出荷量
の積算値とを比較し、両者が一致すると操作弁1
3を締切る比較出力を制御回路19に出力する。
制御回路19は調節計22の出力側に挿入された
スイツチ20をオフとる制御信号を出力し操作弁
13をオフにする。この場合、第1図Aにおける
時刻t2より△Q(第1図C)に対応する時点だけ
時刻t1側にずれた時刻t2′で締め切り指令が発せら
れることになる。
Next, the operation will be explained. First, when the integrated value of the counter 14 that integrates the shipping amount reaches the pre-batch amount (t 1 ), the comparator 15 detects this and transmits this to the control circuit 19 as a comparison output. Control circuit 1
9 issues a deceleration command to the flow rate setter 21 to reduce the valve opening based on this comparison output. After the flow velocity of the fluid is decelerated by this deceleration command and sufficient time is taken for it to reach a constant flow velocity q', the overshipment amount calculator 25
A calculation command is issued to calculate the overshipment amount △Q. When this calculation is completed, the control circuit 19 issues a subtraction command to the AD converter 26 to take in the overshipment amount ΔQ and output it to the subtracter 27. In response, the AD converter 26 The amount ΔQ is converted into a digital amount in the setting unit of the quantitative setting value of the batch amount setter 17 and sent to the subtracter 27. The subtracter 27 subtracts the overshipment amount ΔQ from the quantitative setting value Q of the batch amount setter 17 to obtain a corrected quantitative setting value, and outputs this to the comparator 15. The comparator 15 compares this corrected fixed quantity setting value (Q-△Q) with the integrated value of the shipment amount from the counter 14, and when the two match, the operation valve 1 is
3 is output to the control circuit 19.
The control circuit 19 outputs a control signal to turn off the switch 20 inserted into the output side of the controller 22, thereby turning off the operation valve 13. In this case, the deadline command will be issued at time t 2 ' , which is shifted from time t 2 in FIG. 1A to time t 1 by the time corresponding to ΔQ (FIG. 1C).

この場合、全閉指令は流量積算値が定量設定値
Qから過出荷量△Qを差引いた値になると発生さ
れ、実際に出荷される量は設定値Qに極めて近い
値となり、過出荷量を減少することができる。
In this case, the fully closed command is generated when the integrated flow rate reaches the value obtained by subtracting the overshipment amount △Q from the quantitative set value Q, and the actual shipped amount is extremely close to the set value Q, reducing the overshipment amount. can be reduced.

第2図においてはその各部をそれぞれ別の回路
として構成したが、いわゆるマイクロプロセツサ
を用いて定量出荷装置を構成することもできる。
その一例を第3図に示す。即ち第3図において第
1図と対応する部分には同一符号を付けて示して
あるが、この例においてはプロセツサ31が設け
られ、このプロセツサ31はマイクロコンピユー
タのバス32に接続されており、このバス32に
は演算に必要とするデータを一時記憶するために
用いられる読み書き可能なメモリ33、又この装
置を動作させるため必要とする各種処理を行なう
ためのプログラムが記憶されたプログラムメモリ
34がそれぞれ接続される。更にバツチ量設定器
17、プリバツチ量設定器18、弁応答速度設定
器24の各値を入力するためのデイジタル入力回
路35がバス32に接続される。流量計12の出
力側はパルス入力回路36を通じてバス32に接
続され、第1図Aに示した流速設定に必要な定数
や調節計の比例積分部に必要な定数は設定器37
でそれぞれ例えば可変抵抗器により設定され、そ
の各設定値はアナログ入力回路38を通じてAD
変換器39に供給され、これにてデイジタル信号
に変換され、バス32に送出される。マイクロプ
ロセツサ31はこれら各設定入力や流量入力を取
込んで、第2図で説明したと同様に比較動作、流
速設定値の演算、比例積分演算、更に過出荷量の
演算などを行い、この演算結果により得られた操
作弁13に対する制御信号はバス32を通じて
DA変換器41へ出力され、これによりアナログ
信号とされた制御信号はアナログ出力回路42を
通じてスイツチ回路43へ供給される。スイツチ
回路43はプロセツサ31により制御されてアナ
ログ出力回路42の出力を操作弁13へ供給され
るか否かの制御を行う。この第3図において各種
設定はデイジタル形式、アナログ形式の何れとす
ることもできる。
In FIG. 2, each part is configured as a separate circuit, but the quantitative shipping device can also be configured using a so-called microprocessor.
An example is shown in FIG. That is, in FIG. 3, parts corresponding to those in FIG. The bus 32 includes a read/write memory 33 used for temporarily storing data required for calculations, and a program memory 34 storing programs for performing various processes necessary to operate this device. Connected. Furthermore, a digital input circuit 35 is connected to the bus 32 for inputting the values of the batch amount setting device 17, the pre-batch amount setting device 18, and the valve response speed setting device 24. The output side of the flowmeter 12 is connected to the bus 32 through a pulse input circuit 36, and the constants necessary for setting the flow rate shown in FIG.
For example, each set value is set by a variable resistor, and each setting value is input to AD through an analog input circuit 38.
The signal is supplied to a converter 39 where it is converted into a digital signal and sent to the bus 32. The microprocessor 31 takes in these setting inputs and flow rate inputs, performs comparison operations, calculations of flow rate set values, proportional integral calculations, and calculations of overshipment amounts in the same manner as explained in FIG. A control signal for the operation valve 13 obtained from the calculation result is transmitted through the bus 32.
The control signal, which is output to the DA converter 41 and converted into an analog signal, is supplied to the switch circuit 43 through the analog output circuit 42. The switch circuit 43 is controlled by the processor 31 to control whether or not the output of the analog output circuit 42 is supplied to the operating valve 13. In FIG. 3, various settings can be made in either digital format or analog format.

更に第3図に示した実施例においては流速設定
値と測定流速との比較はプログラムによつて容易
に実現できる。
Furthermore, in the embodiment shown in FIG. 3, the comparison between the set flow rate and the measured flow rate can be easily realized by a program.

以上述べたようにこの発明によれば流速信号と
弁開度の信号と、操作弁の応答特性とから過出荷
量を予測演算してその分だけ差し引いて定量出荷
を行なうためポンプの吐出圧力の変動や流速変化
などがあつても過出荷量が出荷ごとに変動するこ
となく、正確な定量出荷が可能となる。更に組合
わされる操作弁の特性が異ならない限り、過出荷
量を調節するための調整は一切必要としない。な
お調節計22は必ずしも必要としない。これを省
略することもできる。たゞこの流速調節計を用い
れば流速を一定値にするなどの制御ができる便利
さがある。
As described above, according to the present invention, the overshipment amount is predicted and calculated based on the flow rate signal, the valve opening signal, and the response characteristic of the operating valve, and the overshipment amount is subtracted by that amount to perform fixed shipment, so that the pump discharge pressure can be adjusted. Even if there are fluctuations or changes in flow rate, the overshipment amount will not change from shipment to shipment, making accurate quantitative shipment possible. Further, unless the characteristics of the operating valves to be combined are different, no adjustment is required to adjust the overshipment amount. Note that the controller 22 is not necessarily required. This can also be omitted. By using this flow rate controller, it is convenient to be able to control the flow rate to a constant value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流速設定値、調節計出力、流速の関係
を示すタイムチヤート、第2図はこの発明による
定量出荷装置の一例を示すブロツク図、第3図は
この発明をマイクロコンピユータで実施した例を
示すブロツク図である。 11:被出荷流体流路、12:流量計、13:
制御弁、14:出荷量積算カウンタ、15:比較
器、16:定量設定回路、17:バツチ量設定
器、18:プリバツチ量設定器、19:制御回
路、21:流速設定器、22:調節計、23:周
波数電流変換器、24:弁応答速度設定器、2
5:過出荷量演算器、26:AD変換器、27:
減算器、31:マイクロプロセツサ、32:バ
ス、33:読み書き可能なメモリ、34:プログ
ラムメモリ、35:デイジタル入力回路、36:
パルス入力回路。
Fig. 1 is a time chart showing the relationship between flow rate set value, controller output, and flow rate, Fig. 2 is a block diagram showing an example of a quantitative shipping device according to the present invention, and Fig. 3 is an example in which the present invention is implemented using a microcomputer. FIG. 11: Shipment fluid flow path, 12: Flow meter, 13:
Control valve, 14: Shipping amount integration counter, 15: Comparator, 16: Quantitative setting circuit, 17: Batch amount setting device, 18: Pre-batch amount setting device, 19: Control circuit, 21: Flow rate setting device, 22: Controller , 23: Frequency current converter, 24: Valve response speed setting device, 2
5: Overshipment amount calculator, 26: AD converter, 27:
subtractor, 31: microprocessor, 32: bus, 33: readable/writable memory, 34: program memory, 35: digital input circuit, 36:
Pulse input circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 出荷流体が給送される管路の流量を積算する
積算手段と、前記出荷流体の出荷量とこの出荷量
より所定量少ないプリバツチ量を設定する定量設
定手段と、前記出荷流体の流速を検出する流速検
出手段と、流速設定器による流速設定値と前記流
速検出手段の出力とを受けて前記流速設定値にな
るように前記管路に設けられた操作弁の弁開度を
調節する調節手段と、前記操作弁の応答速度を設
定する弁応答速度設定手段と、前記流速検出手段
の出力と前記調節手段の弁開度出力と前記弁応答
速度設定手段により設定された応答速度とから演
算指令を受けて過出荷量の予測値を演算する過出
荷量演算手段と、減算指令を受けて前記出荷量か
ら前記過出荷量を減じて補正定量設定値を求める
減算手段と、前記プリバツチ量と前記積算手段に
おいて計数した積算値とを比較して第1比較一致
出力を出すと共に前記補正定量設定値と前記積算
手段において計数した積算値とを比較して第2比
較一致出力を出す比較手段と、この第1比較一致
出力を受けて前記流速設定器に所定の前記減速指
令を出すと共にこの減速指令により流速が減速さ
れて安定した状態で前記過出荷量演算手段に前記
演算指令を出しかつこの過出荷量の演算が終了し
た時点で前記減算手段に減算指令を出力しさらに
前記第2比較一致出力により前記操作弁を全閉に
制御する制御指令を出す制御手段とを具備する定
量出荷装置。
1: an integrating means for integrating the flow rate of a pipe line through which the shipping fluid is fed; a quantitative setting means for setting the shipping amount of the shipping fluid and a pre-batch amount that is a predetermined amount smaller than the shipping amount; and detecting the flow rate of the shipping fluid. and an adjusting means that receives a flow rate set value from a flow rate setting device and an output of the flow rate detecting means and adjusts a valve opening degree of an operating valve provided in the pipe line so that the flow rate set value is reached. and a valve response speed setting means for setting the response speed of the operation valve, and a calculation command from the output of the flow speed detection means, the valve opening output of the adjustment means, and the response speed set by the valve response speed setting means. an overshipment amount calculating means for calculating a predicted value of the overshipment amount in response to a subtraction command; a subtraction means for calculating a corrected quantitative setting value by subtracting the overshipment amount from the shipment amount in response to a subtraction command; Comparing means compares the integrated value counted by the integrating means and outputs a first comparative match output, and compares the corrected quantitative setting value and the integrated value counted by the integrating means and outputs a second comparative match output; In response to this first comparison coincidence output, a predetermined deceleration command is issued to the flow rate setting device, and in a state where the flow velocity is decelerated and stabilized by this deceleration command, the calculation command is issued to the overshipment amount calculation means, and the calculation command is issued to the overshipment amount calculation means. A quantitative shipping device comprising: a control means for outputting a subtraction command to the subtraction means when calculation of the shipping amount is completed, and further issuing a control command for controlling the operation valve to be fully closed based on the second comparison coincidence output.
JP15600279A 1979-11-30 1979-11-30 Fixed quantity forwarding device Granted JPS5684298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15600279A JPS5684298A (en) 1979-11-30 1979-11-30 Fixed quantity forwarding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15600279A JPS5684298A (en) 1979-11-30 1979-11-30 Fixed quantity forwarding device

Publications (2)

Publication Number Publication Date
JPS5684298A JPS5684298A (en) 1981-07-09
JPS6233156B2 true JPS6233156B2 (en) 1987-07-18

Family

ID=15618178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15600279A Granted JPS5684298A (en) 1979-11-30 1979-11-30 Fixed quantity forwarding device

Country Status (1)

Country Link
JP (1) JPS5684298A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183994A (en) * 1981-04-27 1982-11-12 Oval Eng Co Ltd Batch system using quantity meter
JPS5864996A (en) * 1981-10-13 1983-04-18 株式会社東京タツノ Method of automatically supplying liquid
JPS59103898A (en) * 1982-11-25 1984-06-15 株式会社 東京タツノ Liquid feeder
JPS59108113A (en) * 1982-12-14 1984-06-22 Yamatake Honeywell Co Ltd Controlling method of shipment of constant quantity
JPS61152598A (en) * 1984-12-26 1986-07-11 エムケー精工株式会社 Fixed-quantity lubricating device
JPH0637237B2 (en) * 1987-05-28 1994-05-18 エムケ−精工株式会社 Fixed amount liquid supply device

Also Published As

Publication number Publication date
JPS5684298A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
JP4361620B2 (en) Gas container filling method
US4332507A (en) Water level control system for a reservoir
KR920005279B1 (en) Digital control system
EP1321836A1 (en) Controller, temperature controller and heat processor using same
JPS6233156B2 (en)
US4445670A (en) Apparatus for controlling a pressure-type furnace for pouring molten ores
US5031805A (en) Processes and device for dosing free-flowing media
JP2019049283A (en) Gas charging device and gas charging method
JPS6215435B2 (en)
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
KR910006067B1 (en) Method for starting a continous casting plant
JPH10206038A (en) Furnace heating control method using fuzzy logic
KR880000835B1 (en) Controlling combustion
SU724162A1 (en) Apparatus for automatic control of flowrate of hydrate-formation inhibitor
JPH07226B2 (en) Controller for automatic pouring furnace
JPS6036338B2 (en) Method for controlling molten steel weight in tundish
JPH0757942B2 (en) Water level control device
JPS5965319A (en) Control method for fluid pressure
JPH04321796A (en) Automatic water supply device and pump starting pressure adjusting method for it
RU2072548C1 (en) Device for pressure control
SU1278808A1 (en) Adaptive control system of check process
JPH0426724B2 (en)
JP3172608B2 (en) Automatic bath pot and hot water filling method
SU1138243A1 (en) Molten metal metering device
JPS6397347A (en) Control method for molten surface in mold in continuous casting machine