JP2820895B2 - Method of improving hot water supply accuracy in pre-level hot water supply control method - Google Patents

Method of improving hot water supply accuracy in pre-level hot water supply control method

Info

Publication number
JP2820895B2
JP2820895B2 JP25144994A JP25144994A JP2820895B2 JP 2820895 B2 JP2820895 B2 JP 2820895B2 JP 25144994 A JP25144994 A JP 25144994A JP 25144994 A JP25144994 A JP 25144994A JP 2820895 B2 JP2820895 B2 JP 2820895B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
molten metal
level
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25144994A
Other languages
Japanese (ja)
Other versions
JPH0890200A (en
Inventor
幸彦 新沢
一雄 吉越
紘一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Engr Corp
Original Assignee
Tanabe Engr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Engr Corp filed Critical Tanabe Engr Corp
Priority to JP25144994A priority Critical patent/JP2820895B2/en
Publication of JPH0890200A publication Critical patent/JPH0890200A/en
Application granted granted Critical
Publication of JP2820895B2 publication Critical patent/JP2820895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属(溶湯或いは
金属溶湯)を貯留した保温炉内の溶湯を保温炉内への気
体による加圧によりダイカストマシン等の鋳型に給湯す
る溶融金属の給湯方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply system for a molten metal in which a molten metal (a molten metal or a molten metal) is supplied to a mold such as a die casting machine by pressurizing a molten metal in a thermal insulation furnace with a gas into the thermal insulation furnace. It is about the method.

【0002】[0002]

【従来の技術】従来、金属溶湯を金型或いはダイカスト
マシンのプランジャスリーブ等に給湯する方法として各
種のものが知られている。例えば、特公51−3670
4、特開60−152356、実開平3−85156、
特公63−61110、特開平2−127955、特開
平6−23510及び特開6−155005等である。
2. Description of the Related Art Conventionally, various methods are known for supplying molten metal to a mold or a plunger sleeve of a die casting machine. For example, Japanese Patent Publication No. 51-3670
4, JP-A-60-152356, Japanese Utility Model Laid-Open No. 3-85156,
Japanese Patent Publication No. 63-61110, JP-A-2-127555, JP-A-6-23510 and JP-A-6-155005.

【0003】これらの方法は、それぞれ実績もあり、近
年の鋳造技術の向上に大きな役割を果たしてきている。
しかしながら、鋳造技術の向上とコストダウンを大きな
目的とした生産性向上への取組と省力化への要求はより
細かく、より厳しく増してきている。
[0003] Each of these methods has a proven track record and has played a significant role in improving casting techniques in recent years.
However, efforts to improve productivity and reduce labor have been made for the purpose of improving casting technology and reducing costs.

【0004】そうした観点から評価した場合、解決すべ
き課題は多いと言える。
[0004] When evaluated from such a viewpoint, it can be said that there are many problems to be solved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、鋳造技術の向上とコストダウン
を大きな目的とした生産性向上への取組と省力化への要
求のより細かく、より厳しい増加に対応すべく、特開平
6−155005で発明された技術をより高度化するた
めに、近年急速に高度化高速化されたマイコン制御技術
を活用し、給湯精度を高めるべく、ロングスパンでの変
動要因、ショートスパンでの変動要因を個別に取り上げ
解決することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in order to improve the casting technique and to reduce the cost and to improve the productivity and reduce the demand for labor saving. In order to respond to the more severe increase, in order to further enhance the technology invented in JP-A-6-155005, use the microcomputer control technology which has been rapidly advanced in recent years, and to increase the accuracy of hot water supply, The purpose is to individually address and solve the variation factors in the span and the variation factors in the short span.

【0006】と同時に、毎回の給湯の都度発生する酸化
物薄膜の堆積による給湯管内面の微妙な状態変化に基づ
く給湯精度の劣化を防止することを課題とし、併せて給
湯管内或いはダイカストマシンプランジャスリーブとの
取り合い部分等での酸化物等の除去の保全の頻度或いは
操業上の時間的損失を大幅に軽減させる事を課題とす
る。
At the same time, another object of the present invention is to prevent the deterioration of the accuracy of hot water supply due to a subtle state change of the inner surface of the hot water supply pipe due to the deposition of an oxide thin film generated each time hot water is supplied. It is an object of the present invention to significantly reduce the frequency of maintenance of the removal of oxides and the like or the time loss in the operation at a portion where the contact is made.

【0007】[0007]

【課題を解決するための手段】加圧式給湯炉の炉内に貯
留した金属溶湯の保持量の最大量の時点から最少量の時
点までの炉内空間の変化に圧縮性流体たる気体を加圧源
とすることに伴う必然的な給湯量の減少傾向即ち、給湯
精度の変動に対しては本願発明請求項1として次の手段
が用意された。
Means for Solving the Problems A gas as a compressible fluid is pressurized by a change in the furnace space from the time when the amount of retained molten metal stored in the furnace of the pressurized water heater is the maximum to the time when the amount is small. The following means is provided as claim 1 of the present invention with respect to the tendency of decreasing the amount of hot water supply inevitably accompanying the use as a source, that is, fluctuations in the accuracy of hot water supply.

【0008】即ち、個別給湯制御開始直前の炉内圧力値
を測定し、その測定値と、予め給湯制御装置の演算器に
炉内の金属溶湯が基準最大保持量時における基準プリレ
ベル保持圧力値として測定格納されている値とを用いて
次式数1の関係演算式で演算し加圧制御を補正する。
That is, the pressure in the furnace immediately before the start of individual hot water supply control is measured, and the measured value is stored in advance in a computing unit of the hot water supply control device as a reference pre-level holding pressure value when the molten metal in the furnace is at the reference maximum holding amount. The pressure control is corrected by calculating the relational expression of the following equation 1 using the measured and stored values.

【0009】[0009]

【数1】(Equation 1)

【0010】加圧式給湯炉に貯留された金属溶湯をダイ
カストマシンプランジャスリーブに給湯する連続操業時
において、ダイカストマシンプランジャスリーブの湯受
け口に接して溶湯流出口を有し前記の貯留した金属溶湯
中に溶湯流入口を有し前記の溶湯流出口の定位置への金
属溶湯の到達を検知する溶湯センサを装置した給湯管か
ら実際に給湯している時以外は炉内に貯留した金属溶湯
を前記の給湯管の予め設定された一定の幅を持った高さ
位置にプリレベル保持することに起因する給湯開始時の
プリレベル高さ位置の個別的なずれからくる給湯量のシ
ョートスパン内での誤差、即ち給湯精度の変動に対して
は本願発明請求項2として次の手段が用意された。
In a continuous operation in which the molten metal stored in the pressurized hot water supply furnace is supplied to the die casting machine plunger sleeve, the molten metal is provided with a molten metal outlet in contact with a hot water receiving port of the die casting machine plunger sleeve. Except when the molten metal is actually supplied from a hot water supply pipe equipped with a molten metal sensor having a molten metal inlet and detecting the arrival of the molten metal to a fixed position of the molten metal outlet, the molten metal stored in the furnace is used as described above. Error in the short span of the hot water supply amount coming from the individual shift of the pre-level height position at the start of hot water supply caused by holding the pre-level at a height position having a preset constant width of the hot water supply pipe, That is, the following means is provided as claim 2 of the present invention with respect to fluctuations in hot water supply accuracy.

【0011】個別給湯制御開始から給湯管溶湯流出口の
定位置に装置された給湯管溶湯流出口の定位置への金属
溶湯の到達を検知する溶湯センサが金属溶湯を検知する
までの時間を測定し、その測定値と、同様に毎回測定さ
れ格納された当該個別給湯前10回分の給湯制御におけ
る給湯制御開始から給湯管溶湯流出口の定位置に装置さ
れた給湯管溶湯流出口の定位置への金属溶湯の到達を検
知する溶湯センサが金属溶湯を検知するまでの時間デー
タ平均値とを用いて、次式数2の関係演算式で演算し加
圧制御を補正する。
The time from the start of the individual hot water supply control to the time when the molten metal sensor, which is provided at the fixed position of the molten metal outlet of the hot water supply pipe and detects the arrival of the molten metal at the fixed position of the molten metal outlet, detects the molten metal. Then, from the start of the hot water supply control in the hot water supply control for the ten times before the individual hot water supply, which is measured and stored each time, similarly to the measured value, and to the fixed position of the hot water supply pipe melt outlet provided at the fixed position of the hot water supply pipe melt outlet. Using the average value of the time data until the molten metal sensor that detects the arrival of the molten metal of the above-described type, and the average value of the data, the pressure is controlled by the relational expression of the following equation (2).

【0012】[0012]

【数2】(Equation 2)

【0013】加圧式給湯炉に外部から溶湯を補給する時
に、連続運転を停止せずに補給を行なう連続受湯管と受
湯ホッパーと受湯ホッパー蓋とで構成される連続受湯装
置からの金属溶湯の補給に伴い、必然的に炉内溶湯量が
増加し、炉内の気体の保有体積が減少し反比例的に炉内
圧が上昇し、給湯管の予め設定された一定の高さ位置に
プリレベル保持された金属溶湯の高さも通常給湯制御時
に比して変化量が大きくなり、給湯精度を変動させるこ
とに対しては本願発明請求項3として次の手段が用意さ
れた。
[0013] When replenishing molten metal to the pressurized hot water supply furnace from the outside, the continuous hot water receiving apparatus is composed of a continuous hot water receiving pipe, a hot water receiving hopper, and a hot water receiving hopper lid for performing replenishing without stopping continuous operation. With the replenishment of the molten metal, the amount of molten metal in the furnace inevitably increases, the volume of gas held in the furnace decreases, and the furnace pressure rises in inverse proportion to the predetermined height position of the hot water supply pipe. The amount of change in the height of the molten metal held at the pre-level is also larger than that in the normal hot water supply control, and the following means is provided as claim 3 of the present invention for changing the hot water supply accuracy.

【0014】連続受湯装置の受湯ホッパー蓋の開放状態
をリミットスイッチ等のセンサ信号により連続受湯中と
認識し、炉内の金属溶湯の量的推移を常時追跡測定する
ためのロードセル信号値の変化度合いを比較判断し、そ
の変化度合いに見合った補正を次式数3の関係演算式で
演算し加圧制御を補正する。
A load cell signal value for recognizing the open state of the hot water receiving hopper lid of the continuous hot water receiving apparatus as continuous hot water receiving by a sensor signal of a limit switch or the like and constantly tracking and measuring a quantitative transition of the molten metal in the furnace. The degree of change is compared and determined, and a correction corresponding to the degree of change is calculated by the following relational expression 3 to correct the pressurization control.

【0015】[0015]

【数3】(Equation 3)

【0016】毎回の給湯の都度発生する酸化物薄膜の堆
積による給湯管内面の微妙な状態変化に基づく給湯精度
の劣化と、給湯管内或いはダイカストマシンプランジャ
スリーブとの取り合い部分等での保全の頻度或いは操業
上の時間的損失を大幅に軽減させることに対しては本願
発明請求項4として次の手段が用意された。
Deterioration of the accuracy of hot water supply due to subtle changes in the state of the inner surface of the hot water supply pipe due to the deposition of an oxide thin film generated each time hot water is supplied, and the frequency of maintenance in the hot water supply pipe or at the connection with the die casting machine plunger sleeve or the like. The following means is provided as claim 4 of the present invention in order to greatly reduce the operational time loss.

【0017】加圧式給湯炉に、給湯管の溶湯流出口に向
け不活性ガス吹出し口を配置し外部の不活性ガス供給源
から不活性ガスの加熱装置を経由し供給される高温不活
性ガスの供給を給湯制御装置からの信号によって管路を
開閉できる不活性ガスバルブを個別に有した並列管路を
保有した不活性ガス供給管を追加装備し、給湯管周りの
酸化物等の薄膜の生成を抑制し、個別給湯操作直後毎に
給湯管周りの酸化物等の薄膜を吹き飛ばすことにより給
湯管内面の微妙な状態変化に基づく給湯精度の劣化を防
止し、給湯管内或いはダイカストマシンプランジャスリ
ーブとの取り合い部分等での保全の頻度或いは操業上の
時間的損失を大幅に軽減させる。
In the pressurized hot water supply furnace, an inert gas outlet is disposed toward the molten metal outlet of the hot water supply pipe, and a high-temperature inert gas supplied from an external inert gas supply source via an inert gas heating device is provided. An inert gas supply pipe equipped with a parallel pipe with individual inert gas valves that can open and close the pipe by a signal from the hot water supply control device is additionally equipped to generate thin films such as oxides around the hot water pipe. Suppress and prevent the deterioration of the accuracy of hot water supply due to the subtle state change of the inner surface of the hot water pipe by blowing off the thin film such as the oxide around the hot water pipe immediately after the individual hot water supply operation, and the connection with the inside of the hot water pipe or the die casting machine plunger sleeve Significantly reduce the frequency of maintenance or operational time loss in parts and the like.

【0018】[0018]

【作用】これらの課題を解決するための手段を実施する
ことで、以下の作用がある。本願請求項1に基づく発明
の手段を実施することで、加圧式給湯炉の炉内に貯留し
た金属溶湯の保持量の最大量の時点から最少量の時点ま
での炉内空間の変化に圧縮性流体たる気体を加圧源とす
ることに伴う必然的な給湯量の減少傾向を、徐々に増加
補正することで給湯精度を格段に向上すべく給湯制御に
作用する。
By implementing the means for solving these problems, the following effects can be obtained. By carrying out the means of the invention based on claim 1 of the present application, the change in the furnace space from the maximum amount to the minimum amount of the retained amount of the molten metal stored in the furnace of the pressurized hot water supply furnace is compressed. By gradually increasing and correcting the inevitable tendency of the amount of hot water supplied due to the use of a gas as a pressurizing source as a pressurizing source, the present invention acts on hot water supply control in order to significantly improve hot water supply accuracy.

【0019】本願請求項2に基づく発明の手段を実施す
ることで、給湯管の予め設定された一定の幅を持った高
さ位置にプリレベル保持することに起因する給湯開始時
のプリレベル高さ位置の個別的なずれからくる給湯量の
ショートスパン内での誤差、即ち給湯精度の変動が抑制
され、ショートスパン内での給湯量の平準化として作用
する。
By implementing the means of the invention based on claim 2 of the present application, the pre-level height position at the start of hot water supply caused by holding the pre-level at a height position having a predetermined constant width of the hot water supply pipe. In the short span, an error in the hot water supply amount due to the individual deviation of the hot water supply, that is, a change in the hot water supply accuracy is suppressed, and the hot water supply amount in the short span acts as a level.

【0020】本願請求項3に基づく発明の手段を実施す
ることで、加圧式給湯炉に外部から連続運転を停止せず
に連続受湯装置から金属溶湯を補給することに伴い、必
然的に給湯中であるにもかかわらず炉内の金属溶湯の保
持量が増加し給湯精度を変動させることに対して給湯量
の補正を行い、金属溶湯の炉外からの補給の状態変化に
対応した給湯制御をスムーズに行うべく作用する。
By implementing the means of the invention based on claim 3 of the present application, the supply of molten metal from the continuous hot water receiving device to the pressurized hot water supply furnace without stopping the continuous operation from the outside is inevitable. Despite the fact that the amount of molten metal in the furnace is increased and the accuracy of the hot water supply fluctuates, the hot water supply amount is corrected, and hot water supply control corresponding to changes in the state of replenishment of the molten metal from outside the furnace It works to perform smoothly.

【0021】本願請求項4に基づく発明の手段を実施す
ることで、毎回の給湯の都度発生する酸化物薄膜の堆積
による給湯管内面の微妙な状態変化に基づく給湯精度の
劣化を防止し、給湯管内或いはダイカストマシンプラン
ジャスリーブとの取り合い部分等での保全の頻度或いは
操業上の時間的損失を大幅に軽減すべく作用する。
By implementing the means of the invention based on claim 4 of the present application, it is possible to prevent deterioration of the accuracy of hot water supply due to a subtle state change of the inner surface of the hot water supply pipe due to deposition of an oxide thin film generated each time hot water is supplied. It works to greatly reduce the frequency of maintenance or the loss of time in operation in a pipe or at a connection portion with a plunger sleeve of a die casting machine.

【0022】本願請求項5に基づく発明の手段を実施す
ることで、加圧式給湯炉の炉内に貯留した金属溶湯の保
持量の最大量の時点から最少量の時点までの炉内空間の
変化に圧縮性流体たる気体を加圧源とすることに伴う必
然的な給湯量の減少傾向を、徐々に増加補正することで
給湯精度を格段に向上させるべく作用し、給湯開始時の
プリレベル高さ位置の個別的なずれからくる給湯量のシ
ョートスパン内での誤差、即ち給湯精度の変動が抑制さ
れ、ショートスパン内での給湯量の平準化として作用
し、連続運転を停止せずに連続受湯装置から金属溶湯を
補給することに伴い、必然的に給湯中であるにもかかわ
らず炉内の金属溶湯の保持量が増加し給湯精度を変動さ
せることに対して給湯量の補正を行い、金属溶湯の補給
の状態変化に対応した給湯制御をスムーズに行うべく作
用し、毎回の給湯の都度発生する酸化物薄膜の堆積によ
る給湯管内面の微妙な状態変化に基づく給湯精度の劣化
を防止し、給湯管内或いはダイカストマシンプランジャ
スリーブとの取り合い部分等での保全の頻度或いは操業
上の時間的損失を大幅に軽減すべく作用する。
By implementing the means of the invention based on claim 5 of the present application, the change in the furnace space from the time when the retained amount of the molten metal stored in the furnace of the pressurized hot water supply furnace is the maximum to the time when the amount is the minimum is obtained. In order to improve the accuracy of hot water supply by gradually increasing and correcting the inevitable tendency of the hot water supply due to the use of gas as a compressible fluid as a pressurized source, the pre-level height at the start of hot water supply Errors in the hot water supply amount within the short span due to individual deviations in the position, that is, fluctuations in the hot water supply accuracy are suppressed, which acts as a leveling of the hot water supply amount in the short span, and the continuous operation without stopping the continuous operation. With the replenishment of the molten metal from the hot water system, the amount of retained molten metal in the furnace is inevitably increased even though the molten metal is being supplied, and the correction of the amount of molten metal is performed, Responding to changes in the state of supply of molten metal It acts to perform hot water supply control smoothly, prevents deterioration of hot water supply accuracy due to subtle changes in the state of the inside of the hot water supply pipe due to the deposition of an oxide thin film that occurs each time hot water is supplied, and prevents the hot water supply pipe or the die-casting machine plunger sleeve. It works to greatly reduce the frequency of maintenance or the time loss in operation at the connection part.

【0023】[0023]

【実施例】図1は本発明請求項1に基づくプリレベル給
湯制御方法における給湯精度向上の方法の一実施例に基
づくシステム構成概念図であり、図3は本発明請求項1
に基づくプリレベル給湯制御方法における給湯精度向上
の方法の一実施例に基づく加圧式給湯炉17内の金属溶
湯1の挙動を示す概念図であるが、以下図面を参照しな
がら本発明請求項1に基づくプリレベル給湯制御方法に
おける給湯精度向上の方法の一実施例を説明する。
FIG. 1 is a conceptual diagram of a system configuration based on one embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 1 of the present invention, and FIG.
FIG. 3 is a conceptual diagram showing the behavior of the molten metal 1 in the pressurized hot water supply furnace 17 based on one embodiment of a method for improving the accuracy of hot water supply in a pre-level hot water supply control method based on the present invention. An embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method based on the embodiment will be described.

【0024】ダイカストマシンとの鋳造運転の開始に先
立ち、加圧式給湯炉17に連続受湯管23と受湯ホッパ
ー24と受湯ホッパー蓋25とで構成される連続受湯装
置の受湯ホッパー蓋25が開放され金属溶湯1が受け入
れられ受湯ホッパー蓋25が閉じられる。受け入れられ
た金属溶湯1の量はロードセル22によって連続的に測
定され、一定サイクルでサンプリングされたデータは図
示されていない制御盤に伝送される。
Prior to the start of the casting operation with the die casting machine, a hot water receiving hopper lid of a continuous hot water receiving apparatus composed of a continuous hot water receiving pipe 23, a hot water receiving hopper 24 and a hot water receiving hopper lid 25 in the pressurized hot water supply furnace 17 is provided. 25 is opened, the molten metal 1 is received, and the hot water receiving hopper lid 25 is closed. The amount of the molten metal 1 received is continuously measured by the load cell 22, and data sampled in a constant cycle is transmitted to a control panel (not shown).

【0025】鋳造運転開始の条件が整えば、図示されて
いない制御盤面上のスイッチによりプリレベル制御のス
タートが入力起動される。直ちに、図示されていない外
部の加圧源に接続された加圧導管8の管路に配置された
プリレベル加圧バルブA71が開放され加圧式給湯炉1
7内に図示されていない加圧源から加圧気体が供給さ
れ、加圧式給湯炉17内の金属溶湯1は給湯管16内を
上昇し、並行して加圧式給湯炉17内に圧力測定口が配
置された圧力測定導管4を介して図示されていない制御
盤内の給湯制御装置5に加圧式給湯炉17内の圧力が伝
達され常時連続的に測定され、図3における定常状態か
らプリレベル保持状態へ移行する。
When the conditions for starting the casting operation are satisfied, the start of the pre-level control is input and activated by a switch on the control panel (not shown). Immediately, the pre-level pressurizing valve A71 disposed in the conduit of the pressurizing conduit 8 connected to an external pressurizing source (not shown) is opened and the pressurized water heater 1 is opened.
A pressurized gas is supplied from a pressurizing source (not shown) into the inside 7, and the molten metal 1 in the pressurized hot water supply furnace 17 rises in the hot water supply pipe 16, and at the same time, a pressure measuring port is provided in the pressurized hot water supply furnace 17. The pressure in the pressurized water heater 17 is transmitted to the hot water supply control device 5 in the control panel (not shown) via the pressure measurement conduit 4 in which the pressure is measured, and is continuously measured, and the pre-level is maintained from the steady state in FIG. Move to state.

【0026】加圧式給湯炉17内の圧力が上昇し、前記
のロードセル22により測定され図示されていない制御
盤に伝送された金属溶湯1の保持量に基づき図示されて
いない制御盤内の給湯制御装置5で演算設定されたプリ
レベル保持のための圧力の一定の幅の下限値に到達すれ
ば、プリレベル加圧バルブA71が閉止され、給気量が
プリレベル加圧バルブA71より給湯管16内を上昇す
る金属溶湯1の挙動が静かで安定的である図示されてい
ない外部の加圧源に接続された加圧導管8の管路に配置
されたプリレベル加圧バルブB72が開放され、前記の
給湯制御装置5で演算設定されたプリレベル制御値に到
達すればプリレベル加圧バルブB72が閉止され、プリ
レベル保持状態となる。
The pressure in the pressurized hot water supply furnace 17 increases, and the hot water supply control in the control panel (not shown) is performed based on the retained amount of the molten metal 1 measured by the load cell 22 and transmitted to the control panel (not shown). When the lower limit of the predetermined width of the pressure for maintaining the pre-level calculated by the apparatus 5 is reached, the pre-level pressurizing valve A71 is closed, and the air supply amount rises in the hot water supply pipe 16 from the pre-level pressurizing valve A71. The pre-level pressurizing valve B72 arranged in the conduit of the pressurizing conduit 8 connected to an external pressurizing source (not shown) in which the behavior of the molten metal 1 to be heated is quiet and stable is opened, and the hot water supply control is performed. When the pre-level control value calculated by the device 5 is reached, the pre-level pressurizing valve B72 is closed, and the pre-level is maintained.

【0027】加圧式給湯炉17はその使用時における温
度条件等から、適正なコスト範囲で完全な密封構造とし
てシール面からの気体の漏れを防ぐことは困難であるの
で、必然的にシール面から微量であるにしろ内部の気体
が漏れだし内圧は減少する。その結果、加圧式給湯炉1
7の内圧が給湯制御装置5で演算設定されたプリレベル
保持のための圧力の一定の幅の下限値になれば、再びプ
リレベル加圧バルブB72が開放される。こうして、プ
リレベル保持状態においてはプリレベル加圧バルブB7
2の開放と閉止が繰り返される。
The pressurized water heater 17 is difficult to prevent gas leakage from the sealing surface as a completely sealed structure within an appropriate cost range due to the temperature conditions at the time of its use. Even if the amount is small, the gas inside leaks out and the internal pressure decreases. As a result, the pressurized water heater 1
When the internal pressure of 7 becomes the lower limit value of a certain width of the pre-level holding pressure calculated and set by the hot water supply control device 5, the pre-level pressurizing valve B72 is opened again. Thus, in the pre-level holding state, the pre-level pressurizing valve B7
2 is repeatedly opened and closed.

【0028】なお、プリレベル加圧バルブB72が閉止
されてもなんらかの原因で炉内圧が上昇し、前記の給湯
制御装置5で演算設定されたプリレベル保持のための圧
力の一定の幅の上限値を超えた値となれば、プリレベル
排気バルブA91が開放される。この時、プリレベル排
気バルブA91から放出される気体の単位放出量は給湯
管16内における金属溶湯1が大きく脈動しない安定し
た挙動を示すように調節されている。炉内圧が再び、給
湯制御装置5で演算設定されたプリレベル制御値となれ
ば前記のプリレベル排気バルブA91は閉止される。
Even if the pre-level pressurizing valve B72 is closed, the furnace internal pressure rises for some reason and exceeds the upper limit of a certain range of the pressure for maintaining the pre-level calculated by the hot water supply controller 5. When the value reaches the preset value, the pre-level exhaust valve A91 is opened. At this time, the unit discharge amount of the gas discharged from the pre-level exhaust valve A91 is adjusted so that the molten metal 1 in the hot water supply pipe 16 exhibits a stable behavior without large pulsation. When the furnace pressure again reaches the pre-level control value calculated and set by the hot water supply control device 5, the pre-level exhaust valve A91 is closed.

【0029】ダイカストマシンの準備が整い図示されて
いない制御盤にダイカストマシンから給湯要求指令が出
されたならば、加圧式給湯炉17はプリレベル保持状態
から給湯状態に移行し、プリレベル加圧バルブB72及
びプリレベル排気バルブA91は原点待機(いずれも閉
止し、指令待ち。)となり、その時の炉内圧力が測定さ
れ、その測定値が図示されていない制御盤内の給湯制御
装置5の演算器にデータとして伝送され、加圧式給湯炉
17が設置され試運転調整された時点で測定し予め前記
の演算器に格納されている加圧式給湯炉17内の金属溶
湯1の基準最大保持時における基準プリレベル保持圧力
値と共に次式数1の関係演算式で溶湯センサ18によっ
て金属溶湯1が検知された後に差圧時間値として増圧さ
れる時間が演算決定され、制御値として給湯制御装置5
に設定される。即ち、基準プリレベル保持圧力値との差
の割合に基づいて給湯量を増加補正します。
When the die casting machine is ready and a hot water supply request command is issued from the die casting machine to a control panel (not shown), the pressurized water heater 17 shifts from the pre-level holding state to the hot water supply state, and the pre-level pressurizing valve B72. And the pre-level exhaust valve A91 waits for the origin (both are closed and waits for a command), the pressure in the furnace at that time is measured, and the measured value is stored in the arithmetic unit of the hot water supply control device 5 in the control panel (not shown). The reference pre-level holding pressure at the time of holding the reference maximum of the molten metal 1 in the pressurized water heater 17 previously stored in the above-described calculator and measured when the pressurized water heater 17 is installed and adjusted for trial operation. Along with the value, the time required to increase the pressure as the differential pressure time value after the molten metal sensor 1 is detected by the molten metal sensor 18 is calculated by the relational arithmetic expression of the following equation 1. A hot water supply control unit 5 as a control value
Is set to That is, the hot water supply is increased and corrected based on the ratio of the difference from the reference pre-level holding pressure value.

【0030】[0030]

【数1】(Equation 1)

【0031】ここで、 TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 PDS:給湯開始時に測定され制御盤内の給湯制御装置の
演算器に伝送される炉内圧力値。 PPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準プリレベル保持圧力値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 ちなみに、実用上演算し設定される時間の単位は10ms
ecである。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. PDS: Furnace pressure value measured at the start of hot water supply and transmitted to the arithmetic unit of the hot water supply control device in the control panel. PPHI: Reference pre-level holding pressure value at the time of holding the reference maximum of the molten metal in the pressurized water heater. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. By the way, the unit of time that is calculated and set for practical use is 10 ms
ec.

【0032】前述の一連の制御と並行して、加圧バルブ
7が開放され加圧式給湯炉17の炉内圧が上昇し、金属
溶湯1は給湯管16内をプリレベル保持状態から更に上
昇し給湯状態となり、やがて給湯管16の溶湯流出口1
4近傍に設けられた溶湯センサ18に検知されプランジ
ャスリーブ19へ溶湯流出口14から金属溶湯が流出供
給される。金属溶湯1が溶湯センサ18に検知され、前
述のように図示されていない制御盤内の給湯制御装置5
の演算器で演算され給湯制御装置5に制御値として設定
された実差圧時間値に相当する時間を経過したならば給
湯制御装置5から加圧バルブ7に閉止指令が出され加圧
バルブ7が閉止される。
In parallel with the above series of controls, the pressurizing valve 7 is opened, the furnace pressure of the pressurizing type hot water supply furnace 17 rises, and the molten metal 1 further rises in the hot water supply pipe 16 from the pre-level holding state to the hot water supply state. And then the molten metal outlet 1 of the hot water supply pipe 16
The molten metal is detected by a molten metal sensor 18 provided in the vicinity of the molten metal 4, and the molten metal is supplied to the plunger sleeve 19 from the molten metal outlet 14. The molten metal 1 is detected by the molten metal sensor 18 and, as described above, the hot water supply control device 5 in the control panel (not shown).
When the time corresponding to the actual differential pressure time value calculated by the arithmetic unit and set as the control value in the hot water supply control device 5 has elapsed, a closing command is issued from the hot water supply control device 5 to the pressure valve 7 and the pressure valve 7 Is closed.

【0033】その後、必要給湯量との相関関係値として
検定された実測データに基づき予め設定された図示され
ていない制御盤面上の給湯タイマー設定時間の間は加圧
バルブ7が閉止された後も加圧式給湯炉17内の金属溶
湯1の流出が加圧式給湯炉17内の残圧によって継続さ
れる。
Thereafter, the pressurizing valve 7 is closed for a preset hot water supply timer setting time on a control panel (not shown) based on actual measurement data verified as a correlation value with the required hot water supply amount. The outflow of the molten metal 1 in the pressurized hot water supply furnace 17 is continued by the residual pressure in the pressurized hot water supply furnace 17.

【0034】前記の給湯タイマーの設定時間が経過し、
給湯制御装置5によりプランジャスリーブ19への給湯
が精度良く制御され行なわれ、排気バルブ9が開放され
たならば、給湯管16内の金属溶湯1は炉内へ戻ってい
くが、給湯完了後の加圧式給湯炉17内の金属溶湯1の
保持量はロードセル22により測定され図示されていな
い制御盤にデータが伝送される。伝送されてきた給湯完
了後の保持量を基準としてプリレベル保持のための炉内
圧が演算設定され、この値から一定の幅の範囲に炉内圧
がプリレベル保持されるように制御されるので、先に原
点待機とされていたプリレベル加圧バルブB72及びプ
リレベル排気バルブA91は前記の給湯完了後に新たに
演算設定されたプリレベル制御値に従ってプリレベル保
持制御が再び行なわれ、給湯管16内を炉内へ向かって
下降して来た金属溶湯1は完全に炉内へ戻ることなくプ
リレベル保持高さ位置でプリレベル保持される。
When the set time of the hot water supply timer elapses,
Hot water supply to the plunger sleeve 19 is accurately controlled by the hot water supply control device 5, and when the exhaust valve 9 is opened, the molten metal 1 in the hot water supply pipe 16 returns to the furnace. The amount of the molten metal 1 held in the pressurized hot water supply furnace 17 is measured by the load cell 22 and data is transmitted to a control panel (not shown). The furnace pressure for holding the pre-level is calculated and set based on the transmitted holding amount after the completion of hot water supply, and since the furnace pressure is controlled to be held at the pre-level within a certain range from this value, After the completion of the hot water supply, the pre-level pressurizing valve B72 and the pre-level exhaust valve A91 are again subjected to the pre-level holding control according to the newly calculated pre-level control value, and the hot water supply pipe 16 is moved toward the furnace. The lowered molten metal 1 is held at the pre-level holding height position without completely returning to the furnace.

【0035】給湯量の量的な制御は公知の特公51−3
6704の実績ある制御方法をベースとして、特公51
−36704の原出願人による改良・開発及び当該原出
願人からの技術導入に基づき一層の改良・開発研究を進
めてきた本願発明出願人のもとで、炉内圧の差圧制御の
公知技術として確立されているが、前述のように本願発
明請求項1のプリレベル給湯制御方法における給湯精度
の向上方法の一実施例で適用されているように図示され
ていない外部の加圧源からの加圧気体の供給が定圧定流
量で補償されるならば差圧制御に置き換えて時間制御を
高精度で適用しうる。
The quantitative control of the amount of hot water supply is performed by a well-known Japanese Patent Publication No. 51-3.
Based on the proven control method of 6704,
Under the applicant of the present invention, which has been conducting further improvement and development research based on the improvement / development by the original applicant of -36704 and the introduction of technology from the original applicant, as a known technique of the differential pressure control of the furnace internal pressure. Although being established, as described above, the pressurization from an external pressurization source (not shown) is applied as one embodiment of the method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 1 of the present invention. If the gas supply is compensated for at a constant pressure and a constant flow rate, time control can be applied with high precision instead of differential pressure control.

【0036】こうして、プリレベル保持とダイカストマ
シンからの給湯要求指令に基づく給湯が繰り返され、や
がて加圧式給湯炉17内の金属溶湯1の保持量が適正量
以下になると溶湯補給要求が加圧式給湯炉17の図示さ
れていない制御盤から出されるか、あるいは頃合を見計
らって連続受湯管23と受湯ホッパー24と受湯ホッパ
ー蓋25とで構成される連続受湯装置の受湯ホッパー蓋
25が開放され金属溶湯1が補給される。
In this manner, the pre-level holding and the hot water supply based on the hot water supply request command from the die casting machine are repeated, and when the holding amount of the molten metal 1 in the pressurized hot water supply furnace 17 becomes less than an appropriate amount, the molten metal replenishment request is issued. 17 or a hot water receiving hopper lid 25 of a continuous hot water receiving apparatus composed of a continuous hot water receiving pipe 23, a hot water receiving hopper 24, and a hot water receiving hopper lid 25 at an appropriate time. It is opened and the molten metal 1 is supplied.

【0037】この場合補給された金属溶湯1相当の重量
が加圧式給湯炉17の保持量に加算され、ロードセル2
2が計測し図示されていない制御盤に伝送され、その値
に基づいて給湯制御装置5によって演算設定されたプリ
レベル制御値にプリレベル制御が変更され、当然炉内圧
を下げる方向へ制御が働く。一方、金属溶湯1が補給さ
れるならば、補給された容積相当量の加圧式給湯炉17
の気体容積が圧縮されるので、圧力は増加する。この二
つの条件は、連続受湯装置からの溶湯補給が始まると同
時に加圧式給湯炉17内の気体を放出し減圧させること
の必然性を生ずる。
In this case, the weight equivalent to the supplied molten metal 1 is added to the holding amount of the pressurized hot water supply furnace 17, and the load cell 2
2 is measured and transmitted to a control panel (not shown), and the pre-level control is changed to a pre-level control value calculated and set by the hot water supply control device 5 based on the value, and control naturally acts in a direction to lower the furnace internal pressure. On the other hand, if the molten metal 1 is replenished, the pressurized hot water supply furnace 17 having an amount equivalent to the replenished volume is provided.
As the gas volume of the gas is compressed, the pressure increases. These two conditions cause the necessity of releasing the gas in the pressurized hot water supply furnace 17 and reducing the pressure at the same time as the supply of the molten metal from the continuous hot water receiving apparatus starts.

【0038】そして、その場合に必要となる加圧式給湯
炉17内の気体の必要単位放出量は通常のプリレベル制
御において、プリレベル加圧バルブB72が閉止されて
もなんらかの原因で炉内圧が上昇し、前記の給湯制御装
置5で演算設定されたプリレベル保持のための圧力の一
定の幅の上限値を超えた値となった時に、開放されるプ
リレベル排気バルブA91からの単位放出量より多くな
る。従って、連続受湯装置の受湯ホッパー蓋25が開放
されると、金属溶湯1が連続受湯装置から補給される操
作が開始されるものと判断し、プリレベル制御における
プリレベル排気に使用するバルブがプリレベル排気バル
ブA91から前記のように多くなった単位放出量に相応
して適正な単位放出量に設定されているプリレベル排気
バルブB92に切替られる。
The required unit release amount of gas in the pressurized water heater 17 required in this case is determined by the normal pre-level control. Even if the pre-level pressurizing valve B72 is closed, the furnace internal pressure rises for some reason. When the pressure for maintaining the pre-level, which is calculated and set by the hot water supply control device 5, exceeds the upper limit value of the certain width, the amount of the unit released from the pre-level exhaust valve A 91 that is opened becomes larger. Therefore, when the hot water receiving hopper lid 25 of the continuous hot water receiving device is opened, it is determined that the operation of replenishing the molten metal 1 from the continuous hot water receiving device is started, and the valve used for the pre-level exhaust in the pre-level control is set. The pre-level exhaust valve A91 is switched to the pre-level exhaust valve B92 which is set to an appropriate unit discharge amount in accordance with the increased unit discharge amount as described above.

【0039】その後連続受湯装置の受湯ホッパー蓋25
が閉止されると、プリレベル制御におけるプリレベル排
気に使用するバルブがプリレベル排気バルブB92から
プリレベル排気バルブA91に戻される。こうして再び
プリレベル保持制御、給湯制御が繰り返される。
Thereafter, the hot water receiving hopper lid 25 of the continuous hot water receiving apparatus
Is closed, the valve used for the pre-level exhaust in the pre-level control is returned from the pre-level exhaust valve B92 to the pre-level exhaust valve A91. Thus, the pre-level holding control and the hot water supply control are repeated again.

【0040】続いて本願発明請求項2に基づくプリレベ
ル給湯制御方法における給湯精度向上の方法の一実施例
について図1及び図3を参照しながら説明する。
Next, one embodiment of a method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 2 of the present invention will be described with reference to FIGS.

【0041】前述した本願発明請求項1に基づくプリレ
ベル給湯制御方法における給湯精度向上の方法の一実施
例についての説明と同様に一連の制御が繰り返される過
程で、ダイカストマシンの準備が整い、図示されていな
い制御盤にダイカストマシンの給湯指令が出され、加圧
式給湯炉17がプリレベル保持状態から給湯状態に移行
し、本願発明請求項1に基づく関係演算式での演算操作
が行われながら、以下の制御が行われる。
In the process of repeating a series of controls in the same manner as described in the embodiment of the method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to the first aspect of the present invention, the die casting machine is ready and illustrated. A hot water supply command of the die casting machine is issued to the control panel that is not in operation, and the pressurized hot water supply furnace 17 shifts from the pre-level holding state to the hot water supply state. Is performed.

【0042】個別給湯制御開始に伴う加圧バルブ7の開
放により金属溶湯1は給湯管16内のプリレベル保持位
置から上昇し前記の給湯管16の溶湯流出口14の定位
置に装置された給湯管溶湯流出口14の定位置への金属
溶湯1の到達を検知する溶湯センサ18が金属溶湯1を
検知するまでの時間(即ち個別溶湯センサ検知時間)を
測定し、その測定値と、同様に毎回測定され格納された
当該個別給湯前10回分の給湯制御における給湯制御開
始から給湯管16の溶湯流出口14の定位置に装置され
た給湯管16の溶湯流出口14の定位置への金属溶湯1
の到達を検知する溶湯センサ18が金属溶湯1を検知す
るまでの時間データ平均値(即ち前10ショット溶湯セ
ンサ検知時間平均値)とを用いて次式数2の関係演算式
で演算し加圧制御を補正する。即ち、給湯管16の予め
設定された一定の幅を持った高さ位置にプリレベル保持
することに起因する給湯開始時のプリレベル高さ位置の
個別的なずれを溶湯センサ検知時間のずれとして認識し
前10ショットの平均値との差の割合に基づいて給湯量
を増減補正します。
When the pressurizing valve 7 is opened upon the start of the individual hot water supply control, the molten metal 1 rises from the pre-level holding position in the hot water supply pipe 16 and the hot water supply pipe provided at a fixed position of the molten metal outlet 14 of the hot water supply pipe 16. The time until the molten metal sensor 18 for detecting the arrival of the molten metal 1 to the fixed position of the molten metal outlet 14 detects the molten metal 1 (that is, the individual molten metal sensor detection time) is measured. From the start of the hot water supply control in the 10 hot water supply controls before the individual hot water supply that has been measured and stored, the molten metal 1 is moved to the fixed position of the molten metal outlet 14 of the hot water supply pipe 16 installed at the fixed position of the molten metal outlet 14 of the hot water supply pipe 16.
Using the average value of the time data until the molten metal sensor 18 that detects the arrival of the molten metal 1 detects the molten metal 1 (that is, the average value of the detection time of the previous 10 shot molten metal sensor), the pressure is calculated by the following relational expression 2 Correct control. That is, an individual shift of the pre-level height position at the start of hot water supply caused by holding the pre-level at a predetermined height position of the hot water supply pipe 16 is recognized as a shift of the molten metal sensor detection time. The hot water supply is increased or decreased based on the ratio of the difference from the average value of the previous 10 shots.

【0043】[0043]

【数2】(Equation 2)

【0044】ここで、 TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 TEKAV:前10ショット溶湯センサ検知時間平均値。 TEK:個別溶湯センサ検知時間。 F:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 ちなみに、実用上演算し設定される時間の単位は10ms
ecである。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. TEKAV: Average value of the previous 10 shot molten metal sensor detection time. TEK: Individual molten metal sensor detection time. F: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. By the way, the unit of time that is calculated and set for practical use is 10 ms
ec.

【0045】即ち、本願発明請求項2においては、本願
発明請求項1における式数1と前記の式数2とが合成さ
れた次式数4が演算されることとなる。
That is, in claim 2 of the present invention, the following equation 4 is obtained by combining the equation 1 and the equation 2 in claim 1 of the present invention.

【0046】[0046]

【数4】 (Equation 4)

【0047】ここで、 TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 PDS:給湯開始時に測定され制御盤内の給湯制御装置の
演算器に伝送される炉内圧力値。 PPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準プリレベル保持圧力値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 TEKAV:前10ショット溶湯センサ検知時間平均値。 TEK:個別溶湯センサ検知時間。 F:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 ちなみに、実用上演算し設定される時間の単位は10ms
ecである。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. PDS: Furnace pressure value measured at the start of hot water supply and transmitted to the arithmetic unit of the hot water supply control device in the control panel. PPHI: Reference pre-level holding pressure value at the time of holding the reference maximum of the molten metal in the pressurized water heater. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. TEKAV: Average value of the previous 10 shot molten metal sensor detection time. TEK: Individual molten metal sensor detection time. F: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. By the way, the unit of time that is calculated and set for practical use is 10 ms
ec.

【0048】そして、金属溶湯1が溶湯センサ18に検
知されプランジャスリーブ19へ溶湯流出口14から金
属溶湯が流出供給される。
Then, the molten metal 1 is detected by the molten metal sensor 18 and the molten metal flows out and is supplied to the plunger sleeve 19 from the molten metal outlet 14.

【0049】金属溶湯1が溶湯センサ18に検知され、
前述のように図示されていない制御盤内の給湯制御装置
5の演算器で演算され制御値として設定された実差圧時
間値に到達したならば給湯制御装置5から加圧バルブ7
に閉止指令が出され加圧バルブ7が閉止される。
The molten metal 1 is detected by the molten metal sensor 18,
As described above, when the actual differential pressure time value calculated by the arithmetic unit of the hot water supply control device 5 in the control panel (not shown) and set as a control value is reached, the hot water supply control device 5 sends the pressure valve 7
Is issued, and the pressurizing valve 7 is closed.

【0050】その後、必要給湯量との相関関係値として
検定された実測データに基づき予め設定された図示され
ていない制御盤面上の給湯タイマー設定時間の間は加圧
バルブ7が閉止された後も加圧式給湯炉17内の金属溶
湯1の流出が加圧式給湯炉17内の残圧によって継続さ
れる。
Thereafter, the pressurizing valve 7 is closed for a preset hot water supply timer setting time on a control panel (not shown) based on actual measurement data verified as a correlation value with the required hot water supply amount. The outflow of the molten metal 1 in the pressurized hot water supply furnace 17 is continued by the residual pressure in the pressurized hot water supply furnace 17.

【0051】以後、本願発明請求項1に基づく制御が続
き、再びプリレベル保持状態へと至る。こうして、プリ
レベル保持とダイカストマシンからの給湯要求指令に基
づく給湯が繰り返される。
Thereafter, the control according to claim 1 of the present invention continues, and the state again returns to the pre-level holding state. Thus, the pre-level holding and the hot water supply based on the hot water supply request command from the die casting machine are repeated.

【0052】次に本願発明請求項3に基づくプリレベル
給湯制御方法における給湯精度向上の方法の一実施例に
ついて図1及び図3を参照しながら説明する。
Next, one embodiment of a method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 3 of the present invention will be described with reference to FIGS.

【0053】前述した本願発明請求項1に基づくプリレ
ベル給湯制御方法における給湯精度向上の方法の一実施
例についての説明と同様に一連の制御が繰り返され、や
がて加圧式給湯炉17内の金属溶湯1の保持量が適正量
以下になると溶湯補給要求が加圧式給湯炉17の図示さ
れていない制御盤から出されるか、あるいは頃合を見計
らって連続受湯管23と受湯ホッパー24と受湯ホッパ
ー蓋25とで構成される連続受湯装置の受湯ホッパー蓋
25が開放され金属溶湯1が補給され、以下の制御が行
われる。
A series of controls is repeated in the same manner as described in the embodiment of the method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to the first aspect of the present invention. When the holding amount of the hot water falls below an appropriate amount, a molten metal replenishment request is issued from a control panel (not shown) of the pressurized hot water supply furnace 17 or, at an appropriate time, the continuous hot water receiving pipe 23, the hot water receiving hopper 24, and the hot water receiving hopper lid. 25, the hot water receiving hopper lid 25 of the continuous hot water receiving apparatus is opened to supply the molten metal 1 and the following control is performed.

【0054】連続受湯装置の受湯ホッパー蓋24の開放
状態を図示されていないリミットスイッチ等のセンサ信
号により図示されていない制御盤の給湯制御装置5が連
続受湯中と認識すれば、加圧式給湯炉17内の金属溶湯
1の量的推移を常時追跡測定するためのロードセル22
からの測定信号値の変化度合いを比較判断し、その変化
度合いに見合った補正を次式数3の関係演算式で演算し
加圧制御を補正する。即ち、加圧式給湯炉17への補給
量の多寡に対応して当然炉内圧が必要以上に増加し給湯
量も増加していくのでその分を減量補正します。
If the hot water supply control device 5 of the control panel (not shown) recognizes the open state of the hot water receiving hopper lid 24 of the continuous hot water receiving apparatus by a sensor signal of a limit switch (not shown) or the like, the hot water is being received. Load cell 22 for constantly tracking and measuring the quantitative transition of molten metal 1 in pressure type hot water supply furnace 17
Then, the degree of change of the measurement signal value is compared and determined, and a correction corresponding to the degree of change is calculated by the following relational expression 3 to correct the pressurization control. That is, according to the amount of supply to the pressurized water heater 17, the furnace pressure naturally increases more than necessary and the amount of hot water increases.

【0055】[0055]

【数3】(Equation 3)

【0056】ここで TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 J:連続受湯中のロードセルからの測定信号値の変化度
合に基づき試運転調整された時点で調整決定し予め前記
の演算器に格納された定数。ちなみにこの定数は、受湯
ホッパー蓋が開放されたにもかかわらず金属溶湯の補給
が行われなかった場合のゼロ値と補給の単位時間量の多
寡により選択する2種類の定数値の合計3種類の値から
判断選択されます。 なお、実用上演算し設定される時間の単位は10msecで
ある。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. J: a constant that is determined and adjusted at the time of trial operation adjustment based on the degree of change in the measured signal value from the load cell during continuous hot water reception and previously stored in the arithmetic unit. By the way, there are three kinds of constants: a zero value when the molten metal is not replenished even though the hot hopper lid is opened, and two constant values to be selected based on the amount of unit time of replenishment. Is determined from the value of. The unit of time calculated and set for practical use is 10 msec.

【0057】即ち、本願発明請求項3においては、本願
発明請求項1における式数1と前記の式数3とが合成さ
れた次式数5が演算されることとなる。この場合には、
単純に数1と数3が合算されるのではなく、数1におい
て加算補正される状態に数3の補正が係わってくるので
数1における加算補正値に対しても乗算補正されるべく
合成式が形成されるのである。
That is, in claim 3 of the present invention, the following equation 5 is obtained by combining equation 1 and equation 3 in claim 1 of the present invention. In this case,
Equation 1 and Equation 3 are not simply added together, but the correction of Equation 3 is involved in the state of addition and correction in Equation 1; Is formed.

【0058】[0058]

【数5】 (Equation 5)

【0059】ここで TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 J:連続受湯中のロードセルからの測定信号値の変化度
合に基づき試運転調整された時点で調整決定し予め前記
の演算器に格納された定数。ちなみにこの定数は、受湯
ホッパー蓋が開放されたにもかかわらず金属溶湯の補給
が行われなかった場合のゼロ値と補給の単位時間量の多
寡により選択する2種類の定数値の合計3種類の値から
判断選択されます。 PDS:給湯開始時に測定され制御盤内の給湯制御装置の
演算器に伝送される炉内圧力値。 PPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準プリレベル保持圧力値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 なお、実用上演算し設定される時間の単位は10msecで
ある。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. J: a constant that is determined and adjusted at the time of trial operation adjustment based on the degree of change in the measured signal value from the load cell during continuous hot water reception and previously stored in the arithmetic unit. By the way, there are three kinds of constants: a zero value when the molten metal is not replenished even though the hot hopper lid is opened, and two constant values to be selected based on the amount of unit time of replenishment. Is determined from the value of. PDS: Furnace pressure value measured at the start of hot water supply and transmitted to the arithmetic unit of the hot water supply control device in the control panel. PPHI: Reference pre-level holding pressure value at the time of holding the reference maximum of the molten metal in the pressurized water heater. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. The unit of time calculated and set for practical use is 10 msec.

【0060】図2は本発明請求項4に基づくプリレベル
給湯制御方法における給湯精度向上の方法の一実施例に
基づくシステム構成概念図であり、図3は本発明請求項
1に基づくプリレベル給湯制御方法における給湯精度向
上の方法の一実施例に基づく加圧式給湯炉内の金属溶湯
の挙動を示す概念図であるが、本発明請求項4に基づく
プリレベル給湯制御方法における給湯精度向上の方法の
一実施例に基づく加圧式給湯炉17内の金属溶湯1の挙
動を示す概念図としても適用できる、以下図面を参照し
ながら本発明請求項4に基づくプリレベル給湯制御方法
における給湯精度向上の方法の一実施例について説明す
る。
FIG. 2 is a conceptual diagram of a system configuration based on one embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 4 of the present invention, and FIG. 3 is a pre-level hot water supply control method according to claim 1 of the present invention. FIG. 5 is a conceptual diagram showing the behavior of the molten metal in the pressurized hot water supply furnace based on one embodiment of the method for improving hot water supply accuracy in the present invention. One embodiment of the method for improving hot water supply accuracy in the pre-level hot water supply control method according to claim 4 of the present invention. One embodiment of a method for improving the accuracy of hot water supply in a pre-level hot water supply control method according to claim 4 of the present invention, which can also be applied as a conceptual diagram showing the behavior of molten metal 1 in pressurized hot water supply furnace 17 based on an example, with reference to the accompanying drawings. An example will be described.

【0061】前述した本願発明請求項1に基づくプリレ
ベル給湯制御方法における給湯精度向上の方法の一実施
例についての説明と同様に一連の給湯制御が繰り返され
る。加圧式給湯炉17に、給湯管16の溶湯流出口14
に向け不活性ガス吹出し口を配置し、外部の図示されて
いない不活性ガス供給源から図示されていない不活性ガ
スの加熱装置を経由し供給される高温不活性ガスの供給
を図示されていない制御盤内の給湯制御装置5からの信
号によって管路を開閉することによって行なえる置換用
不活性ガスバルブ21を有した管路と、同様に管路を開
閉することによって高温不活性ガスの供給を行なえる吹
飛ばし用不活性ガスバルブ31を有した管路を並列的に
保有した不活性ガス供給管20を追加装備されている
が、これらは前述の一連の給湯制御の過程で後述の制御
動作を行なう。
A series of hot water supply control is repeated in the same manner as described in the embodiment of the method for improving hot water supply accuracy in the pre-level hot water supply control method according to claim 1 of the present invention. A hot water supply furnace 17 is provided with a melt outlet 14 of a hot water supply pipe 16.
An inert gas outlet is disposed toward the apparatus, and the supply of a high-temperature inert gas supplied from an external inert gas supply source (not shown) via an inert gas heating device (not shown) is not shown. A pipe having a replacement inert gas valve 21 which can be opened and closed by a signal from the hot water supply control device 5 in the control panel, and a high temperature inert gas supply by opening and closing the pipe similarly. An inert gas supply pipe 20 having a pipe line having a blowing inert gas valve 31 that can be blown in parallel is additionally provided. These pipes perform a control operation described later in the above-described series of hot water supply control processes. Do.

【0062】図示されていない制御盤から、プリレベル
制御スタートの指令が出されたならば、前述して本発明
請求項1に基づく一実施例のようにプリレベル制御が実
行されるのと並行して、図示されていない外部の不活性
ガス供給源と接続され、プランジャスリーブ19の湯受
け口に接して溶湯流出口14を有し前記の加圧式給湯炉
17の貯留した金属溶湯1中に溶湯流入口15を有した
給湯管16の前記の溶湯流出口14に向け不活性ガス吹
出口を配置した不活性ガス供給管20の管路の並列的に
配置された片方の置換用不活性ガスバルブ21が開放さ
れ前記の溶湯流出口14近傍へ高温不活性ガスが供給さ
れ、図3における定常状態からプリレベル保持状態へ移
行する。そして前述された本発明請求項1に基づく一実
施例のように加圧式給湯炉17による給湯が繰り返さ
れ、その間前記の溶湯流出口14近傍へ不活性ガスが供
給され続け給湯管16の前記の溶湯流出口14周りの酸
化物等の薄膜の生成を抑制する。
When a pre-level control start command is issued from a control panel (not shown), the pre-level control is executed in parallel with the execution of the pre-level control according to the first embodiment of the present invention. Is connected to an external inert gas supply source (not shown) and has a molten metal outlet 14 in contact with the molten metal receiving port of the plunger sleeve 19, and has a molten metal inflow port in the stored molten metal 1 of the pressurized hot water supply furnace 17. One of the replacement inert gas valves 21 arranged in parallel in the conduit of the inert gas supply pipe 20 in which the inert gas outlet is disposed toward the molten metal outlet 14 of the hot water supply pipe 16 having the opening 15 is opened. Then, a high-temperature inert gas is supplied to the vicinity of the molten metal outlet 14, and the state shifts from the steady state in FIG. 3 to the pre-level holding state. Then, the hot water supply by the pressurized hot water supply furnace 17 is repeated as in the above-described embodiment according to the first aspect of the present invention, and during this time, the inert gas is continuously supplied to the vicinity of the molten metal outflow port 14 and the hot water supply pipe 16 has the above-described configuration. The generation of thin films such as oxides around the melt outlet 14 is suppressed.

【0063】もう一方の不活性ガス供給管20に並列的
に配置された吹飛ばし用不活性ガスバルブ31は、ダイ
カストマシンからの給湯指令に基づき行なわれる給湯制
御の過程で金属溶湯1が溶湯センサ18に検知され、図
示されていない制御盤内の給湯制御装置5の演算器で演
算され制御値として設定された実差圧時間値に相当する
時間を経過したならば給湯制御装置5から加圧バルブ7
に閉止指令が出され加圧バルブ7が閉止され、その後、
必要給湯量との相関関係値として検定された実測データ
に基づき予め設定された図示されていない制御盤面上の
給湯タイマー設定時間の間は加圧バルブ7が閉止された
後も加圧式給湯炉17内の金属溶湯1の流出が加圧式給
湯炉17内の残圧によって継続され、更に前記の給湯タ
イマーの設定時間が経過し、給湯制御装置5によりプラ
ンジャスリーブ19への給湯が精度良く制御され行なわ
れ、排気バルブ9が開放されると同時に開放され、不活
性ガス供給管20の管路を経由し給湯管16周りの酸化
物等の薄膜を吹き飛ばすに充分な量の高温不活性ガスが
溶湯流出口14近傍へ供給される。
The blow-off inert gas valve 31 arranged in parallel with the other inert gas supply pipe 20 is used to control the molten metal 1 in the process of hot water supply control based on a hot water supply command from a die casting machine. When the time corresponding to the actual differential pressure time value calculated by the calculator of the hot water supply control device 5 in the control panel (not shown) and set as the control value has passed, the hot water supply control device 5 7
And a pressurizing valve 7 is closed.
The pressurized water heater 17 remains open after the pressurizing valve 7 is closed for a preset hot water supply timer setting time on a control panel (not shown) based on actual measurement data verified as a correlation value with the required hot water supply amount. The flow of the molten metal 1 in the furnace is continued by the residual pressure in the pressurized hot water supply furnace 17, and the set time of the hot water supply timer elapses, and the hot water supply to the plunger sleeve 19 is accurately controlled by the hot water supply control device 5. The exhaust valve 9 is opened at the same time as the exhaust valve 9 is opened, and a sufficient amount of high-temperature inert gas is supplied through the conduit of the inert gas supply pipe 20 to blow off a thin film such as oxide around the hot water supply pipe 16. It is supplied to the vicinity of the outlet 14.

【0064】そして、給湯管16の溶湯流出口14周り
の酸化物等の薄膜は吹き飛ばされ、そのことにより給湯
管16内面の微妙な状態変化に基づく給湯精度の劣化が
防止され、給湯管16内或いはダイカストマシンプラン
ジャスリーブ19との取り合い部分等での保全の頻度或
いは操業上の時間的損失が大幅に軽減される。
Then, the thin film such as oxide around the molten metal outlet 14 of the hot water supply pipe 16 is blown off, thereby preventing deterioration of the hot water supply accuracy due to a subtle state change of the inner surface of the hot water supply pipe 16. Alternatively, the frequency of maintenance or the time loss in operation at a portion where the die casting machine plunger sleeve 19 is engaged is greatly reduced.

【0065】なお、ここで不活性ガスが高温であること
と溶湯流出口14近傍に配置された不活性ガス吹出口の
位置が極めて重要な要素となる。即ち、ここで供給され
る不活性ガスの温度が金属溶湯1の融点近くの高温でな
い場合は薄膜として固化形成していない固液混合状態の
溶湯流出口14近傍の金属溶湯1の薄膜としての固化形
成を促進する逆効果となりかねず、不活性ガス吹出口位
置が適切でない場合は仮に吹飛ばされたとしても給湯管
16内の好ましからざる位置で薄膜以上に存在が不都合
である異物的固まりを形成する核にさえなりかねない。
このことは、本願発明者による繰り返し行なわれた実験
の経験から痛切に思い知らされた事項でもある。
The fact that the temperature of the inert gas is high and the position of the inert gas outlet located near the melt outlet 14 are very important factors. That is, when the temperature of the inert gas supplied here is not high near the melting point of the molten metal 1, the molten metal 1 is solidified as a thin film in the vicinity of the molten metal outlet 14 in a solid-liquid mixed state which is not solidified as a thin film. If the position of the inert gas outlet is not appropriate, foreign matter masses which are inconvenient to be present beyond the thin film at an undesired position in the hot water supply pipe 16 may be formed if the position of the inert gas outlet is not appropriate. It could even be a nucleus to do.
This is also a matter that has come to my mind intensely from the experience of the inventor's repeated experiments.

【0066】そうした観点から考えた場合、特開平6−
106330に開示された「給湯口でのばりの成長によ
る詰まりを防ぐ」技術内容は供給ガスの温度条件と吹き
出し口の可動性に伴う位置の不確実さ、更にはその吹き
出しタイミングの点で実用上に大きな疑問を抱かざるを
得ない。そして又、薄膜の生成がなされると一般的に考
え得る範囲内の周辺雰囲気を本願発明人が特開平6−1
55005で開示したような条件の低酸素濃度状態を作
り出さないと徐々にしかも確実に単なる薄膜でない積層
化した堆積物となることからも疑問を抱かざるを得な
い。
From such a viewpoint, Japanese Patent Laid-Open No.
The technical content of "Prevent clogging due to growth of burrs at the hot water supply port" disclosed in 106330 is practical in terms of temperature conditions of supply gas and uncertainty of position due to movability of the discharge port, and further, timing of the discharge. I have to ask big questions. Further, the present inventor disclosed in Japanese Patent Application Laid-Open No.
Unless a low oxygen concentration condition under the conditions disclosed in US Pat. No. 5,005,005 is created, there is no doubt that the deposited material will gradually and surely become a laminated deposit that is not merely a thin film.

【0067】その点、本発明請求項4に基づく発明は、
本願発明人が特開平6−155005で発明を開示した
以降長期に亘り繰り返した実験の試行錯誤の上で確立さ
れたもので有り、実用上極めて確実かつ重要な技術とい
える。
In this respect, the invention based on claim 4 of the present invention
It has been established based on trial and error of experiments repeated over a long period of time since the inventor of the present invention disclosed the invention in JP-A-6-155005, and can be said to be a very reliable and important technique in practical use.

【0068】最後に、本発明請求項5に基づく一実施例
について説明する。図2は本発明請求項4に基づくプリ
レベル給湯制御方法における給湯精度向上の方法の一実
施例に基づくシステム構成概念図であり、図3は本発明
請求項1に基づくプリレベル給湯制御方法における給湯
精度向上の方法の一実施例に基づく加圧式給湯炉17内
の金属溶湯1の挙動を示す概念図であるが、本発明請求
項5は請求項2、請求項3及び請求項4の給湯精度の向
上方法を組み合わせて構成されているのであるから本発
明請求項5に基づく一実施例としての関係図面として
は、図2及び図3が適当といえる。
Finally, an embodiment according to claim 5 of the present invention will be described. FIG. 2 is a conceptual diagram of a system configuration based on one embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 4 of the present invention, and FIG. 3 is a hot water supply accuracy in a pre-level hot water supply control method according to claim 1 of the present invention. FIG. 5 is a conceptual diagram showing the behavior of the molten metal 1 in the pressurized hot water supply furnace 17 based on one embodiment of the improvement method. Claim 5 of the present invention relates to the accuracy of the hot water supply of Claims 2, 3 and 4. Since the improvement methods are combined, FIGS. 2 and 3 are appropriate as the related drawings as one embodiment according to claim 5 of the present invention.

【0069】基本的に本発明請求項5に基づくプリレベ
ル給湯制御方法における給湯精度の向上方法は、前述し
てきたように請求項1のプリレベル給湯制御方法におけ
る給湯精度の向上方法に基づく加圧式給湯炉17の給湯
制御の過程で、請求項2及び請求項3に基づく補正が都
度実施され、更に請求項4に基づくプリレベル給湯制御
方法における給湯精度の向上方法、即ち吹飛ばし用不活
性ガスバルブ31による外部の図示されていない不活性
ガス供給源から図示されていない不活性ガスの加熱装置
を経由し供給される高温不活性ガスを不活性ガス供給管
20の管路を経由し給湯管16周りの酸化物等の薄膜を
吹き飛ばすに充分な量で溶湯流出口14近傍へ供給され
る制御動作が付加されたものである。
Basically, the method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 5 of the present invention is, as described above, a pressurized hot water supply furnace based on the method for improving hot water supply accuracy in the pre-level hot water supply control method of claim 1. In the course of the hot water supply control of the seventeenth aspect, the correction according to the second and third aspects is carried out each time, and furthermore, the method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to the fourth aspect, that is, the outside by the blow-off inert gas valve 31. A high-temperature inert gas supplied from an inert gas supply source (not shown) through an inert gas heating device (not shown) is oxidized around the hot water supply pipe 16 through a pipe of the inert gas supply pipe 20. A control operation for supplying a sufficient amount of the thin film such as an object to the vicinity of the molten metal outlet 14 is added.

【0070】換言するならば、本発明請求項5に基づく
一実施例については、数4並びに数5とが合成された次
式数6が補正システム演算式として形成され演算され補
正が行なわれ、吹飛ばし用不活性ガスバルブ31による
外部の図示されていない不活性ガス供給源から図示され
ていない不活性ガスの加熱装置を経由し供給される高温
不活性ガスを不活性ガス供給管20の管路を経由し給湯
管16周りの酸化物等の薄膜を吹き飛ばすに充分な量で
溶湯流出口14近傍へ供給される制御動作が矛盾なく行
なわれるプリレベル給湯制御方法における給湯精度の向
上方法として説明できる。
In other words, in one embodiment according to claim 5 of the present invention, the following equation (6), which is obtained by combining Equations (4) and (5), is formed as a correction system operation equation, is operated, and is corrected. A high-temperature inert gas supplied from an external inert gas supply source (not shown) by a blowing inert gas valve 31 via an inert gas heating device (not shown) is supplied to the inert gas supply pipe 20 through a line. This can be described as a method of improving the accuracy of hot water supply in a pre-level hot water supply control method in which a control operation in which a thin film of oxide or the like around the hot water supply pipe 16 is blown off through the hot water supply pipe 16 and the control operation is performed without contradiction.

【0071】[0071]

【数6】 (Equation 6)

【0072】ここで TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 J:連続受湯中のロードセルからの測定信号値の変化度
合に基づき試運転調整された時点で調整決定し予め前記
の演算器に格納された定数。ちなみにこの定数は、受湯
ホッパー蓋が開放されたにもかかわらず金属溶湯の補給
が行われなかった場合のゼロ値と補給の単位時間量の多
寡により選択する2種類の定数値の合計3種類の値から
判断選択されます。 PDS:給湯開始時に測定され制御盤内の給湯制御装置の
演算器に伝送される炉内圧力値。 PPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準プリレベル保持圧力値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 TEKAV:前10ショット溶湯センサ検知時間平均値。 TEK:個別溶湯センサ検知時間。 F:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 なお、実用上演算し設定される時間の単位は10msecで
ある。
Here, TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. J: a constant that is determined and adjusted at the time of trial operation adjustment based on the degree of change in the measured signal value from the load cell during continuous hot water reception and previously stored in the arithmetic unit. By the way, there are three kinds of constants: a zero value when the molten metal is not replenished even though the hot hopper lid is opened, and two constant values to be selected based on the amount of unit time of replenishment. Is determined from the value of. PDS: Furnace pressure value measured at the start of hot water supply and transmitted to the arithmetic unit of the hot water supply control device in the control panel. PPHI: Reference pre-level holding pressure value at the time of holding the reference maximum of the molten metal in the pressurized water heater. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. TEKAV: Average value of the previous 10 shot molten metal sensor detection time. TEK: Individual molten metal sensor detection time. F: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. The unit of time calculated and set for practical use is 10 msec.

【0073】ところで、本発明請求項1において、ダイ
カストマシンの準備が整い図示されていない制御盤にダ
イカストマシンから給湯要求指令が出されたならば、加
圧式給湯炉17はプリレベル保持状態から給湯状態に移
行し、プリレベル加圧バルブB72及びプリレベル排気
バルブA91は原点待機(いずれも閉止し、指令待
ち。)となり、その時の炉内圧力が測定され、その測定
値が図示されていない制御盤内の給湯制御装置5の演算
器にデータとして伝送され、加圧式給湯炉17が設置さ
れ試運転調整された時点で測定し予め前記の演算器に格
納されている加圧式給湯炉17内の金属溶湯1の基準最
大保持時における基準プリレベル保持圧力値と共に数1
の関係演算式で溶湯センサ18によって金属溶湯1が検
知された後に差圧時間値として増圧される時間が演算決
定され、制御値として給湯制御装置5に設定され、基準
プリレベル保持圧力値との差の割合に基づいて給湯量の
増加補正が行なわれている。
In the first aspect of the present invention, if the die casting machine is ready and a hot water supply request command is issued from the die casting machine to a control panel (not shown), the pressurized water heater 17 is switched from the pre-level holding state to the hot water supply state. Then, the pre-level pressurizing valve B72 and the pre-level exhaust valve A91 wait for the origin (both are closed and wait for a command), the furnace pressure at that time is measured, and the measured values are stored in a control panel (not shown). The data is transmitted as data to the arithmetic unit of the hot water supply control device 5, measured at the time when the pressurized hot water furnace 17 is installed and adjusted for trial operation, and is measured in advance in the molten metal 1 in the pressurized hot water furnace 17 stored in the arithmetic unit. Equation 1 together with the reference pre-level holding pressure value when the reference maximum is held
Is calculated as the differential pressure time value after the molten metal sensor 1 is detected by the molten metal sensor 18, and is set in the hot water supply control device 5 as a control value. The correction of the increase in the amount of hot water supply is performed based on the ratio of the difference.

【0074】ここで、加圧式給湯炉17の毎回のダイカ
ストマシンからの給湯要求指令が出された時点における
炉内圧の変化と毎回のダイカストマシンからの給湯要求
指令が出された時点における加圧式給湯炉17炉内に貯
留されている金属溶湯1の重量即ちロードセル22で測
定される測定値の変化は反比例の関係に有ると言えるの
で、数1に代え次式数7を用いて演算補正を行なうこと
で同一の効果が当然成立する。
Here, the change in the furnace pressure at the time when the hot water supply request command from the die casting machine is issued each time of the pressurized hot water supply furnace 17 and the pressurized hot water supply at the time when the hot water supply request command from the die casting machine is issued each time. Since it can be said that the change in the weight of the molten metal 1 stored in the furnace 17, that is, the change in the measured value measured by the load cell 22, has an inversely proportional relationship, the arithmetic correction is performed by using the following equation (7) instead of equation (1). As a result, the same effect is naturally achieved.

【0075】[0075]

【数7】(Equation 7)

【0076】TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 WPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準ロードセル測定値。 WDS:給湯制御開始時に測定され制御盤内の給湯制御装
置の演算器に伝送されるロードセル測定値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 なお、実用上演算し設定される時間の単位は10msecで
ある。
TP: Actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. WPHI: Measured value of the reference load cell at the time of maintaining the reference maximum of the molten metal in the pressurized water heater. WDS: Load cell measurement value measured at the start of hot water supply control and transmitted to the arithmetic unit of the hot water supply control device in the control panel. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. The unit of time calculated and set for practical use is 10 msec.

【0077】ちなみに、前記の「K:必要給湯量に応じ
て制御盤面上の設定器で増減させる可変定数」は基本的
な役割は式数1のKと違いのない可変定数であるが、絶
対値的な側面から比較するならばあくまでも、必要給湯
量に応じて予め経験則的に実測データーに基づき規定さ
れる値であるので同一値が設定されるものではない。
Incidentally, the above-mentioned "K: variable constant to be increased / decreased by the setting device on the control panel in accordance with the required hot water supply amount" has a basic role of a variable constant which is not different from K in equation (1). If compared from a value aspect, the same value is not set because it is a value that is preliminarily empirically defined based on actually measured data according to the required hot water supply amount.

【0078】したがって、請求項2、請求項3、請求項
5において説明してきた補正演算式、数4、数5、数6
に関しても数1を数7に置き代えたように、ロードセル
測定値に基づく関係演算式として置き代えることが当然
可能である。
Accordingly, the correction formulas described in the second, third, and fifth formulas, formulas 4, 5, and 6
It is naturally possible to replace the equation (1) with the relational operation expression based on the load cell measured value, as in the case where the equation (1) is replaced by the equation (7).

【0079】特開2−127955の発明のような給湯
方法を用いず、現在一般的に普及している給湯管から流
出した金属溶湯を樋を介してプランジャスリーブに供給
する給湯法においても、本発明に基づくいずれかのプリ
レベル給湯制御方法における給湯精度の向上方法が当然
効果的に適用できる。
The hot water supply method of supplying the molten metal flowing out of the hot water supply pipe to the plunger sleeve through a gutter without using the hot water supply method as in the invention of Japanese Patent Application Laid-Open No. 2-127555 is also used. Naturally, the method for improving the accuracy of hot water supply in any of the pre-level hot water supply control methods according to the present invention can be effectively applied.

【0080】ダイカストマシンと加圧式給湯炉17の組
合せ構造から装置される給湯管16の長さが長くなるこ
とにより、その長さによっては給湯管16内の金属溶湯
1が冷却され凝固する危険が高くなることもあるが、こ
の場合給湯管16の外部を強制的に加熱すれば良い。な
お、こうした給湯管16の外部を加熱する設備として
は、給湯管16の周囲環境即ちダイカストマシンのプラ
ンジャスリーブ19の湯受け口近傍の構造から耐熱と断
熱の効果を兼ね備えたセラミックファイバーを成形し内
部に発熱体を埋め込んだ構造のものが有効である。
When the length of the hot water supply pipe 16 provided from the combined structure of the die casting machine and the pressurized hot water supply furnace 17 is increased, there is a risk that the molten metal 1 in the hot water supply pipe 16 is cooled and solidified depending on the length. In some cases, the outside of the hot water supply pipe 16 may be forcibly heated. In addition, as equipment for heating the outside of the hot water supply pipe 16, a ceramic fiber having both heat resistance and heat insulation effects is formed from the surrounding environment of the hot water supply pipe 16, that is, the structure near the hot water receiving port of the plunger sleeve 19 of the die casting machine. A structure in which a heating element is embedded is effective.

【0081】[0081]

【発明の効果】以上説明してきたように、本発明によっ
てダイカスト鋳造技術等の鋳造技術の将来展開をも見据
えた大きな可能性を切り開いてきた、本願出願人による
特開平2−127955の発明、更には特開平6−15
5005の発明を更に飛躍発展させることが可能となっ
た。
As described above, according to the present invention, the invention of Japanese Patent Application Laid-Open No. 2-127555 by the applicant of the present invention has opened up a great possibility in view of the future development of casting technology such as die casting technology. Is JP-A-6-15
The invention of 5005 can be further developed.

【0082】即ち、本願出願人による特開平2−127
955の発明、更には特開平6−155005の発明の
場合鋳造技術の進歩と製品品質の向上に対する大きな効
果が認められながらも、日に日に求められる鋳造技術の
向上とコストダウンを大きな目的とした生産性向上への
取組と省力化への要求はより細かく、より厳しく増して
きている。
That is, Japanese Patent Application Laid-Open No. 2-127
In the case of the invention of No. 955 and the invention of Japanese Patent Application Laid-Open No. 6-155005, while a great effect on the progress of the casting technology and the improvement of the product quality is recognized, the improvement of the casting technology and the cost reduction required daily are the main objects. Efforts to improve productivity and demand for labor savings are becoming finer and more stringent.

【0083】例えば、給湯精度即ち給湯重量精度に関し
ては、特開平2−127955の発明、更には特開平6
−155005の発明の場合、連続的な運転状況では一
般的な重量で±3.5%程度であり、給湯量500g以下では
±5.0%程度で有った。しかるに、求められるものは特
公51−36704を基礎として様々に発展させた技
術、例えば本願出願人による発明出願である特開平5−
15966によるならば一般的な給湯量で±1.8%であ
り、給湯量500g以下では±2.5%が常態として実現され
ているが、同等の給湯精度の実現が求めらる。
For example, regarding the accuracy of hot water supply, that is, the accuracy of hot water supply weight, the invention disclosed in Japanese Patent Application Laid-Open No. 2-127555 and
In the case of the invention of -155005, the continuous weight was about ± 3.5% in a general weight, and about ± 5.0% in a hot water supply of 500 g or less. However, what is required is a technology developed in various ways based on Japanese Patent Publication No. 51-36704, for example, Japanese Patent Application Laid-Open No. Hei 5-
According to 15966, the general hot water supply amount is ± 1.8%, and when the hot water supply amount is 500 g or less, ± 2.5% is realized as a normal state. However, the same hot water supply accuracy is required to be realized.

【0084】こうした要求レベルに対して、本発明請求
項1の実施により一般的な給湯量で±3.0%、給湯量500
g以下では±3.8%が常態として実現し、請求項2、請
求項3、請求項4の実施によりそれぞれ概ね一般的な給
湯量では±2.5%、給湯量500g以下では±3.0%が常態
として実現し、これらを組み合わせた請求項5の実施に
より一般的な給湯量で±2.0%、給湯量500g以下では±
2.1%が常態として実現しうることとなった。
With respect to such a required level, the implementation of claim 1 of the present invention provides a general hot water supply of ± 3.0% and a hot water supply of 500%.
g and below 3.8 g are realized as normal, and according to claims 2, 3 and 4, the general hot water supply is generally 2.5% and the hot water supply 500 g or less is normally realized 3.0%. According to the fifth aspect of the present invention, a general hot water supply amount is ± 2.0% and a hot water supply amount is 500 g or less.
2.1% can be realized as normal.

【0085】又、請求項4の発明の実施により、又当然
請求項5の実施にも波及することであるが、特公51−
36704を基礎として様々に発展させた技術、例えば
本願出願人による発明出願である特開平5−15966
の実施でも給湯管内或いはダイカストマシンプランジャ
スリーブとの取り合い部分等での酸化物等の除去の保全
の頻度が概ね二時間に一回であり、特開平6−1550
05の発明の場合概ね一時間に一回であったのが八時間
から十時間に一回と飛躍的に改善され、当然のこととし
て操業上の時間的損失が大幅に減少した。
Further, while the implementation of the invention of claim 4 and the course of the invention of claim 5 are of course affected,
Techniques developed in various ways based on 36704, for example, Japanese Patent Application Laid-Open No. H5-15966 filed by the present applicant.
The frequency of maintenance of removal of oxides and the like in a hot water supply pipe or at a portion where a plunger sleeve is connected to a die casting machine is approximately once every two hours.
In the case of the invention of No. 05, it was improved drastically from eight hours to once every ten hours, and, as a matter of course, the operational time loss was greatly reduced.

【0086】こうして本発明により、鋳造技術の向上と
コストダウンを大きな目的とした生産性向上への取組と
省力化への要求のより細かく、より厳しい増加に対応す
べく特開平6−155005で発明された技術がより高
度化され、給湯精度を高めることができ、ロングスパン
での変動要因、ショートスパンでの変動要因のそれぞれ
の課題が解決された。
As described above, according to the present invention, in order to cope with finer and more severe demands for efforts to improve productivity and labor saving for the purpose of improving casting technology and reducing costs, the invention was disclosed in Japanese Patent Application Laid-Open No. Hei 6-155005. The improved technology has been further improved, and the accuracy of hot water supply has been improved, and the respective problems of the fluctuation factor in the long span and the fluctuation factor in the short span have been solved.

【0087】[0087]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明請求項1に基づくプリレベル給湯制御方
法における給湯精度向上の方法の一実施例に基づくシス
テム構成概念図。
FIG. 1 is a conceptual diagram of a system configuration based on an embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 1 of the present invention.

【図2】本発明請求項4に基づくプリレベル給湯制御方
法における給湯精度向上の方法の一実施例に基づくシス
テム構成概念図。
FIG. 2 is a conceptual diagram of a system configuration based on one embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 4 of the present invention.

【図3】本発明請求項1に基づくプリレベル給湯制御方
法における給湯精度向上の方法の一実施例に基づく加圧
式給湯炉内の金属溶湯の挙動を示す概念図。
FIG. 3 is a conceptual diagram showing behavior of molten metal in a pressurized hot water supply furnace based on one embodiment of a method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 金属溶湯 2 熱源 3 圧力測定口 4 圧力測定導管 5 給湯制御装置 6 加圧口 7 加圧バルブ 8 加圧導管 9 排気バルブ 10 排気口 11 排気導管 12 炉口 13 炉蓋 14 溶湯流出口 15 溶湯流入口 16 給湯管 17 加圧式給湯炉 18 溶湯センサ 19 プランジャスリーブ 20 不活性ガス供給管 21 置換用不活性ガスバルブ 22 ロードセル 23 連続受湯管 24 受湯ホッパー 25 受湯ホッパー蓋 31 吹飛ばし用不活性ガスバルブ 71 プリレベル加圧バルブA 72 プリレベル加圧バルブB 91 プリレベル排気バルブA 92 プリレベル排気バルブB DESCRIPTION OF SYMBOLS 1 Molten metal 2 Heat source 3 Pressure measuring port 4 Pressure measuring conduit 5 Hot water supply control device 6 Pressurizing port 7 Pressurizing valve 8 Pressurizing conduit 9 Exhaust valve 10 Exhaust port 11 Exhaust conduit 12 Furnace port 13 Furnace lid 14 Melt outlet 15 Melt Inlet 16 Hot water supply pipe 17 Pressurized hot water supply furnace 18 Molten metal sensor 19 Plunger sleeve 20 Inert gas supply pipe 21 Replacement inert gas valve 22 Load cell 23 Continuous hot water receiving pipe 24 Hot water receiving hopper 25 Hot water receiving hopper lid 31 Inactive for blowing off Gas valve 71 Pre-level pressurizing valve A 72 Pre-level pressurizing valve B 91 Pre-level exhaust valve A 92 Pre-level exhaust valve B

【数7】 (Equation 7)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22D 39/06──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B22D 39/06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属溶湯を貯留し、貯留した前記の金属
溶湯の温度を一定に保つための熱源を装置し、前記の貯
留した金属溶湯の量的推移を常時追跡測定するためのロ
ードセルを装置し、圧力測定口を有し圧力測定導管を介
して適正な圧力条件に制御することにより前記の貯留し
た金属溶湯の外部への給湯量を最適制御する給湯制御装
置に接続され、加圧口を有し並置された3本の管路を前
記の給湯制御装置からの信号によってそれぞれ開閉する
ことのできる加圧バルブとプリレベル加圧バルブAとプ
リレベル加圧バルブBとを有した加圧導管を介して外部
の加圧源と接続され、排気口と接続され途中に前記の給
湯制御装置からの信号によって並置された3本の管路を
それぞれ開閉することのできる排気バルブとプリレベル
排気バルブAとプリレベル排気バルブBとを有した排気
導管と、外部から溶湯を補給する時に連続運転を停止せ
ずに補給を行なえる連続受湯管と受湯ホッパーと受湯ホ
ッパー蓋とで構成される連続受湯装置を装置し、内部を
掃除するための炉口と炉口を密封することのできる炉蓋
を有し、前記の金属溶湯をダイカストマシンプランジャ
スリーブに給湯する時にダイカストマシンプランジャス
リーブの湯受け口に接して溶湯流出口を有し前記の貯留
した金属溶湯中に溶湯流入口を有し前記の溶湯流出口の
定位置への金属溶湯の到達を検知する溶湯センサを装置
した給湯管を有した加圧式給湯炉における前記の貯留し
た金属溶湯を定量的にダイカストマシンプランジャスリ
ーブの湯受け口に給湯する溶融金属の給湯方法におい
て、前記の一組のプリレベル保持制御用のプリレベル加
圧バルブAとプリレベル加圧バルブBとプリレベル排気
バルブAとプリレベル排気バルブBと、前記の一組の給
湯制御用の加圧バルブと排気バルブとによって繰り返し
ダイカストマシンに金属溶湯を給湯する連続操業時にお
いて前記の給湯管を介して給湯管の溶湯流出口からダイ
カストマシンに実際に給湯している時以外は炉内に貯留
した金属溶湯を前記の給湯管の予め設定された一定の幅
を持った高さ位置にプリレベル保持し、ダイカストマシ
ンからの給湯要求が出されたならばそのプリレベル高さ
位置からダイカストマシンプランジャスリーブへの給湯
を開始することを特徴とするプリレベル給湯制御方法に
おいて、個別給湯制御開始直前の炉内圧力値を測定し、
その測定値と予め前記の給湯制御装置の演算器に炉内の
金属溶湯が基準最大保持量時における基準プリレベル保
持圧力値として測定格納されている値とを用いて次式数
1の関係演算式で演算し加圧制御を補正することを特徴
とするプリレベル給湯制御方法における給湯精度の向上
方法。 【数1】ここで、 TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 PDS:給湯開始時に測定され制御盤内の給湯制御装置の
演算器に伝送される炉内圧力値。 PPHI:加圧式給湯炉内の金属溶湯の基準最大保持時に
おける基準プリレベル保持圧力値。 K:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 ちなみに、実用上演算し設定される時間の単位は10ms
ecである。
An apparatus for storing a molten metal, a heat source for keeping the temperature of the stored molten metal constant, and a load cell for constantly tracking and measuring the quantitative change of the stored molten metal are provided. A pressure measuring port having a pressure measuring port is connected to a hot water supply control device that optimally controls the amount of hot water supplied to the outside of the stored molten metal by controlling to an appropriate pressure condition through a pressure measuring conduit. Via a pressurizing conduit having a pressurizing valve, a pre-level pressurizing valve A and a pre-level pressurizing valve B capable of opening and closing three juxtaposed pipes respectively according to a signal from the hot water supply control device. The exhaust valve, the pre-level exhaust valve A, and the pre-level exhaust valve A are connected to an external pressurizing source, are connected to the exhaust port, and can respectively open and close three pipes arranged side by side by a signal from the hot water supply control device. A continuous exhaust pipe having a level exhaust valve B, a continuous hot water receiving pipe, a hot water receiving hopper, and a hot water receiving hopper lid capable of replenishing the molten metal from the outside without stopping the continuous operation; A hot water device is installed and has a furnace port for cleaning the inside and a furnace lid capable of sealing the furnace port. When the molten metal is supplied to the die casting machine plunger sleeve, the hot water is supplied to the hot water receiving port of the die casting machine plunger sleeve. A hot water supply pipe having a molten metal outlet, a molten metal inlet in the stored molten metal, and a molten metal sensor equipped with a molten metal sensor for detecting the arrival of the molten metal to a fixed position of the molten metal outlet. In the hot water supply method of molten metal for quantitatively supplying the stored molten metal in a pressure type hot water supply furnace to a hot water receiving port of a die casting machine plunger sleeve, the set of pre-level holding controls Continuous feeding of molten metal to the die casting machine by the pre-level pressurizing valve A, the pre-level pressurizing valve B, the pre-level exhaust valve A, the pre-level exhaust valve B, and the set of hot-water supply controlling pressurizing and exhaust valves described above. At the time of operation, except when actually supplying hot water to the die casting machine from the melt outlet of the hot water supply pipe via the hot water supply pipe, the molten metal stored in the furnace is reduced to a predetermined constant width of the hot water supply pipe. In the pre-level hot water supply control method, the hot water is supplied to the die casting machine plunger sleeve from the pre-level height position when the hot water supply request is issued from the die casting machine. Measure the pressure inside the furnace just before the start of hot water supply control,
Using the measured value and the value previously measured and stored as the reference pre-level holding pressure value at the time of the reference maximum holding amount of the molten metal in the furnace in the arithmetic unit of the hot water supply control device, the relational expression of the following equation 1 is used. A method for improving the accuracy of hot water supply in a pre-level hot water supply control method, wherein the pressure control is corrected by calculating the following. Where TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. PDS: Furnace pressure value measured at the start of hot water supply and transmitted to the arithmetic unit of the hot water supply control device in the control panel. PPHI: Reference pre-level holding pressure value at the time of holding the reference maximum of the molten metal in the pressurized water heater. K: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. By the way, the unit of time that is calculated and set for practical use is 10 ms
ec.
【請求項2】 請求項1におけるプリレベル給湯制御方
法における給湯精度の向上方法において、給湯管の溶湯
流出口からダイカストマシンに実際に給湯している時以
外は炉内に貯留した金属溶湯を前記の給湯管の予め設定
された一定の幅を持った高さ位置にプリレベル保持され
る際に、一定の高さ位置の幅の範囲内での差異から起因
するところの給湯精度の微量誤差を、個別給湯制御開始
から給湯管溶湯流出口の定位置に装置された給湯管溶湯
流出口の定位置への金属溶湯の到達を検知する溶湯セン
サが金属溶湯を検知するまでの時間を測定し、その測定
値と、同様に毎回測定され格納された当該個別給湯前1
0回分の給湯制御における給湯制御開始から給湯管溶湯
流出口の定位置に装置された給湯管溶湯流出口の定位置
への金属溶湯の到達を検知する溶湯センサが金属溶湯を
検知するまでの時間データ平均値とを用いて、次式数2
の関係演算式で演算し加圧制御を補正することを追加し
たことを特徴とするプリレベル給湯制御方法における給
湯精度の向上方法。 【数2】ここで、 TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 TEKAV:前10ショット溶湯センサ検知時間平均値。 TEK:個別溶湯センサ検知時間。 F:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 ちなみに、実用上演算し設定される時間の単位は10ms
ecである。
2. The method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 1, wherein the molten metal stored in the furnace is supplied to the die casting machine except when the hot water is actually supplied to the die casting machine from the molten metal outlet of the hot water supply pipe. When the pre-level is maintained at a height position having a predetermined constant width of the hot water supply pipe, a small error of the hot water supply accuracy caused by the difference within the width range of the constant height position is individually determined. Measures the time from the start of hot water supply control until the molten metal sensor that detects the arrival of the molten metal at the fixed position of the molten metal outlet of the hot water supply pipe installed at the fixed position of the molten metal discharge outlet detects the molten metal. Before each individual hot water supply which was measured and stored every time
Time from the start of hot water supply control in the zero-time hot water supply control to the time when the molten metal sensor that detects the arrival of the molten metal at the fixed position of the molten metal outlet of the hot water supply pipe installed at the fixed position of the molten metal outlet of the molten steel pipe detects the molten metal. Using the data average value, the following equation 2
A method for improving hot water supply accuracy in a pre-level hot water supply control method, characterized by adding a calculation using a relational arithmetic expression of (1) and (2) to correct pressure control. Where TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. TEKAV: Average value of the previous 10 shot molten metal sensor detection time. TEK: Individual molten metal sensor detection time. F: A variable constant that is increased or decreased by a setter on the control panel according to the required hot water supply amount. By the way, the unit of time that is calculated and set for practical use is 10 ms
ec.
【請求項3】 請求項1におけるプリレベル給湯制御方
法における給湯精度の向上方法において、外部から溶湯
を補給する時に連続運転を停止せずに補給を行なう連続
受湯管と受湯ホッパーと受湯ホッパー蓋とで構成される
連続受湯装置からの金属溶湯の補給に伴い、必然的に炉
内の金属溶湯の量が増加し、炉内の気体の保有体積が減
少し反比例的に炉内圧が上昇し、給湯管の予め設定され
た一定の高さ位置にプリレベル保持された金属溶湯の高
さも通常給湯制御時に比して変化量が大きくなり給湯精
度を変動させることを、前記の受湯ホッパー蓋の開放状
態をリミットスイッチ等のセンサ信号により連続受湯中
と認識し、炉内の金属溶湯の量的推移を常時追跡測定す
るためのロードセル信号値の変化度合いを比較判断し、
その変化度合いに見合った補正を次式数3の関係演算式
で演算し加圧制御を補正することを追加したことを特徴
とするプリレベル給湯制御方法における給湯精度の向上
方法。 【数3】ここで TP:実差圧時間。 TPMAX:差圧時間最大値(加圧式給湯炉のタイプにより
設定される実現可能な最長差圧時間)。 %:必要給湯量に応じて制御盤面上の設定器で増減させ
る可変定数。 J:連続受湯中のロードセルからの測定信号値の変化度
合に基づき試運転調整された時点で調整決定し予め前記
の演算器に格納された定数。 ちなみにこの定数は、受湯ホッパー蓋が開放されたにも
かかわらず金属溶湯の補給が行われなかった場合のゼロ
値と補給の単位時間量の多寡により選択する2種類の定
数値の合計3種類の値から判断選択されます。なお、実
用上演算し設定される時間の単位は10msecである。
3. A method for improving hot water supply accuracy in a pre-level hot water supply control method according to claim 1, wherein a continuous hot water receiving pipe, a hot water receiving hopper, and a hot water receiving hopper for replenishing molten metal from the outside without stopping continuous operation. With the replenishment of the molten metal from the continuous hot water receiving device consisting of the lid, the amount of molten metal in the furnace inevitably increases, the volume of gas retained in the furnace decreases, and the furnace pressure increases inversely. The above-described hot water receiving hopper lid is used to determine that the height of the molten metal pre-level held at a predetermined constant height position of the hot water supply pipe also has a larger variation compared to the time of the normal hot water supply control and fluctuates the hot water supply accuracy. The open state of the furnace is recognized as a continuous hot water reception by a sensor signal of a limit switch, etc., and the change degree of the load cell signal value for constantly tracking and measuring the quantitative transition of the molten metal in the furnace is determined.
A method for improving the accuracy of hot water supply in a pre-level hot water supply control method, characterized by adding a correction corresponding to the degree of change using a relational expression of the following equation 3 to correct the pressurization control. Where TP: actual differential pressure time. TPMAX: Maximum differential pressure time (the longest possible differential pressure time set by the type of pressurized water heater). %: A variable constant that can be increased or decreased with a setting device on the control panel according to the required hot water supply. J: a constant that is determined and adjusted at the time of trial operation adjustment based on the degree of change in the measured signal value from the load cell during continuous hot water reception and previously stored in the arithmetic unit. By the way, there are three kinds of constants: a zero value when the molten metal is not replenished even though the hot hopper lid is opened, and two constant values to be selected based on the amount of unit time of replenishment. Is determined from the value of. The unit of time calculated and set for practical use is 10 msec.
【請求項4】 請求項1におけるプリレベル給湯制御方
法における給湯精度の向上方法において、加圧式給湯炉
に給湯管の溶湯流出口に向け不活性ガス吹出し口を配置
し外部の不活性ガス供給源から不活性ガスの加熱装置を
経由し供給される高温不活性ガスの供給を給湯制御装置
からの信号によって管路を開閉できる不活性ガスバルブ
を個別に有した並列管路を保有した不活性ガス供給管を
追加装備したことを特徴とするプリレベル給湯制御方法
における給湯精度の向上方法。
4. The method for improving the accuracy of hot water supply in the pre-level hot water supply control method according to claim 1, wherein an inert gas outlet is provided in the pressurized hot water supply furnace toward a molten metal outlet of the hot water supply pipe, and an external inert gas supply source is provided. An inert gas supply pipe having a parallel pipe line that has individual inert gas valves that can open and close the pipe line in response to a signal from the hot water supply control unit for the supply of high-temperature inert gas supplied via the inert gas heating device A method for improving the accuracy of hot water supply in a pre-level hot water supply control method, wherein a hot water supply control method is additionally provided.
【請求項5】 請求項2、請求項3及び請求項4の給湯
精度の向上方法を組み合わせたことを特徴とするプリレ
ベル給湯制御方法における給湯精度の向上方法。
5. A method for improving hot water supply accuracy in a pre-level hot water supply control method, wherein the method for improving hot water supply accuracy according to claim 2, 3, or 4 is combined.
JP25144994A 1994-09-19 1994-09-19 Method of improving hot water supply accuracy in pre-level hot water supply control method Expired - Fee Related JP2820895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25144994A JP2820895B2 (en) 1994-09-19 1994-09-19 Method of improving hot water supply accuracy in pre-level hot water supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25144994A JP2820895B2 (en) 1994-09-19 1994-09-19 Method of improving hot water supply accuracy in pre-level hot water supply control method

Publications (2)

Publication Number Publication Date
JPH0890200A JPH0890200A (en) 1996-04-09
JP2820895B2 true JP2820895B2 (en) 1998-11-05

Family

ID=17222999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25144994A Expired - Fee Related JP2820895B2 (en) 1994-09-19 1994-09-19 Method of improving hot water supply accuracy in pre-level hot water supply control method

Country Status (1)

Country Link
JP (1) JP2820895B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941430A1 (en) * 1999-08-30 2001-03-01 Mueller Weingarten Maschf Process for regulating the metal dosing quantity
CN108620556A (en) * 2017-05-02 2018-10-09 深圳市海普瑞达科技有限公司 Aluminium alloy quantitative compensation material-pouring device

Also Published As

Publication number Publication date
JPH0890200A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP2820895B2 (en) Method of improving hot water supply accuracy in pre-level hot water supply control method
JPH09145265A (en) Method and apparatus for controlling temperature in electrical furnace
JPH0215870A (en) Method for automatically supplying molten metal and holding furnace attached automatically molten metal supplying equipment
JP3317585B2 (en) Quantitative pouring equipment for molten nonferrous metal
JP2709679B2 (en) Pre-level hot water supply control method, inert gas hot water pipe air supply pre-level hot water supply control method, continuous hot water pre-level hot water supply control method, and continuous hot water inert gas hot water pipe air supply pre-level hot water supply control method
JP2719736B2 (en) Pressurized hot water supply control method and constant cycle pressurized hot water supply control method
JP2517598B2 (en) Method and device for supplying and discharging hot water in a constant temperature surface warming furnace
JPH08224653A (en) Method for controlling fill-up of molten metal in casting machine
JP2542976B2 (en) Stable cycle hot water supply control method
JP3268304B2 (en) Pressure control device in low pressure casting machine
CN219483787U (en) Bearing steel bar cooling device
JPH07136755A (en) Method for controlling filling of molten metal into casting machine
JP6217324B2 (en) Method of controlling the height of the pouring bath of the molten metal holding furnace for low pressure casting
JP4567358B2 (en) Operation method of liquefied gas vaporizer
JP2842987B2 (en) Molten metal transfer device
JPH09277017A (en) Method for controlling preleveled supplying molten metal
JP2023065224A (en) Method for estimating real flow rate of inert gas fed to molten steel in immersion nozzle
JPH03244964A (en) Device for automatically feeding hot water into bathtub and control method therefor
JPS5858416B2 (en) How to operate a soaking furnace
CN117344069A (en) Blast furnace gas pressure stabilizing system and method for free-standing hot blast furnace in furnace changing period
JPS59215265A (en) Device for ladling molten metal in specified amount
JP3201930B2 (en) Casting condition control method in low pressure casting
JPS6372470A (en) Method and apparatus for controlling pressure type automatic molten metal feeding furnace
JPH0623510A (en) Method and device for supplying air and molten metal in inert gas and molten metal supplying pipe and inert gas concentrated atmosphere trough and inert gas atmosphere box
JPH0679431A (en) Method and device for trough type molten metal supply

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110828

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees