JPH0426724B2 - - Google Patents

Info

Publication number
JPH0426724B2
JPH0426724B2 JP5794186A JP5794186A JPH0426724B2 JP H0426724 B2 JPH0426724 B2 JP H0426724B2 JP 5794186 A JP5794186 A JP 5794186A JP 5794186 A JP5794186 A JP 5794186A JP H0426724 B2 JPH0426724 B2 JP H0426724B2
Authority
JP
Japan
Prior art keywords
pressure
control valve
proportional
valve
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5794186A
Other languages
Japanese (ja)
Other versions
JPS62214416A (en
Inventor
Osamu Nishida
Shinichi Kondo
Tetsuji Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP5794186A priority Critical patent/JPS62214416A/en
Priority to US07/003,897 priority patent/US4741381A/en
Publication of JPS62214416A publication Critical patent/JPS62214416A/en
Publication of JPH0426724B2 publication Critical patent/JPH0426724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低圧鋳造機における比例制御弁の計
算機による自動制御方法に係り、より詳しくは、
低圧鋳造機の溶湯保持炉内を所定の時間−圧力曲
線(以下、目標パターンという)に従つて加圧制
御するに当り、保持炉に圧縮気体を供給する回路
に配設した各種の比例制御弁を計算機により自動
的に制御するのに好適な方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a computer-based automatic control method for a proportional control valve in a low-pressure casting machine, and more specifically,
Various proportional control valves are installed in the circuit that supplies compressed gas to the holding furnace when pressurizing the inside of the molten metal holding furnace of a low-pressure casting machine according to a predetermined time-pressure curve (hereinafter referred to as target pattern). The present invention relates to a method suitable for automatically controlling a computer using a computer.

(従来の技術) 本出願人は、先に、特願昭60−95726号(特開
昭61−253158号)の発明において、低圧鋳造機の
溶湯保持炉内の溶湯を加圧する気体の圧力を、所
定の目標パターンに従つて制御するために、その
気体供給回路に比例制御弁を設けることを提案し
ている。すなわち、第6図に示すように、保持炉
21の給気孔22を、並列に配置した2個の電磁
開閉弁23,24およびパワー減圧弁25を介し
て圧縮空気源26に連通接続し、電磁開閉弁23
と保持炉21との間に圧力センサ27を配設し、
前記電磁開閉弁23,24を、保持炉21の溶湯
上面を最適に加圧するための最適加圧パターンを
記憶したマイクロコンピユータ28に電気的に接
続し、このマイクロコンピユータ28に比例制御
弁29および前記圧力センサ27を電気的に接続
し、この比例制御弁29を前記パワー減圧弁25
のパイロツト部に接続した構造にして、保持炉2
1内における湯面上空間の圧力を圧力センサ27
を介して検知し、この圧力信号をマイクロコンピ
ユータ28に入力し、これにより、マイクロコン
ピユータ28において設定加圧パターンに基づい
て溶湯上面への必要加圧圧力を演算し、この演算
結果に従つて電磁開閉弁23,24を適宜開閉す
るとともに、比例制御弁29を介して、パワー減
圧弁25を作動調節し、もつて、圧力の制御され
た圧縮空気を保持炉21に所要時間供給し、保持
炉21内の溶湯上面を目標パターンに従つて加圧
するようにしている。
(Prior Art) The present applicant previously proposed, in the invention of Japanese Patent Application No. 60-95726 (Japanese Unexamined Patent Publication No. 61-253158), that the pressure of a gas that pressurizes the molten metal in the molten metal holding furnace of a low-pressure casting machine is , proposes to provide a proportional control valve in the gas supply circuit in order to control it according to a predetermined target pattern. That is, as shown in FIG. 6, the air supply hole 22 of the holding furnace 21 is connected to a compressed air source 26 via two electromagnetic on-off valves 23 and 24 arranged in parallel and a power pressure reducing valve 25, and the electromagnetic Open/close valve 23
A pressure sensor 27 is disposed between the holding furnace 21 and the holding furnace 21,
The electromagnetic on-off valves 23 and 24 are electrically connected to a microcomputer 28 that stores an optimal pressurizing pattern for optimally pressurizing the upper surface of the molten metal in the holding furnace 21, and the microcomputer 28 is connected to the proportional control valve 29 and the A pressure sensor 27 is electrically connected, and this proportional control valve 29 is connected to the power pressure reducing valve 25.
The structure is connected to the pilot part of the holding furnace 2.
Pressure sensor 27 measures the pressure in the space above the hot water level in 1.
This pressure signal is input to the microcomputer 28, and the microcomputer 28 calculates the required pressurizing pressure to the upper surface of the molten metal based on the set pressurizing pattern, and according to this calculation result, the electromagnetic While opening and closing the on-off valves 23 and 24 as appropriate, the operation of the power pressure reducing valve 25 is adjusted via the proportional control valve 29, and compressed air with a controlled pressure is supplied to the holding furnace 21 for a required period of time. The upper surface of the molten metal in 21 is pressurized according to a target pattern.

(発明が解決しようとする課題) しかし、上述したような手段で比例制御弁29
を作動して保持炉21内の溶湯上面を加圧制御し
たとき、次のような問題があつた。すなわち、比
例制御弁29に制御信号として各種のアナログ値
(V1,V2……)を入力した時、第3図に示すよう
に、比例制御弁29が所定圧力を出力し得る状態
になるまでに時間がかかり、アナログ値入力に対
して圧力出力にタイプラグがあつた。そのため、
パワー減圧弁25を介して保持炉21に供給する
圧縮空気の圧力を、時間の経過とともに所定の目
標パターンで変化させようとすると、保持炉21
内の圧力変化が目標パターンから大きく外れる問
題があつた。また、比例制御弁の大きさに限界が
あつて、保持炉が大型になつて多量の気体が必要
になると、比例制御弁はその容量に対応できない
などの問題もあつた。
(Problem to be Solved by the Invention) However, the proportional control valve 29
When the upper surface of the molten metal in the holding furnace 21 was pressurized by operating the holding furnace 21, the following problem occurred. That is, when various analog values (V 1 , V 2 . . .) are input as control signals to the proportional control valve 29, the proportional control valve 29 enters a state in which it can output a predetermined pressure, as shown in FIG. It took a long time to complete the process, and there was a type lag in the pressure output compared to the analog value input. Therefore,
When trying to change the pressure of compressed air supplied to the holding furnace 21 via the power pressure reducing valve 25 in a predetermined target pattern over time, the holding furnace 21
There was a problem in which the internal pressure changes deviated significantly from the target pattern. Furthermore, there was a problem in that the proportional control valve had a size limit, and when the holding furnace became large and required a large amount of gas, the proportional control valve could not cope with the capacity.

(発明の目的) 本発明は、上記の問題を解消するためになされ
たもので、圧縮気体源としての圧縮空気源と保持
炉との間に配設した比例制御弁のタイムラグによ
る弊害を解消して、比例制御弁が、圧縮空気源か
らの圧縮空気を、圧力が所定の目標パターンに対
応した圧力になるように変化させて送り出すこと
ができ、かつ大容量の保持炉にも対応できる計算
機による制御方法を提供することを目的とする。
(Object of the Invention) The present invention has been made to solve the above problems, and eliminates the adverse effects caused by the time lag of a proportional control valve disposed between a compressed air source as a compressed gas source and a holding furnace. The proportional control valve can change the pressure of compressed air from the compressed air source to a pressure that corresponds to a predetermined target pattern and send it out. The purpose is to provide a control method.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、電磁
開閉弁および大容量比例流量制御弁を備えた第1
気体供給回路と、この第1気体供給回路と並列に
設けられかつ小容量用比例圧力制御弁を備えた第
2気体供給回路とを介して溶湯保持炉を圧縮気体
源に連通接続し、さらに、前記電磁開閉弁、前記
比例流量制御弁および前記比例圧力制御弁を計算
機に電気的に接続して前記電磁開閉弁、前記比例
流量制御弁および前記比例圧力制御弁を前記計算
機によつて制御し、前記保持炉内の圧力を、予め
設定した時間−圧力曲線の目標パターンに沿つて
変化させるための低圧鋳造機における圧縮気体供
給回路の計算機による自動制御方法において、前
記第1気体供給回路については、前記計算機に予
め設定された時間−圧力曲線の目標パターンにお
けるある変曲点(J)と次の変曲点(J+1)と
の間に係る圧力上昇速度を、前記目標パターンに
基づき算出し、その算出結果が一定値より大きい
ときには、前記電磁開閉弁が開くようにこの電磁
開閉弁に発信し、前記比例流量制御弁の開口がそ
の算出結果より若干小さい値と対応する大きさに
なるようにこの比例流量制御弁に発信し、前記算
出結果が一定値より小さくなるように変化したと
きには、前記電磁弁が閉じるように該電磁開閉弁
に発信すると同時に前記比例流量制御弁への発信
を停止し、この第1気体供給回路に関する操作と
並行して前記第2気体供給回路については、ある
瞬間の時刻(ti)より単位時間先の時刻(ti+1)
における目標圧力(Pi+1)を、前記計算機に予
め記憶された前記目標パターンに基づき算出し、
この算出された目標圧力(Pi+1)に対応する前
記比例圧力制御弁の定常アナログ値(Vo)を、
前記計算機に予め記憶された前記比例圧力制御弁
の定常アナログ値データに基づき算出し、前記時
刻(ti)における前記保持炉内の圧力(Pm)を
測定し、この圧力(Pm)と前記目標圧力(Pi+
1)との圧力偏差(△P)を算出し、この算出さ
れた圧力偏差(△P)に、予め設定されたゲイン
(G)を掛算して補正アナログ値(Vd)を算出し
たのちこの補正アナログ値(Vd)に前記定常ア
ナログ値(Vo)を加算して指令アナログ値(V)
を算出し、この指令アナログ値(V)を前記比例
圧力制御弁に発信することを特徴とする。
(Means for Solving the Problems) In order to achieve the above objects, the present invention provides a first valve equipped with an electromagnetic on-off valve and a large-capacity proportional flow control valve.
The molten metal holding furnace is communicatively connected to a compressed gas source via a gas supply circuit and a second gas supply circuit provided in parallel with the first gas supply circuit and equipped with a small capacity proportional pressure control valve, and further, The electromagnetic on-off valve, the proportional flow control valve, and the proportional pressure control valve are electrically connected to a computer, and the electromagnetic on-off valve, the proportional flow control valve, and the proportional pressure control valve are controlled by the computer, In the computer-based automatic control method of a compressed gas supply circuit in a low-pressure casting machine for changing the pressure in the holding furnace along a target pattern of a preset time-pressure curve, the first gas supply circuit includes: Calculate the pressure increase rate between a certain inflection point (J) and the next inflection point (J+1) in the target pattern of the time-pressure curve preset in the calculator, based on the target pattern, and When the calculation result is larger than a certain value, a signal is sent to the electromagnetic on-off valve to open it, and this signal is sent to the electromagnetic on-off valve so that the opening of the proportional flow control valve corresponds to a value slightly smaller than the calculation result. transmitting a signal to the proportional flow control valve, and when the calculation result changes to become smaller than a certain value, transmitting a signal to the electromagnetic on-off valve so that the electromagnetic valve closes, and simultaneously stopping the signal to the proportional flow control valve; In parallel with the operation regarding the first gas supply circuit, the second gas supply circuit is operated at a time (ti+1) that is a unit time ahead of a certain moment (ti).
Calculating the target pressure (Pi+1) at based on the target pattern stored in advance in the computer,
The steady analog value (Vo) of the proportional pressure control valve corresponding to this calculated target pressure (Pi+1) is
It is calculated based on steady analog value data of the proportional pressure control valve stored in advance in the computer, the pressure (Pm) in the holding furnace at the time (ti) is measured, and this pressure (Pm) and the target pressure are calculated. (Pi+
1) Calculate the pressure deviation (△P) from The command analog value (V) is obtained by adding the steady analog value (Vo) to the analog value (Vd).
It is characterized by calculating the command analog value (V) and transmitting this command analog value (V) to the proportional pressure control valve.

(作用) 本発明においては、計算機による制御の下に電
磁開閉弁と比例流量制御が互に連動して、変曲点
(J)と次の変曲点(J+1)との間の圧力上昇
速度が前記一定値より大きいときには、電磁開閉
弁が開かれて大容量の圧縮気体が保持炉に供給さ
れる。そして、これと並行してある瞬間の時刻
(ti)より単位時間先の時刻(ti+1)における目
標圧力(Pi+1)に基づいて算出した補正アナロ
グ値(Vd)が、時刻(ti)定常アナログ値(Vo)
に加算され、この加算されたアナログ値が指令ア
ナログ値(V)として比例圧力制御弁に入力さ
れ、流量を制御された小容量の圧縮気体が保持炉
に供給される。
(Function) In the present invention, the electromagnetic on-off valve and the proportional flow rate control are interlocked with each other under computer control to increase the pressure increase rate between the inflection point (J) and the next inflection point (J+1). When is larger than the certain value, the electromagnetic on-off valve is opened and a large volume of compressed gas is supplied to the holding furnace. In parallel with this, the corrected analog value (Vd) calculated based on the target pressure (Pi + 1) at the time (ti + 1) a unit time ahead of the instant (ti) is changed to the steady analog value ( Vo)
This added analog value is input to the proportional pressure control valve as a command analog value (V), and a small volume of compressed gas whose flow rate is controlled is supplied to the holding furnace.

こうして、保持炉には、大容量の基幹用圧縮気
体と小容量の調節用圧縮気体とが同時に供給さ
れ、これにより、保持炉内の溶湯の上面は、目標
パターンの圧力に非常に近似した圧力で押圧され
ることとなる。
In this way, the holding furnace is simultaneously supplied with a large volume of main compressed gas and a small volume of regulating compressed gas, so that the upper surface of the molten metal in the holding furnace has a pressure very close to that of the target pattern. It will be pressed by.

(実施例) 次に本発明の実施例について、第1図、第2
図、第4図および第5図に基づき詳細に説明す
る。本発明を適用した一実施例のブロツク図であ
る第1図に示すように、圧縮気体源としての圧縮
空気源1は、導管2、ミストセパレータ3、一次
減圧弁4、電磁開閉弁5、比例流量制御弁6およ
びフイルタ7を介して溶湯保持炉8に連通接続さ
れている。なお、比例流量制御弁6は、入力され
る電流の大きさに比例した流量の圧縮空気を送り
出すようになつている。また、圧縮空気源1は分
岐管9ミストセパレータ10、一次減圧弁11、
比例圧力制御弁12およびフイルタ13を介して
保持炉8に連通接続されている。なお、比例圧力
制御弁12は、入力される電流の大きさに比例し
た圧力を有する圧縮気体を送り出すようになつて
いる。そして、比例流量制御弁6および比例圧力
制御弁12はアンプリフアイヤ14,15および
D/A変換器16,17を介して計算機18に電
気的に接続されている。そして、計算機18に
は、第2図に示すような、各種の時間−圧力曲線
の目標パターンが記憶されている。
(Example) Next, regarding an example of the present invention, FIGS.
This will be explained in detail based on FIGS. 4 and 5. As shown in FIG. 1, which is a block diagram of an embodiment to which the present invention is applied, a compressed air source 1 as a compressed gas source includes a conduit 2, a mist separator 3, a primary pressure reducing valve 4, an electromagnetic on-off valve 5, a proportional It is connected to a molten metal holding furnace 8 via a flow rate control valve 6 and a filter 7 . Note that the proportional flow control valve 6 is adapted to send out compressed air at a flow rate proportional to the magnitude of the input current. In addition, the compressed air source 1 includes a branch pipe 9, a mist separator 10, a primary pressure reducing valve 11,
It is connected to the holding furnace 8 via a proportional pressure control valve 12 and a filter 13 . Note that the proportional pressure control valve 12 is configured to send out compressed gas having a pressure proportional to the magnitude of the input current. The proportional flow control valve 6 and the proportional pressure control valve 12 are electrically connected to a computer 18 via amplifiers 14 and 15 and D/A converters 16 and 17. The computer 18 stores various target patterns of time-pressure curves as shown in FIG.

また、保持炉8には、圧力センサ19が付設さ
れており、該圧力センサ18はA/D変換器20
を介して計算機18に電気的に接続されている。
また、比例流量制御弁6とフイルタ7との間には
分岐管21を介して電磁開閉弁22が設けられて
いる。なお、23はストーク、24は金型であ
る。
Further, a pressure sensor 19 is attached to the holding furnace 8, and the pressure sensor 18 is connected to an A/D converter 20.
It is electrically connected to the computer 18 via.
Further, an electromagnetic on-off valve 22 is provided between the proportional flow rate control valve 6 and the filter 7 via a branch pipe 21. Note that 23 is a stalk and 24 is a mold.

このように構成された装置は、圧縮空気源1か
ら発生した圧縮空気がミストセパレータ3でミス
トを除去され、一次減圧弁4で適宜の圧力にされ
た後、電磁開閉弁5に至つている。この状態下
で、本発明を適用した一実施例のフローチヤート
である第4図および第5図に示すように、装置を
スタートさせるとイ、まず計算機は、比例制御弁
の時間−圧力特性線図である第2図に示す変曲点
があるか否かをチエツクしロ、例えば変曲点
(J)があると、次の変曲点(J+1)までの圧
力上昇速度が、予め設定された目標パターンに基
づき算出されハ、算出された圧力上昇速度が、比
例流量制御弁6、保持炉8等の規模等によつて決
定される一定値(C)より大きいとニ、電磁開閉
弁5に開の信号が入力されて電磁開閉弁5が開か
れるホ。次いで、この圧力上昇速度よりも若干小
さい圧力上昇速度を得るのに必要な比例流量制御
弁6の開口度が算出されヘ、その結果がD/A変
換器17おびアンプリフアイヤ15を介して比例
流量制御弁6に発信されるト。これにより、比例
流量制御弁6が作動されチ、これに伴い保持炉8
には保持炉8内の圧力が目標パターンよりも若干
低くなるように制御されながら圧縮空気が供給さ
れる。そして、前記ステツプ2において示すよう
に、圧力上昇速度が例えば、前記一定値(C)よ
りも小さくなるように変化すると、計算機18か
らの発信により電磁開閉弁5が閉じられると同時
に比例流量制御弁6への発信が停止される(ステ
ツプ2におけるNO工程)。以上の操作と並行し
て分岐管9に入つた圧縮空気は次のように制御さ
れる。すなわち、圧縮空気源1から発生した圧縮
空気はミストセパレータ10でミストを除去さ
れ、一次減圧弁11で適宜の圧力にされた後、比
例圧力制御弁12に至る。すると、計算機18に
おいては、まず、ある瞬間の時間(ti)より単位
時間先の時間(ti+1)の目標圧力(Pi+1)が
前記目標パターン基づき算出されるヌ。次いで、
この算出された目標圧力(Pi+1)に対応する比
例圧力制御弁12の定常アナログ値(Vo)が、
計算機18に記憶されている比例圧力制御弁12
の定常アナログ値に基づき算出されるル。一方、
前記時間(ti)における保持炉8内の圧力信号が
圧力センサ19により検出されオ、A/D変換器
20を介して計算機18に入力される。この計算
機18にこの圧力(Pm)の圧力信号が入力され
ると、前記目標圧力(Pi+1)と保持炉8内の圧
力(Pm)とから圧力偏差(△P)が算出され
ワ、続いて、この圧力偏差(△P)に、予め設定
されたゲイン(G)が掛算されて補正アナログ値
(Vd)が算出されるカ。次いで、前記定常アナロ
グ値(Vo)と前記補正アナログ値(Vd)とが加
算されて指令アナログ値(V)が算出されヨ、続
いて、この指令アナログ(V)がD/A変換器1
6およびアンプリフアイヤ14を介して比例圧力
制御弁12に送信されるタ。以上の操作が時々
刻々と行なわれる。その結果、保持炉8には導管
2を貫流した基幹用の圧縮空気と分岐管9を貫流
した調節用の圧縮空気とが同時に供給され、湯面
は目標パターンの圧力に非常に近似した圧力で押
圧されて金型24に注湯が行われることとなる。
このようにして、金型24への注湯が完了した
後、電磁開閉弁22を所定時間開いて、保持炉8
内の圧縮空気を排出させる。
In the device configured as described above, compressed air generated from a compressed air source 1 has its mist removed by a mist separator 3, is brought to an appropriate pressure by a primary pressure reducing valve 4, and then reaches an electromagnetic on-off valve 5. Under this condition, as shown in FIGS. 4 and 5, which are flowcharts of an embodiment of the present invention, when the apparatus is started, the computer first calculates the time-pressure characteristic curve of the proportional control valve. Check whether there is an inflection point shown in Figure 2. For example, if there is an inflection point (J), the pressure increase rate up to the next inflection point (J+1) is set in advance. C. If the calculated pressure increase rate is larger than a certain value (C) determined by the scale of the proportional flow rate control valve 6, the holding furnace 8, etc., the electromagnetic on-off valve 5 An open signal is input to , and the electromagnetic on-off valve 5 is opened. Next, the opening degree of the proportional flow rate control valve 6 necessary to obtain a pressure increase rate slightly smaller than this pressure increase rate is calculated, and the result is transferred to the proportional flow control valve 6 via the D/A converter 17 and the amplifier amplifier 15. The signal sent to the flow rate control valve 6. As a result, the proportional flow rate control valve 6 is activated, and accordingly, the holding furnace 8
Compressed air is supplied while being controlled so that the pressure inside the holding furnace 8 is slightly lower than the target pattern. Then, as shown in step 2, when the pressure increase rate changes to become smaller than the constant value (C), for example, the electromagnetic on-off valve 5 is closed by a signal from the computer 18, and at the same time the proportional flow control valve 6 is stopped (NO step in step 2). The compressed air entering the branch pipe 9 in parallel with the above operation is controlled as follows. That is, the compressed air generated from the compressed air source 1 has its mist removed by the mist separator 10 , is brought to an appropriate pressure by the primary pressure reducing valve 11 , and then reaches the proportional pressure control valve 12 . Then, in the calculator 18, first, the target pressure (Pi+1) at a time (ti+1) a unit time ahead of a certain moment (ti) is calculated based on the target pattern. Then,
The steady analog value (Vo) of the proportional pressure control valve 12 corresponding to this calculated target pressure (Pi+1) is
Proportional pressure control valve 12 stored in computer 18
is calculated based on the steady-state analog value of on the other hand,
The pressure signal in the holding furnace 8 at the time (ti) is detected by the pressure sensor 19 and inputted to the computer 18 via the A/D converter 20. When the pressure signal of this pressure (Pm) is input to this calculator 18, the pressure deviation (△P) is calculated from the target pressure (Pi+1) and the pressure in the holding furnace 8 (Pm), and then, This pressure deviation (ΔP) is multiplied by a preset gain (G) to calculate a corrected analog value (Vd). Next, the steady analog value (Vo) and the corrected analog value (Vd) are added to calculate a command analog value (V).
6 and transmitted to the proportional pressure control valve 12 via the amplifier firer 14. The above operations are performed from time to time. As a result, the main compressed air that has flowed through the conduit 2 and the regulating compressed air that has flowed through the branch pipe 9 are simultaneously supplied to the holding furnace 8, and the molten metal surface is kept at a pressure that is very close to the target pattern pressure. Molten metal is poured into the mold 24 by being pressed.
In this way, after pouring into the mold 24 is completed, the electromagnetic on-off valve 22 is opened for a predetermined period of time, and the holding furnace 8
Discharge the compressed air inside.

(発明の効果) 以上の説明からも明らかなように本発明によれ
ば、基幹となる大容量の圧縮気体と同時に調節用
の小容量の圧縮気体が保持炉に供給されるため、
保持炉が大型でも十分に対応することが可能にな
り、しかも、比例圧力制御12は、比例圧力制御
12の平常アナログ値(Vo)に補助アナログ値
(Vd)を加算したアナログ値(V)により制御さ
れるため、調節用流体の調節精度が非常に正確に
なり、制御される圧縮気体の圧力が、目標パター
ンの圧力に非常に近ずくなどの優れた効果を奏す
る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a small volume of compressed gas for adjustment is supplied to the holding furnace at the same time as a large volume of the main compressed gas.
Even if the holding furnace is large, the proportional pressure control 12 is controlled by an analog value (V) obtained by adding the auxiliary analog value (Vd) to the normal analog value (Vo) of the proportional pressure control 12. Because of this control, the adjustment accuracy of the adjustment fluid becomes very accurate, and the pressure of the controlled compressed gas comes very close to the pressure of the target pattern, providing excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した一実施例の装置のブ
ロツク図、第2図および第3図は比例制御弁の時
間−圧力特性線図、第4図および第5図は本発明
の一実施例を示すフローチヤート、第6図は、従
来の低圧鋳造機の構成図である。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are time-pressure characteristic diagrams of a proportional control valve, and FIGS. 4 and 5 are an embodiment of the present invention. An exemplary flowchart, FIG. 6, is a block diagram of a conventional low-pressure casting machine.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁開閉弁および大容量用比例流量制御弁を
備えた第1気体供給回路と、この第1気体供給回
路と並列に設けられかつ小容量用比例圧力制御弁
を備えた第2気体供給回路とを介して溶湯保持炉
を圧縮気体源に連通接続し、さらに、前記電磁開
閉弁、前記比例流量制御弁および前記比例圧力制
御弁を計算機に電気的に接続して前記電磁開閉
弁、前記比例流量制御弁および前記比例圧力制御
弁を前記計算機によつて制御し、前記保持炉内の
圧力を、予め設定した時間−圧力曲線の目標パタ
ーンに沿つて変化させるための低圧鋳造機におけ
る圧縮気体供給回路の計算機による自動制御方法
であつて、前記第1気体供給回路については、前
記計算機に予め設定された時間−圧力曲線の目標
パータンにおけるある変曲点(J)と次の変曲点
(J+1)との間に係る圧力上昇速度を、前記目
標パターンに基づき算出し、その算出結果が一定
値より大きいときには、前記電磁開閉弁が開くよ
うにこの電磁開閉弁に発信し、前記比例流量制御
弁の開口がその算出結果より若干小さい値と対応
する大きさになるように該比例流量制御弁に発信
し、前記算出結果が一定値より小さくなるように
変化したときには、前記電磁開閉弁が閉じるよう
に該電磁開閉弁に発信すると同時に前記比例流量
制御弁への発信を停止し、この第1気体供給回路
に関する操作と並行して前記第2気体供給回路に
ついては、ある瞬間の時刻(ti)より単位時間先
の時刻(ti+1)における目標圧力(Pi+1)
を、前記計算機に予め記憶された前記目標パター
ンに基づき算出し、この算出された目標圧力(Pi
+1)に対応する前記比例制御弁の定常アナログ
値(Vo)を、前記計算機に予め記憶された前記
比例圧力制御弁の定常アナログ値データに基づき
算出し、前記時刻(ti)における前記保持炉内の
圧力(Pm)を測定し、この圧力(Pm)と前記
目標圧力(Pi+1)との圧力偏差(△P)を算出
し、この算出された圧力偏差(△P)に、予め設
定されたゲイン(G)を掛算して補正アナログ値
(Vd)を算出した後該補正アナログ値(Vd)に
前記定常アナログ値(Vo)を加算して指令アナ
ログ値(V)を算出し、この指令アナログ値
(V)を前記比例圧力制御弁に発信することを特
徴とする低圧鋳造機における圧力気体供給回路の
計算機による自動制御方法。
1. A first gas supply circuit equipped with an electromagnetic on-off valve and a proportional flow control valve for large capacity, and a second gas supply circuit provided in parallel with this first gas supply circuit and equipped with a proportional pressure control valve for small capacity. The molten metal holding furnace is communicatively connected to a compressed gas source through a computer, and the electromagnetic on-off valve, the proportional flow rate control valve, and the proportional pressure control valve are electrically connected to a computer to control the electromagnetic on-off valve, the proportional flow rate control valve, and the proportional flow rate control valve. A compressed gas supply circuit in a low pressure casting machine for controlling a control valve and the proportional pressure control valve by the computer and changing the pressure in the holding furnace along a target pattern of a preset time-pressure curve. An automatic control method using a computer, in which, for the first gas supply circuit, a certain inflection point (J) and a next inflection point (J+1) in a target pattern of a time-pressure curve preset in the computer are provided. The rate of pressure rise between the proportional flow control valve and A signal is sent to the proportional flow control valve so that the opening becomes a size corresponding to a value slightly smaller than the calculated result, and when the calculated result changes to become smaller than a certain value, the electromagnetic on-off valve closes. Simultaneously with the transmission to the electromagnetic on-off valve, the transmission to the proportional flow rate control valve is stopped, and in parallel with the operation regarding the first gas supply circuit, the second gas supply circuit is controlled from a certain instant of time (ti). Target pressure (Pi+1) at the time ahead (ti+1)
is calculated based on the target pattern stored in advance in the computer, and this calculated target pressure (Pi
The steady analog value (Vo) of the proportional pressure control valve corresponding to +1) is calculated based on the steady analog value data of the proportional pressure control valve stored in advance in the computer, and Measure the pressure (Pm), calculate the pressure deviation (△P) between this pressure (Pm) and the target pressure (Pi + 1), and apply a preset gain to this calculated pressure deviation (△P). (G) to calculate a corrected analog value (Vd), then add the steady analog value (Vo) to the corrected analog value (Vd) to calculate a command analog value (V), and then calculate the command analog value (V). (V) to the proportional pressure control valve, an automatic control method using a computer for a pressure gas supply circuit in a low pressure casting machine.
JP5794186A 1986-01-22 1986-03-14 Automatic control method for fluid supply circuit by computer Granted JPS62214416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5794186A JPS62214416A (en) 1986-03-14 1986-03-14 Automatic control method for fluid supply circuit by computer
US07/003,897 US4741381A (en) 1986-01-22 1987-01-16 Method of and apparatus for automatically controlling pressure in holding furnace incorporated in low pressure die-casting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5794186A JPS62214416A (en) 1986-03-14 1986-03-14 Automatic control method for fluid supply circuit by computer

Publications (2)

Publication Number Publication Date
JPS62214416A JPS62214416A (en) 1987-09-21
JPH0426724B2 true JPH0426724B2 (en) 1992-05-08

Family

ID=13070057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5794186A Granted JPS62214416A (en) 1986-01-22 1986-03-14 Automatic control method for fluid supply circuit by computer

Country Status (1)

Country Link
JP (1) JPS62214416A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685536B2 (en) * 1988-09-30 1997-12-03 株式会社日立製作所 Method for controlling fluid supply to equipment
US5142483A (en) * 1990-04-24 1992-08-25 Caltechnix Corporation Pressure regulating system for positive shut-off pressure controller

Also Published As

Publication number Publication date
JPS62214416A (en) 1987-09-21

Similar Documents

Publication Publication Date Title
KR20100095508A (en) Method and device for controlling pressure of vacuum container
JPS6061157A (en) Low-pressure die casting device and method
US4741381A (en) Method of and apparatus for automatically controlling pressure in holding furnace incorporated in low pressure die-casting system
JPH0426724B2 (en)
JP2528313B2 (en) Pressure control device
JPH0426723B2 (en)
JPH0244926Y2 (en)
JP3268304B2 (en) Pressure control device in low pressure casting machine
JPH07276033A (en) Automatic booster for low pressure casting machine
JPH0416260B2 (en)
JPS62202209A (en) Method for controlling automatically proportional control valve by computer
JPS5973169A (en) Control device for low pressure casting
JP3154377B2 (en) Pressure control method for low pressure casting machine
JPS61150765A (en) Pressure type pouring furnace
JP2820895B2 (en) Method of improving hot water supply accuracy in pre-level hot water supply control method
JPH0426936B2 (en)
JP2719736B2 (en) Pressurized hot water supply control method and constant cycle pressurized hot water supply control method
JP2774031B2 (en) Method and apparatus for controlling water level in distribution reservoir
KR100786010B1 (en) Dynamometer control system with P.I.DProportional Integral Derivative control algorithm
JPS6111146B2 (en)
JPS6043226B2 (en) casting equipment
JPS63104113A (en) Control method for flow rate of fluid
JPH066899U (en) Fuel tank pressure controller
JPS62168652A (en) Molten metal surface level control method in continuous casting machine
JPS59177618A (en) Pressure control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees