JPS5858416B2 - How to operate a soaking furnace - Google Patents

How to operate a soaking furnace

Info

Publication number
JPS5858416B2
JPS5858416B2 JP6715379A JP6715379A JPS5858416B2 JP S5858416 B2 JPS5858416 B2 JP S5858416B2 JP 6715379 A JP6715379 A JP 6715379A JP 6715379 A JP6715379 A JP 6715379A JP S5858416 B2 JPS5858416 B2 JP S5858416B2
Authority
JP
Japan
Prior art keywords
furnace
flow rate
time
steel ingot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6715379A
Other languages
Japanese (ja)
Other versions
JPS55158230A (en
Inventor
稔 広瀬
忠史 山科
治昭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6715379A priority Critical patent/JPS5858416B2/en
Publication of JPS55158230A publication Critical patent/JPS55158230A/en
Publication of JPS5858416B2 publication Critical patent/JPS5858416B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/70Furnaces for ingots, i.e. soaking pits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

【発明の詳細な説明】 本発明は均熱炉の操業方法に関するものである。[Detailed description of the invention] The present invention relates to a method of operating a soaking furnace.

詳しくはリムド、キルド、セミキルド鋼等の未凝固部分
を有する鋼塊を加熱する均熱炉の操業方法を改良したも
のであって、燃料使用量を極小にした省エネルギー型の
均熱炉の操業方法に関するものである。
In detail, this is an improved method of operating a soaking furnace that heats steel ingots with unsolidified parts, such as rimmed, killed, and semi-killed steel, and is an energy-saving method of operating a soaking furnace that minimizes fuel consumption. It is related to.

一般に、均熱炉の操業ステップは大きく分類して、鋼塊
の炉内装入、炉内への燃料投入、鋼塊の炉内よりの抽出
に分類できる。
In general, the operational steps of a soaking furnace can be broadly classified into loading the steel ingot into the furnace, charging fuel into the furnace, and extracting the steel ingot from the furnace.

従来の鋼塊の炉内装入、燃料投入、抽出の方法について
述べる。
This article describes the conventional method of loading steel ingots into the furnace, fuel injection, and extraction.

(1) 内部欠陥の発生を防止するには、凝固率が7
0〜80%に達するまでの凝固速度が重要であるとの考
え方が支配しており、従来はブリードしない30〜50
%の凝固率で型抜きし、型外の大気中で大気中へ熱放散
せしめて70〜80%の凝固率にし、この凝固率に達す
ると同時に炉内へ装入し、装入完了と同時に炉内へ燃料
を投入している。
(1) To prevent the occurrence of internal defects, the solidification rate must be 7.
The prevailing idea is that the solidification rate is important until it reaches 0 to 80%, and conventionally the solidification rate is 30 to 50% without bleeding.
% solidification rate, heat is dissipated into the atmosphere outside the mold to achieve a solidification rate of 70 to 80%, and as soon as this solidification rate is reached, the mold is charged into the furnace, and as soon as charging is completed. Fuel is being put into the furnace.

(n) 近年の均熱炉は、燃料投入システムとして炉
温か設定値に達するまでは炉内へ投入する燃料流量を制
御する(連続操作、間欠操作、0NOFF操作する)投
入燃料流量制御を行ない、炉温か設定値に到達後は設定
値を目標値として、炉温を制御する(連続、間欠、0N
−OFF操作する)炉温制御を行なう燃焼制御装置と、
炉温を検知する炉温検出器を備えている。
(n) Modern soaking furnaces use a fuel input system that controls the flow rate of fuel input into the furnace (continuous operation, intermittent operation, 0NOFF operation) until the furnace temperature reaches a set value. After the furnace temperature reaches the set value, the furnace temperature is controlled using the set value as the target value (continuous, intermittent, 0N
- a combustion control device that performs furnace temperature control (operated OFF);
Equipped with a furnace temperature detector to detect furnace temperature.

従来装入完了と同時に燃料投入開始し、炉温か目標値に
達するまでの燃料投入は、周知の如く第1図から第5図
に示す種々の投入燃料流量曲線が採用されている。
Conventionally, fuel injection is started at the same time as charging is completed, and various fuel injection flow rate curves shown in FIGS. 1 to 5 are employed, as is well known, for fuel injection until the furnace temperature reaches a target value.

それぞれの曲線は横軸に経過時間、縦軸に熱料流量及び
炉内温度をとり図示したもので、図中の破線1は炉内温
度、実線2は燃料流量曲線である。
Each curve is illustrated with the horizontal axis representing the elapsed time and the vertical axis representing the heat flow rate and furnace temperature. In the figure, the broken line 1 is the furnace temperature, and the solid line 2 is the fuel flow rate curve.

なお、図中の太実線は加熱期の均熱炉の燃焼制御装置に
よる流量制御領域に相当し、−力紙実線は炉温制御領域
に相当する。
In addition, the thick solid line in the figure corresponds to the flow rate control area by the combustion control device of the soaking furnace during the heating period, and the solid line corresponds to the furnace temperature control area.

なお第1図から第5図までの各曲線は、(1)最大流量
一定曲線、(2)流量勾配制御曲線、(3)流量多段制
御曲線、(4)2段流量加熱曲線、(5)温度勾配制御
曲線と呼ばれている。
The curves shown in Figures 1 to 5 are (1) maximum flow rate constant curve, (2) flow rate gradient control curve, (3) flow rate multi-stage control curve, (4) two-stage flow rate heating curve, (5) It is called the temperature gradient control curve.

これら各曲線について、以下概略を説明する。An outline of each of these curves will be explained below.

(1)最大流量一定曲線 第1図に示す曲線は、目的とする炉内最終基準温度に最
短時間で到達する様に加熱期の最初から加熱期最大量の
燃料を導入、加熱期の全期間にわたり持続し、炉内最終
基準温度に到達したとき燃料流量を抑え均熱するもので
ある。
(1) Maximum flow rate constant curve The curve shown in Figure 1 indicates that the maximum amount of fuel is introduced from the beginning of the heating period to reach the final standard temperature in the furnace in the shortest possible time, and the maximum amount of fuel is introduced throughout the heating period. It lasts for a long time, and when the final reference temperature in the furnace is reached, the fuel flow rate is suppressed and the temperature is equalized.

この方法においては鋼塊の加熱は熱伝熱支配で律速する
と考えられるので次のような欠点がある。
In this method, the heating of the steel ingot is thought to be rate-limited by heat transfer, so it has the following drawbacks.

即ち、加熱の初期における鋼塊の得る熱量は太きいが、
表面温度が上昇し設定温度に近づくと、鋼塊表面から内
部への熱の拡散する量だけしか鋼塊内に入熱せず、鋼塊
内部に熱が充分に拡散する間炉温を高く保ったままの均
熱期が必要となる。
In other words, although the amount of heat obtained by the steel ingot at the initial stage of heating is large,
When the surface temperature rises and approaches the set temperature, only the amount of heat that diffuses from the surface of the steel ingot into the steel ingot enters the steel ingot, and the furnace temperature is kept high until the heat is sufficiently diffused inside the steel ingot. A soaking period is required.

この結果大部分の燃焼熱が炉外へ廃ガス顕熱として排出
され、非常に高い値の燃料原単位になる欠点がある。
As a result, most of the combustion heat is discharged outside the furnace as waste gas sensible heat, resulting in a very high fuel consumption rate.

このような欠点に対しては燃料の最大投入量(バーナ容
量の設計値)を若干下げるようなことが行なわれている
が、この投入量低下によって設定温度に達するのが遅く
なるので、在炉時間が延長され、結局燃料原単位の低減
は望めない。
To address these shortcomings, measures have been taken to slightly lower the maximum amount of fuel input (design value of burner capacity), but this reduction in the amount of input slows down the time it takes to reach the set temperature. The time will be extended, and in the end, it will not be possible to reduce the fuel consumption rate.

従来のACC(自動燃焼装置)制御はこの方法をとるも
のがほとんどであった。
Most conventional ACC (automatic combustion device) controls have adopted this method.

しかし、ACCの構成部分へのプログラム設定器の導入
並びにDDC計算機の発達によって、以下に述べる種々
の流量曲線の開発が進められてきた。
However, with the introduction of program setters into the ACC components and the development of DDC computers, the development of various flow rate curves described below has progressed.

(2)流量勾配制御曲線 第2図に示すのは流量勾配一定曲線(直線)であり、a
は燃料の初期投入を最小にして、一定の傾斜で昇温する
ものであり、bは初期投入と傾斜勾配を変化させ昇温す
るものである。
(2) Flow rate gradient control curve Figure 2 shows a constant flow rate gradient curve (straight line), a
``b'' minimizes the initial injection of fuel and raises the temperature at a constant slope, and ``b'' raises the temperature by changing the initial injection and the slope gradient.

このねらいは(1)の最大流量一定曲線に対して省エネ
ルギーを計るものである。
The purpose of this is to measure energy saving with respect to the constant maximum flow rate curve (1).

(3)流量多段制御曲線 第3図に示すのは流量多段制御曲線であり、aは階段的
に燃料投入を行ない昇温するもので、bは2山加熱と呼
ばれ、燃料の増減を行ない昇温するものである。
(3) Flow rate multi-stage control curve Figure 3 shows the flow rate multi-stage control curve, where a is a type in which fuel is added in steps to raise the temperature, and b is called two-peak heating, in which fuel is increased or decreased. It raises the temperature.

詳しくは、a法(特開昭52−120208号公報)は
均熱炉の加熱期の連続する瞬時におりる均熱炉の入熱と
、出熱との熱精算を行なって得られる単位時間当りの鋼
塊の吸収熱が一定になるように燃料投入を行なうもので
、加熱燃料の投入量を順次段階的に増加させ燃料の増加
タイミングを炉温上昇カーブの接線の傾きが加熱開始時
又は燃料増加時の傾きに対して、1/2〜1/3になる
ように行なうものである。
Specifically, method a (Japanese Unexamined Patent Publication No. 52-120208) is a unit time obtained by calculating the heat input and output of the soaking furnace at consecutive instants during the heating period of the soaking furnace. Fuel is added so that the absorbed heat of the steel ingot remains constant, and the amount of heating fuel input is increased step by step, and the timing of fuel increase is determined so that the slope of the tangent to the furnace temperature rise curve is at the start of heating or This is done so that the slope becomes 1/2 to 1/3 of the slope when fuel increases.

bは中心部が未凝固の鋼塊の内部顕熱をより有効に利用
する方法(特開昭52−39510号公報)であり、中
心部が未凝固(凝固率80%)の鋼塊を装入し、加熱初
期の短時間あらかじめ設定する範囲内で最大の流量で燃
料を炉に供給し、その後燃料供給量を均熱時における供
給量程度に削減してゆるやかに炉内温度を上昇させ、鋼
塊中心部が凝固する時点をもって再び燃料供給量を最大
として鋼塊を加熱するものである。
Method b is a method of more effectively utilizing the internal sensible heat of a steel ingot whose center is unsolidified (Japanese Unexamined Patent Publication No. 52-39510). The fuel is supplied to the furnace at the maximum flow rate within a preset range for a short period of time at the beginning of heating, and then the fuel supply amount is reduced to the same amount as during soaking to gradually raise the temperature inside the furnace. At the time when the center of the steel ingot solidifies, the fuel supply amount is maximized again and the steel ingot is heated.

(4)2段流量加熱曲線 第4図のaは衝動加熱、bは2段加熱と呼ばれる曲線で
あり、第3図の流量制御を簡単にし、最小、最大の燃料
投入の繰り返しにより加熱する方法である。
(4) Two-stage flow rate heating curve A in Figure 4 is a curve called impulse heating, and b is a curve called two-stage heating. A method that simplifies the flow rate control in Figure 3 and heats by repeating minimum and maximum fuel injection. It is.

この方法は空燃比制御が精度よ〈実施でき、制御方式が
簡単などのため実施されているのは周知の通りである。
It is well known that this method is used because the air-fuel ratio can be controlled with high precision and the control method is simple.

aは衝動加熱法は、鋼塊の偏熱防止法として、特開昭5
3−112212号公報に提案されており、即炉内温度
が設定値に到達するまでは一定の流量で燃料を投入し、
炉内が設定値に到達したのちの低負荷燃焼時に燃焼量を
最小もしくは完全に停止させる一方間欠的に燃焼量を増
大し、この操作を繰り返すことにより炉内ふん囲気温度
をほぼ均一にするものである。
The impulse heating method is described in Japanese Unexamined Patent Publication No. 5, 1973 as a method for preventing uneven heat of steel ingots.
3-112212, in which fuel is injected at a constant flow rate until the temperature inside the ready furnace reaches the set value.
After the inside of the furnace reaches the set value, the combustion amount is minimized or completely stopped during low-load combustion, while the combustion amount is intermittently increased, and by repeating this operation, the temperature of the surrounding air inside the furnace is made almost uniform. It is.

bの2段加熱法は特開昭52−142611号公報に提
示され、これは鋼塊の未凝固部が完全凝固するまでに発
生する凝固熱の有効利用と、鋼塊内部の高温部分からの
熱の拡散による均熱化及び最適の空燃比の確保とによっ
て、鋼塊の加熱を行ない、燃料原単位の一層の向上を計
るもので、未凝固部分を有する鋼塊を均熱炉に装入し、
この鋼塊をこの鋼塊の凝固完了時におけるコールドポイ
ントよりも若干高い炉内温度を保持できる一定の最小燃
料流量で鋼塊の凝固完了時まで加熱し、この鋼塊を凝固
完了時から、最大投入量の60%以上の一定の燃料流量
で所定の圧延可能な鋼塊温度まで加熱して焼き上げるも
のである。
The two-stage heating method b is presented in JP-A-52-142611, and is based on the effective use of the solidification heat generated until the unsolidified part of the steel ingot is completely solidified, and the heat dissipation from the high-temperature part inside the steel ingot. The steel ingot is heated by equalizing heat through heat diffusion and ensuring an optimal air-fuel ratio, thereby further improving the fuel consumption rate.The steel ingot, which has an unsolidified portion, is charged into a soaking furnace. death,
This steel ingot is heated until the solidification of the steel ingot is completed using a constant minimum fuel flow rate that can maintain the furnace temperature slightly higher than the cold point at the time of completion of solidification, and the steel ingot is heated from the time of completion of solidification to the maximum The steel ingot is heated and baked to a predetermined rolling temperature using a constant fuel flow rate of 60% or more of the input amount.

(5)温度勾配制御曲線 第5図に示す様に温度勾配を制御して昇温するもので、
温度制御は省エネルギーのみならず、品質に及ぼす影響
をも考慮した昇温曲線である。
(5) Temperature gradient control curve As shown in Figure 5, the temperature is raised by controlling the temperature gradient.
Temperature control is a temperature increase curve that takes into account not only energy savings but also the impact on quality.

この制御曲線は前記(1)の最大流量一定量線の過剰熱
量供給を解消するものであって例えば特公昭53−41
088号公報に提示されている。
This control curve eliminates the excessive heat supply of the constant maximum flow rate line in (1) above, and for example,
It is presented in Publication No. 088.

以上従来の流量曲線の特徴を述べたが、これらの方法は
第6図に示す鋼塊の温度履歴であるコールドポイント5
、ホットポイント3、平均温度4とを関連ずけ、鋼塊の
温度分布伝熱計算と結びつけ、(1)の最大流量一定法
に対して省エネルギーを図ったり、均熱炉計装制御面か
らの制御方式、NOxとの関連等を考慮し、有利な方法
で適用実施されてきた。
The characteristics of conventional flow curves have been described above, but these methods are based on cold point 5, which is the temperature history of the steel ingot shown in Figure 6.
, hot point 3, and average temperature 4 are linked to the temperature distribution heat transfer calculation of the steel ingot, and it is possible to save energy for the constant maximum flow rate method in (1), and to improve the efficiency from the soaking furnace instrumentation and control side. Advantageous methods have been applied in consideration of control methods, relationships with NOx, etc.

しかしこれらは後述する様に、いずれの曲線も省エネル
ギー効果を極大(使用燃料量を極小)にならしめた方法
とはいえない。
However, as will be described later, none of these curves can be said to be a method that maximizes the energy saving effect (minimizes the amount of fuel used).

(III) 抽出法について 燃料流量の連続、間欠操作により流量制御し、炉内温度
が、設定値に達したのち第1〜5図の流量曲線2にみら
れる様に炉温を設定値に保つ様に、流量の連続、間欠操
作が行なわれて、鋼塊を均熱する均熱時間がかなり長く
とられて、その後鋼塊を抽出する操作が行なわれている
(III) Regarding the extraction method, the flow rate is controlled by continuous or intermittent operation of the fuel flow rate, and after the furnace temperature reaches the set value, the furnace temperature is maintained at the set value as shown in flow rate curve 2 in Figures 1 to 5. Similarly, continuous and intermittent flow rate operations are performed, and the soaking time for soaking the steel ingot is quite long, after which the steel ingot is extracted.

以上詳述した様に従来の均熱炉の操業方法は、(1)凝
固率30〜50%で型抜きし、凝固率70〜80%まで
は炉外、型外で凝固せしめて、上記70〜80%に凝固
すると同時に炉内に装入するので、70〜80%までの
凝固過程での顕熱を有効利用していないこと。
As detailed above, the conventional method of operating a soaking furnace is as follows: (1) Cutting the mold at a solidification rate of 30 to 50%, solidifying outside the furnace or mold until the solidification rate reaches 70 to 80%, and Since it is charged into the furnace at the same time as it solidifies to ~80%, the sensible heat during the solidification process of ~70 to 80% is not effectively utilized.

(2)装入と同時に燃料投入を開始し、設定炉温になる
まで流量制御を行なっているが、このときの投入流量曲
線が使用燃料量、ミニマム曲線になっていないこと。
(2) Fuel injection is started at the same time as charging, and the flow rate is controlled until the set furnace temperature is reached, but the injection flow rate curve at this time is not the minimum curve for the amount of fuel used.

(3)設定炉温に到達後、抽出までにかなりの長い均熱
期間をとるようになっており、本発明者の知見ではこの
均熱期をなくすることができることから従来法は燃料使
用量を極小にした省エネルギー型・操炉法とはとてもい
い難いものである。
(3) After reaching the set furnace temperature, a fairly long soaking period is required before extraction, and according to the knowledge of the present inventors, this soaking period can be eliminated, so the conventional method reduces the amount of fuel used. It is very difficult to find an energy-saving reactor operation method that minimizes the

以上の実状に鑑み、燃料使用量極小化の観点から (1)鋼塊の均熱炉よりの抽出タイミング(特に均熱期
間の必要性について。
In view of the above circumstances, from the perspective of minimizing fuel consumption, (1) the timing of extraction of steel ingots from the soaking furnace (especially regarding the necessity of the soaking period);

)(2)鋼塊の均熱炉への装入タイミング(30〜50
%型抜、70〜80%装入法の必要性について)(3)
使用燃料量が極小となる装入から抽出までの燃料投入曲
線について検討した。
) (2) Timing of charging the steel ingot to the soaking furnace (30-50
Regarding the necessity of % die cutting and 70-80% charging method) (3)
We investigated the fuel input curve from charging to extraction that minimizes the amount of fuel used.

この検討結果に基づき、本発明の極小燃料使用量の均熱
炉操業方法はなされたものであって本発明の要旨は次の
通りである。
Based on the results of this study, the method of operating a soaking furnace with minimal fuel consumption according to the present invention has been developed, and the gist of the present invention is as follows.

炉温か設定値に達するまでは、炉内へ投入する燃料流量
を制御する投入燃料流量制御を到達後は、設定値を目標
値として炉温を制御する炉温制御を行なう燃焼制御装置
及び炉温検出器を備えた鋼塊の均熱炉において、70〜
80%以下の凝固率の鋼塊を炉内へ装入し70〜80%
までの所定凝固率に達するまで燃料を投入せず、上記所
定凝固率に達すると燃料の投入を開始する前提条件のも
とに、分塊圧延時に内部割れが発生しない未凝固率でか
つ分塊圧延時に表面割れが発生しない圧延時の最低温度
以上の温度の均熱鋼塊を得るに必要な最低在炉時間を定
め、前記装入時刻に前記最短在炉時間を加えた時刻で、
投入流量が最大流量以下の所定流量になり、しかも炉温
か前記圧延時の最低温度より予じめ定めた設定値に到達
せしめる時刻を横軸に、流量を縦軸にとった場合、投入
開始時刻の流量と、上記装入時刻に最短在炉時間を加え
た時刻の上記流量とを結ぶ直線に対して、下方にわん曲
する最小使用流量となる流量曲線を鋼塊の熱的状況、均
熱炉の炉状況による回帰係数を用いた式により定めて前
記装入凝固率で鋼塊を装入し、前記投入凝固率に達する
と燃料投入を開始し、以降前記流量曲線に沿って、流量
制御を行ない、次に炉温が前記設定値に達すると、即鋼
塊を抽出する均熱炉の操業方法である。
Until the furnace temperature reaches the set value, the input fuel flow rate is controlled. After reaching the set value, the furnace temperature is controlled using the set value as the target value. In a soaking furnace for steel ingots equipped with a detector, 70~
A steel ingot with a solidification rate of 80% or less is charged into the furnace and the solidification rate is 70-80%.
Under the prerequisites that fuel is not added until the predetermined solidification rate is reached, and fuel injection is started when the predetermined solidification rate is reached, the unsolidified rate is such that internal cracks do not occur during blooming. The minimum in-furnace time necessary to obtain a soaked steel ingot at a temperature equal to or higher than the minimum temperature during rolling that does not cause surface cracks during rolling is determined, and the time is the addition of the shortest in-furnace time to the charging time,
If the horizontal axis is the time at which the input flow rate reaches a predetermined flow rate that is less than the maximum flow rate, and the time at which the furnace temperature reaches a predetermined set value from the minimum temperature during rolling, and the vertical axis is the flow rate, then the input start time is With respect to the straight line connecting the above flow rate at the time of charging time plus the shortest in-furnace time, the flow rate curve that curves downward at the minimum usable flow rate is calculated based on the thermal condition of the steel ingot and the soaking time. The steel ingot is charged at the charging solidification rate determined by a formula using a regression coefficient depending on the furnace condition, and when the charging solidification rate is reached, fuel injection is started, and thereafter the flow rate is controlled along the flow rate curve. This is a method of operating a soaking furnace in which a steel ingot is extracted immediately when the furnace temperature reaches the set value.

つまり、従来の鋼塊加熱法においては、設定炉温になる
まで、投入流量曲線が時間の経過とともに直線的になる
のに対して、本発明の昇温条件においては、未凝固の鋼
塊の顕熱を昇温の初期段階で熱源として利用するので、
下方に湾曲する曲線にしたがって炉温を昇温させること
かできるのである。
In other words, in the conventional steel ingot heating method, the input flow rate curve becomes linear over time until the set furnace temperature is reached, whereas under the temperature increasing conditions of the present invention, Sensible heat is used as a heat source in the initial stage of temperature rise, so
The furnace temperature can be raised according to a curve curving downward.

以下、本発明法について、詳細に説明する。The method of the present invention will be explained in detail below.

まず鋼塊の均熱炉よりの抽出タイミングの検討結果につ
き述べる。
First, we will discuss the results of a study on the timing of extracting steel ingots from a soaking furnace.

第7図は分塊圧延時の鋼塊の最低温度と、分塊圧延時の
表面割れ発生との関係並びに分塊圧延時の未凝固率と、
分塊圧延時の内部割れ発生との関係を調査した結果を示
し、温度850℃以下の場合、表面割れが発生し、一方
未凝固率20%以上で内部割れが発生する。
Figure 7 shows the relationship between the minimum temperature of the steel ingot during blooming rolling and the occurrence of surface cracks during blooming rolling, as well as the unsolidified rate during blooming rolling,
The results of investigating the relationship with the occurrence of internal cracks during blooming rolling are shown. Surface cracks occur when the temperature is 850° C. or lower, while internal cracks occur when the unsolidified rate is 20% or higher.

即ち、分塊圧延時の鋼塊の最低温度を850℃以上に、
又見凝固率20%以下にすれば、分塊圧延時、表面内部
に割れを形成することなく、圧延して品質性状の良好な
所定鋼片を得ることができる。
That is, the minimum temperature of the steel ingot during blooming rolling is set to 850°C or higher,
Furthermore, if the solidification rate is set to 20% or less, a specified steel billet with good quality and properties can be obtained by rolling without forming cracks inside the surface during blooming rolling.

従って、均熱炉では上記分塊圧延時850℃以上、未凝
固率20%以下の鋼塊を得るだけで良い。
Therefore, in the soaking furnace, it is only necessary to obtain a steel ingot with a temperature of 850° C. or higher and an unsolidified rate of 20% or less during the above-mentioned blooming rolling.

即ち均熱炉からの鋼塊の抽出から圧延までのハンドリン
グタイムを考慮の上、少なくとも、分塊圧延時850℃
以上、未凝固率20%以下の鋼塊となるタイミングであ
れば特に均熱期間をなくして均熱炉より抽出しても品質
上は良い。
In other words, considering the handling time from extraction of the steel ingot from the soaking furnace to rolling, the temperature should be at least 850°C during blooming.
As mentioned above, if the timing is such that the steel ingot has an unsolidified rate of 20% or less, the quality is good even if the steel ingot is extracted from the soaking furnace without the soaking period.

次に鋼塊の均熱炉への装入タイミングについて述べる。Next, we will discuss the timing of charging the steel ingot into the soaking furnace.

従来第8図の如く、凝固率(30〜50)%〜(70〜
80)%までの凝固率速度が内部欠陥発生防止のために
は重要であって、その速度は型外、炉外の大気中で得ら
れるということで、(30〜50)%から(70〜80
)%までは型外、炉外で凝固させて、(70〜80)%
の所定値に達すると同時に炉内へ装入、装入完了と同時
に炉内へ燃料投入するという形態をとっていたのは先に
述べた通りである。
Conventionally, as shown in Figure 8, the coagulation rate is (30~50)%~(70~
A solidification rate rate of up to 80% is important for preventing the occurrence of internal defects, and this rate can be obtained in the atmosphere outside the mold and outside the furnace. 80
)%, solidify outside the mold and outside the furnace to (70-80)%
As mentioned above, the fuel is charged into the furnace as soon as the fuel reaches a predetermined value, and the fuel is charged into the furnace as soon as the charging is completed.

この点について、省エネルギーの観点より種々検討した
ところ、第9図に示す様に、凝固率30〜50%で型抜
し、その直後、炉内へ装入しても装入完了直後に燃料を
投入しなければ、即ち燃料止めしておけば、従来の型外
、炉外とほぼ同様な品質に悪影響をおよぼさない凝固速
度で、従来の装入、燃料投入時の70〜80%の凝固率
に到らしめることができ、かつ、この凝固過程で、従来
は大気放散していた熱量を鋼塊中にとどめておくことが
できることが判明した。
Regarding this point, various studies were conducted from the viewpoint of energy saving, and as shown in Fig. 9, even if the mold is cut at a solidification rate of 30 to 50% and then charged into the furnace, the fuel will be removed immediately after charging is completed. If the fuel is not charged, that is, if the fuel is stopped, the solidification rate is almost the same as that outside the mold or outside the furnace, and the solidification rate is 70 to 80% of that of conventional charging or fuel injection. It has been found that it is possible to reach a solidification rate, and that during this solidification process, the amount of heat that was conventionally dissipated into the atmosphere can be retained in the steel ingot.

即ち、上記第8,9図は凝固率の推移を示したもので、
第8図の6は型内の凝固曲線で、7は型外、炉外の曲線
、8は燃料投入炉内での曲線である。
That is, Figures 8 and 9 above show the transition of the coagulation rate.
In FIG. 8, 6 is a solidification curve inside the mold, 7 is a curve outside the mold and outside the furnace, and 8 is a curve inside the fuel charging furnace.

第9図の9は型内、炉外の曲線、10は燃料投入停止、
炉内での曲線、11は燃料投入炉内での曲線である。
9 in Figure 9 is the curve inside the mold and outside the furnace, 10 is the fuel injection stop,
The curve 11 in the furnace is the curve in the fuel-injected furnace.

このように燃料投入開始は従来と同様に、凝固率70〜
80%で行なうが、(30〜50)%から(70〜80
)%までは従来と異なり、燃料投入を停止した炉内で凝
固させて、省エネルギー効果を得るものである。
In this way, the start of fuel injection is the same as before, with a solidification rate of 70~
80%, but from (30-50)% to (70-80%)
)% differs from the conventional method in that it solidifies in the furnace with fuel input stopped to obtain an energy-saving effect.

なお、投入開始を従来と同様なタイミングで行なうのは
、70〜80%以上の凝固速度も従来法とほぼ同様なス
ピードで行なうためである。
The reason why the charging is started at the same timing as in the conventional method is to achieve a solidification rate of 70 to 80% or more at almost the same speed as in the conventional method.

次に極小使用燃料量となる装入から抽出までの燃料投入
曲線について述べる。
Next, we will discuss the fuel input curve from charging to extraction, which requires the minimum amount of fuel used.

即ち、前述の如く70〜80%以下の凝固率の鋼塊を炉
内へ装入し、70〜80%までの所定凝固率に達するま
で燃料を投入せず、上記所定凝固率に達すると燃料の投
入を開始する前提条件のもとに、前述の分塊圧延時に内
部割れの発生しない未凝固率で、かつ分塊圧延時と表面
割れが発生しない圧延時の最低温度以上の温度の均熱鋼
塊を得るに必要な最短在炉時間を定め、前記装入時刻に
、この最短在炉時間を加えた時刻で、投入燃料量が最大
流量以下の所定流量になり、しかも炉温か前記圧延時の
最低温度より予じめ定めた設定値に到達せしめ、時刻を
横軸に、投入流量を縦軸にとった場合、投入開始時刻の
流量と、装入時刻に最短在炉時間を加えた時刻の上記流
量とを結ぶ流量直線に対して、下方にわん曲する最小使
用流量となる流量曲線を鋼塊の熱的状況、均熱炉の炉状
況による回帰係数を用いた式により定める。
That is, as mentioned above, a steel ingot with a solidification rate of 70 to 80% or less is charged into a furnace, and fuel is not input until the solidification rate reaches a predetermined solidification rate of 70 to 80%. Under the prerequisites for starting the charging, the above-mentioned unsolidified rate is maintained so that internal cracks do not occur during blooming, and the temperature is soaked at a temperature higher than the minimum temperature during blooming and rolling that does not cause surface cracks. The shortest in-furnace time required to obtain a steel ingot is determined, and at the time when the shortest in-furnace time is added to the charging time, the input fuel amount reaches a predetermined flow rate that is less than the maximum flow rate, and the furnace temperature is at the same time as the rolling time. When a predetermined set value is reached from the minimum temperature of With respect to the flow rate straight line that connects the flow rate with the above flow rate, a flow rate curve that curves downward and becomes the minimum usable flow rate is determined by an equation using regression coefficients depending on the thermal conditions of the steel ingot and the furnace conditions of the soaking furnace.

なお上記最短在炉時間とは、どのような燃料投入パター
ンを採用しても分塊圧延時、内外部に欠陥の発生しない
均熱鋼塊を得ることのできる在炉時間である。
The shortest in-furnace time is the in-furnace time at which a soaked steel ingot with no internal or external defects can be obtained during blooming rolling, no matter what fuel injection pattern is adopted.

これは例えば鋼塊サイズ、鋼種側、或は品種別(例えば
厚板、ホットコイル、コールドコイル等の向は先側)に
、2.5〜3時間として定められている。
This time is set as 2.5 to 3 hours, for example, depending on the steel ingot size, steel type, or product type (for example, the direction of thick plates, hot coils, cold coils, etc. is on the front side).

従って本発明の操炉法の装入、投入、抽出は第10図に
示す如く、鋼塊を装入し、投入凝固率に到達すると燃料
投入開始し、前記流量曲線(図面では28で示す曲線)
に沿って、流量コントロールを行ない、炉温か設定値に
達すると従来の均熱期間をとることなく、即鋼塊の抽出
を開始する。
Therefore, in the charging, charging, and extraction of the furnace operation method of the present invention, as shown in FIG. )
The flow rate is controlled according to the above, and when the furnace temperature reaches the set value, extraction of the steel ingot starts immediately without taking the conventional soaking period.

なお抽出完了までは炉温制御を行なうものである。Note that the furnace temperature is controlled until the extraction is complete.

なお、図面において29は炉温曲線を、30は鋼塊の表
面温度曲線を示している。
In the drawings, 29 indicates a furnace temperature curve, and 30 indicates a surface temperature curve of the steel ingot.

次に流量曲線の決定法の具体例について述べる。Next, a specific example of the method for determining the flow rate curve will be described.

第11図においてT1は装入完了時刻T2は燃料投入開
始時刻、’rsは最短在炉時間、T3(−T1+Ts)
は抽出開始時刻、T4は抽出完了時刻、T(Foff)
= T2− T、は燃料投入停止時間、T(Fon)は
燃料投入時間に流量制御時間)である。
In Fig. 11, T1 is the charging completion time, T2 is the fuel injection start time, 'rs is the shortest in-reactor time, and T3 (-T1+Ts).
is the extraction start time, T4 is the extraction completion time, T (Foff)
= T2- T is the fuel injection/stop time, and T (Fon) is the fuel injection time plus the flow rate control time.

Qoは燃料投入停止時の自然流入燃料量で(コントロー
ル不可能な)零もしくは零に近い微少値である。
Qo is the amount of naturally flowing fuel when fuel injection is stopped, and is zero (uncontrollable) or a very small value close to zero.

Qlは均熱炉の燃焼装置系により固定されている最大投
入燃料流量Qmaxで等しいか或は若干小さな流量であ
る。
Ql is equal to or slightly smaller than the maximum input fuel flow rate Qmax which is fixed by the combustion system of the soaking furnace.

上記時刻T1. T2. T3及び時間T8゜T(Fo
ff ) 、 T(Fon )の決定の仕方は次の通り
である。
The above time T1. T2. T3 and time T8゜T(Fo
ff) and T(Fon) are determined as follows.

前記時刻T1は、装入時凝固率80%以下の鋼塊の装入
完了時刻で、次に例えば鋼塊サイズ、鋼種側或は品種別
テーブルより最短在炉時間Tsを決定し、抽出開始時刻
T3(=T1+Ts)が決定される。
The time T1 is the time when charging of a steel ingot with a solidification rate of 80% or less at the time of charging is completed, and then the shortest in-furnace time Ts is determined from, for example, the steel ingot size, steel type side or type table, and the extraction start time is determined. T3 (=T1+Ts) is determined.

次に装入時凝固率(計算値)と、実測(或は仮定)炉内
温度とより、装入時点で鋼塊伝熱計算より燃料投入停止
、炉内で80%の凝固率に到る時間T(Foff)を定
め、時刻T2(=T1+T(Foff))、時間T(F
on)=Ts−T(Foff )を定める。
Next, based on the solidification rate at the time of charging (calculated value) and the actual (or assumed) furnace temperature, fuel injection is stopped at the time of charging based on steel ingot heat transfer calculations, and a solidification rate of 80% is reached in the furnace. Time T (Foff) is determined, time T2 (= T1 + T (Foff)), time T (F
on)=Ts-T(Foff).

同図において12は、(経過時間X1流量y)= (’
r2. QO)と、(x、y)=(T3.Ql)とを結
ぶ流量直線である。
In the same figure, 12 is (elapsed time X1 flow rate y) = ('
r2. QO) and (x, y)=(T3.Ql).

13は本発明が採用する上記流量直線に対して下方にわ
ん曲する最小使用流量となる流量曲線である。
Reference numeral 13 indicates a flow rate curve that curves downward with respect to the flow rate straight line and is the minimum usable flow rate, which is adopted by the present invention.

さて、流量曲線13は第12図の如く5段階勾配時間で
制御するものと仮定し、 (1)時刻T1における条件;(設定条件)■ 装入時
凝固率80%以下 ■ 鋼塊持込顕熱 Xkm/T (2)時刻T2における(投入停止時間T (Foff
=) )における条件=(設定条件) ■ 炉内凝固率80%まで (3)時刻T3における条件;(確保すべき条件)■
流量Q1は、流量Qmax≧Q1である。
Now, assuming that the flow rate curve 13 is controlled by five stages of gradient time as shown in Fig. 12, (1) Conditions at time T1; (setting conditions) ■ Solidification rate at the time of charging 80% or less ■ Steel ingot brought in Heat Xkm/T (2) At time T2 (turn-off time T
=) Conditions at ) = (setting conditions) ■ Up to 80% solidification rate in the furnace (3) Conditions at time T3; (conditions to be ensured) ■
The flow rate Q1 satisfies the relationship Qmax≧Q1.

■ 炉温θは、最終設定炉温θBである。(2) Furnace temperature θ is the final set furnace temperature θB.

炉温θSは分塊圧延時の最低温度850℃を考慮し、鋼
塊の凝固温度より100〜150℃以下に定める。
The furnace temperature θS is determined to be 100 to 150° C. or lower than the solidification temperature of the steel ingot, taking into account the minimum temperature of 850° C. during blooming.

■ 抽出時未凝固率O〜20%以下 これは前述の分塊圧延時の内割れ発生、未凝固率より決
定する。
(2) Unsolidified rate during extraction O ~ 20% or less This is determined from the occurrence of internal cracking during blooming and the unsolidified rate mentioned above.

上記(1) 、 (2)の条件のもとに上記(3)の条
件を満足する5段階勾配、時間を検討し、時刻T1にお
ける鋼塊持込顕熱X=170X103に鏑/T以上なら
ば、下記の演算式で、第12図における5段階の勾配、
時間を決定できた。
Based on the conditions (1) and (2) above, consider the 5-step slope and time that satisfy the condition (3) above, and if the sensible heat brought in of the steel ingot at time T1 is X = 170 For example, with the following calculation formula, the 5-step slope in Fig. 12,
I was able to decide on the time.

なお第12図と第11図との記号の関係は、EGAS=
QoITiME= T(Foff )である。
The relationship between the symbols in FIG. 12 and FIG. 11 is EGAS=
QoITiME=T(Foff).

以下本発明の方法を実施する装置および、その動作、及
び実施結果について説明する。
An apparatus for implementing the method of the present invention, its operation, and implementation results will be described below.

第13図は、装置のブロック構成例を示す。FIG. 13 shows an example of the block configuration of the device.

15は均熱炉、16.17は燃焼用ガス、空気配管で各
々炉15のバーナーボートに接続されている。
15 is a soaking furnace, and 16 and 17 are connected to the burner boat of the furnace 15 through combustion gas and air piping, respectively.

18.19は配管16.17に設けた流量調節用操作部
の流量制御弁を、20.21は弁18.19の上流に設
けた流量検出器である。
Reference numeral 18.19 indicates a flow rate control valve of a flow rate adjustment operating section provided in piping 16.17, and reference numeral 20.21 indicates a flow rate detector provided upstream of valve 18.19.

22は炉内温度計である。22 is a furnace thermometer.

23は鋼塊履歴、鋼塊仕様等の情報が入力されている上
位計算機、24は鋼塊顕熱、凝固率の計算式、前記流量
曲線を決定するための前記第(1)。
23 is a host computer into which information such as the steel ingot history and steel ingot specifications is input; 24 is the calculation formula for the sensible heat of the steel ingot, the solidification rate, and the above-mentioned item (1) for determining the flow rate curve.

(2) 、 (3)式の初期流量、流量時間、流量勾配
計算式、前述の最終設定炉温(設定値)の計算式等の計
算式及び最短在炉時間テーブル等が設定(プログラム)
すしているプロセスコンピュータ(プロコン)25は装
置制御用計算機である。
(2), (3) equations for calculating the initial flow rate, flow time, flow rate gradient, calculation formulas for the final set furnace temperature (set value), etc., and the shortest furnace time table, etc. are set (program).
The running process computer (pro-computer) 25 is a device control computer.

計算機23から情報を受けたプロコン24は、最短在炉
時間、燃料投入停止時間及び設定炉温及び前記流量曲線
の時間、勾配等を計算する。
The processor 24 receives information from the computer 23 and calculates the shortest in-furnace time, fuel injection/stopping time, set furnace temperature, time, slope, etc. of the flow rate curve.

プロコン24は計算機25へ、指令値として前記計算結
果を与える。
The processor 24 gives the calculation result to the computer 25 as a command value.

計算機25は流量指令値を直接操作部(弁)へ与えると
共に機器18,19及び22より流量値及び炉温をフィ
ードバックされて炉温か設定炉温に達すると、即制御モ
ードを流量制御より炉温制御へ切り換え、炉温偏差を解
消すべく流量指令を直接、操作部へ与えるものである。
The calculator 25 gives the flow rate command value directly to the operating part (valve), and also receives the flow rate value and furnace temperature as feedback from the devices 18, 19, and 22. When the furnace temperature reaches the set furnace temperature, the computer 25 immediately changes the control mode to the furnace temperature from the flow rate control. It switches to control and directly gives a flow rate command to the operating unit to eliminate the furnace temperature deviation.

なお同図において、26は切換スイッチで、27はスイ
ッチ26で計算機25がダウンした際に制御対象の検出
部、操作部と接続され、計算機25と同様の機能をはた
す計算機25のバックアップ装置である。
In the figure, 26 is a changeover switch, and 27 is a switch 26, which is a backup device for the computer 25 that is connected to the detection unit and operation unit to be controlled when the computer 25 goes down, and has the same function as the computer 25. .

次に動作を説明する。Next, the operation will be explained.

(4)鋼塊装入完了タイミング ■ 計算機23は装入鋼塊の履歴、仕様等の情報をプロ
コン24に与エル。
(4) Steel ingot charging completion timing■ The computer 23 provides information such as the history and specifications of the charged steel ingot to the pro-controller 24.

■ プロコン24は上記情報及び計算機25を経て得た
実施炉温より鋼塊の最短在炉時間、装入時の凝固率、顕
熱を計算する。
(2) The processor 24 calculates the shortest in-furnace time of the steel ingot, solidification rate at the time of charging, and sensible heat from the above information and the actual furnace temperature obtained through the calculator 25.

この計算結果に基づき燃料投入停止時間を計算する。Based on this calculation result, the fuel injection stop time is calculated.

又最終設定炉温(設定値)を決定する。Also, determine the final furnace temperature (set value).

(B) 燃料投入停止時間経過タイミング■ プロコ
ン24は、最小使用量の流量曲線の時間、勾配を計算す
る。
(B) Fuel supply stop time elapsed timing■ The processor 24 calculates the time and slope of the flow rate curve for the minimum usage amount.

■ この計算結果を装置制御用計算機25へ送る。■ Send this calculation result to the device control computer 25.

(0炉温の設定値到達タイミング ■ 計算機25は炉温か設定値に到達すると、到達した
ことをプロコン24へ知らせると同時に、これまでの時
間、勾配で規定される流量曲線を目標値とする流量制御
モードより設定炉温を目標値とする炉温制御モードにモ
ードを切り換える。
(Timing for reaching the set value of 0 furnace temperature■ When the calculator 25 reaches the set value of the furnace temperature, it notifies the program controller 24 that it has reached the set value, and at the same time calculates the flow rate using the flow rate curve defined by the slope for the past time as the target value. Switch the mode from the control mode to the furnace temperature control mode in which the set furnace temperature is the target value.

■ プロコン24は鋼塊の抽出開始指令を外部の表示装
置等へ発信すると共に、今までの鋼塊に関する諸データ
を上位計算機23へ送り出す。
(2) The processor 24 sends a steel ingot extraction start command to an external display device, etc., and also sends various data related to the steel ingot to the host computer 23.

(D) (B)→C)間の過渡期間(第12図参照)
時間: I T iME−→2TiMEまでは勾配I
5LOPで、 時間; 2 TiME→3 TiMEまでは勾配25L
OPで、 時間: 3 TiME→4TiMEまでは勾配3 SI
、OPで、 時間; 4 TiME→5TiMEまでは勾配45LO
Pで、 投入流量制御し、(T1+ 5 TiME)時刻では、
実測データをもとに、初期に設定した5段階目の勾配(
5SLOP)で制御すると、例えば第12図の破線の如
く勾配=Oの68LOPが生じることが予測された場合
、第12図の実線の58LOPへ修正し制御する。
(D) Transition period between (B) → C) (see Figure 12)
Time: I TiME-→Gradient I until 2TiME
At 5 LOP, time: 2 TiME → 3 TiME: slope 25L
In the OP, time: 3 TiME→4TiME has a slope of 3 SI
, OP, time; gradient 45LO from 4 TiME to 5TiME
P controls the input flow rate, and at (T1+5 TiME) time,
Based on the actual measurement data, the slope of the 5th stage (
5SLOP), for example, if it is predicted that 68LOP with gradient=O as shown by the broken line in FIG. 12 will occur, the control is corrected to 58LOP shown by the solid line in FIG. 12.

なお、第12図の実線で示す55LOP及び65LOP
は、5TiME→6TiMEの間で、流量QがQmax
に達し、この時点でまだ炉温か設定炉温に達しないで最
大流量保定時間が生じた場合の保定部分を示す。
In addition, 55LOP and 65LOP indicated by solid lines in FIG.
is, the flow rate Q is Qmax between 5TiME → 6TiME
, and the furnace temperature has not yet reached the set furnace temperature at this point and the maximum flow rate retention time occurs.

第14図は第13図の装置により、本発明法を実施した
際の燃料投入流量曲線Qと、炉温θとの実測タイムチャ
ートを示したもので、T1゜T2.T3.T4は、各々
鋼塊装入完了時刻、燃料投入(流量制御)開始時刻、抽
出開始時刻、完了時刻である。
FIG. 14 shows an actual measurement time chart of the fuel injection flow rate curve Q and the furnace temperature θ when the method of the present invention is carried out using the apparatus shown in FIG. 13. T3. T4 is the steel ingot charging completion time, fuel injection (flow rate control) start time, extraction start time, and completion time, respectively.

このチャートにおける諸元は次の通りである。The specifications in this chart are as follows.

鋼塊単重・・・・・・・・・・・・・・・・・・ 21
T装入時凝固率・・・・・・・・・・・・ 65.69
%装入時鋼塊持込顕熱・・・179.29X 10 k
$T最短在炉時間・・・・・・・・・・・・・・・2.
5Hr初期燃料止時間・・・・・・・・・・・・1.5
Hr燃料投入開始時凝固率・・・80% 抽出時凝固率・・・・・・・・・・・・100%在炉時
間・・・・・・・・・・・・・・・・・・・・・2.8
Hr(装入完〜抽出完) この結果 圧延時の最低温度・・・1000.0℃ 圧圧延仕上度・・・・・・・・・1066.4°C燃料
原単位・・・・・・・・・・・・・・・ 23.3 X
103に$Tであった。
Unit weight of steel ingot・・・・・・・・・・・・・・・ 21
Solidification rate when charging T・・・・・・・・・・・・65.69
Sensible heat brought into the steel ingot during charging...179.29X 10k
$T Shortest in-reactor time・・・・・・・・・・・・2.
5Hr initial fuel stop time・・・・・・・・・1.5
Solidification rate at the start of Hr fuel injection...80% Solidification rate at the time of extraction...100% Furnace time...... ...2.8
Hr (Charging completed - Extraction completed) As a result, the minimum temperature during rolling...1000.0°C Rolling finish...1066.4°C Fuel consumption...・・・・・・・・・ 23.3 X
It was $T for 103.

第1表は本発明による燃料原単位を従来法(詳しくは流
量曲線として最大流量一定量線を使用する方法及び流量
勾配制御曲線を使用する方法)のそれと比較して示した
ものである。
Table 1 shows the fuel consumption rate according to the present invention in comparison with that of conventional methods (specifically, a method using a constant maximum flow rate line as a flow rate curve and a method using a flow rate gradient control curve).

本発明法がいかに省エネルギー型の均熱炉の操業方法で
あるかが第1表より明らかである。
It is clear from Table 1 how the method of the present invention is an energy-saving method for operating a soaking furnace.

以上説明した様に本発明法は、(1)装入凝固率を従来
よりも小さくなし従来の装入、燃料投入開始の凝固率に
達するまで燃料投入しない炉内で凝固させ、この過程で
の従来は大気放散していた熱量を有効活用し、(2)加
熱期は流量直線に対して下方にわん曲する最小使用燃量
流量となる流量曲線で鋼塊が加熱し、(3)次に流量曲
線の最大流量近傍で炉温か最終設定温度に達すると従来
の如く均熱期をとることなく鋼塊を抽出するものである
から燃料使用量が極小となり、最大限の省エネルギー効
果を得ることができ、均熱炉操業に於て極めて有効であ
る。
As explained above, the method of the present invention (1) makes the charging solidification rate smaller than conventional charging, solidifies in the furnace without charging fuel until it reaches the solidification rate at the start of charging and fuel injection, and in this process By effectively utilizing the amount of heat that was conventionally dissipated into the atmosphere, (2) during the heating period, the steel ingot is heated according to the flow rate curve that curves downward with respect to the flow rate straight line, which is the minimum fuel flow rate used, and (3) next, When the furnace temperature reaches the final set temperature near the maximum flow rate of the flow rate curve, the steel ingot is extracted without taking a soaking period as in conventional methods, so the amount of fuel used is minimized and the maximum energy saving effect can be obtained. It is extremely effective in soaking furnace operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は従来の均熱炉の操業法、特に投入燃料流量
曲線の説明図、第7〜9図は本発明法の前提条件となる
、本発明者による新しい知見の説明図で、第10図は本
発明の説明図、第11、第12図は本発明法の流量曲線
の決定法の説明図、第13図は本発明法を実施するため
の装置構成例を示すブロック図、第14図は第13図の
装置による操業結果即ち、流量、炉温の実測タイムチャ
ートである。 1・・・・・・炉内温度線、2・・・・・・燃料流量線
、3・・・・・・ホットポイント、4・・・・・・平均
温度、5・・・・・・コールドポイント、6・・・・・
・凝固曲線(型内)、7・・・・・・凝固曲線(型外炉
内)、8・・・・・・凝固曲線(燃料投入炉内)、9・
・・・・・凝固曲線、10・・・・・・凝固曲線、11
・・・・・・凝固曲線、12・・・・・・流量直線、1
3・・・・・・流量曲線、14・・・・・・5段階流量
線、15・・・・・・均熱炉、16・・・・・・ガス配
管、1γ・・・・・・空気配管、18・・・・・・流量
制御弁、19・・・・・・流量制御弁、20・・・・・
・流量検出器、21・・・・・・流量検出器、22・・
・・・・炉内温度計、23・・・・・・上位計算機、2
4・・・・・・プロコン、25・・・・・・装置制御用
計算機、26・・・・・・切換スイッチ、27・・・・
・・バックアップ装置、28・・・・・・流量曲線、2
9・・・・・・炉温曲線、30・・・・・・鋼塊表面温
度曲線。
Figures 1 to 6 are explanatory diagrams of the conventional method of operating a soaking furnace, particularly the input fuel flow rate curve, and Figures 7 to 9 are explanatory diagrams of new findings by the present inventor, which are prerequisites for the method of the present invention. FIG. 10 is an explanatory diagram of the present invention, FIGS. 11 and 12 are explanatory diagrams of a method for determining a flow rate curve according to the present invention, and FIG. 13 is a block diagram showing an example of an apparatus configuration for implementing the present invention method. FIG. 14 is an actual measurement time chart of the operational results of the apparatus shown in FIG. 13, ie, flow rate and furnace temperature. 1... Furnace temperature line, 2... Fuel flow line, 3... Hot point, 4... Average temperature, 5... Cold point, 6...
・Solidification curve (inside the mold), 7... Solidification curve (inside the furnace outside the mold), 8... Solidification curve (inside the fuel charging furnace), 9.
...Coagulation curve, 10...Coagulation curve, 11
... Solidification curve, 12 ... Flow rate straight line, 1
3...Flow rate curve, 14...5 stage flow rate line, 15...Soaking furnace, 16...Gas piping, 1γ... Air piping, 18...Flow rate control valve, 19...Flow rate control valve, 20...
・Flow rate detector, 21...Flow rate detector, 22...
... Furnace thermometer, 23 ... Upper computer, 2
4...Processing computer, 25...Device control computer, 26...Selector switch, 27...
...Backup device, 28...Flow rate curve, 2
9... Furnace temperature curve, 30... Steel ingot surface temperature curve.

Claims (1)

【特許請求の範囲】[Claims] 1 炉温か設定値に達するまでは炉内へ投入する燃料流
量を制御する投入燃料流量制御を、炉温か設定値に到達
後は、設定値を目標値として炉温を制御する炉温制御を
行なう燃焼制御装置及び炉温検出器を備えた鋼塊の均熱
炉において、70〜80%以下の凝固率の鋼塊を炉内へ
装入し、70〜80%までの所定凝固率に達するまで投
料を投入せず、上記所定凝固率に達すると燃料の投入を
開始する前提条件のもとに、分塊圧延時に内部割れが発
生しない未凝固率で、かつ分塊圧延時に表面割れが発生
しない圧延時の最低温度以上の温度の均熱鋼塊を得るに
必要な最短在炉時間を定め、前記装入時刻に該最短在炉
時間を加えた時刻で投入流量が最大流量以下の所定流量
になり、しかも炉温か設定温度に到達する時刻を横軸に
、投入流量を縦軸にとった場合、投入開始時刻の流量と
上記装入時刻に最短在炉時間を加えた時刻の上記流量と
を結ぶ流量直線に対して、下方にわん曲する最小使用流
量となる流量曲線を定めて前記70〜80%以下の凝固
率で鋼塊を装入し、燃料投入停止炉内で前記所定凝固率
に達すると、燃料投入を開始し、以降前記流量曲線に沿
って流量制御を行ない、次に炉温か前記設定値に達する
と、即鋼塊を抽出することを特徴とする均熱炉の操業方
法。
1. Input fuel flow control is performed to control the flow rate of fuel input into the furnace until the furnace temperature reaches the set value, and after the furnace temperature reaches the set value, furnace temperature control is performed to control the furnace temperature using the set value as the target value. In a steel ingot soaking furnace equipped with a combustion control device and a furnace temperature detector, a steel ingot with a solidification rate of 70 to 80% or less is charged into the furnace until a predetermined solidification rate of 70 to 80% is reached. Under the prerequisites of starting fuel injection when the predetermined solidification rate is reached without inputting the charge, the unsolidified rate is such that no internal cracks occur during blooming, and no surface cracks occur during blooming. The shortest in-furnace time required to obtain a soaked steel ingot at a temperature equal to or higher than the minimum temperature during rolling is determined, and the input flow rate reaches a predetermined flow rate below the maximum flow rate at the time when the shortest in-furnace time is added to the charging time. If the horizontal axis is the time when the furnace temperature reaches the set temperature and the vertical axis is the charging flow rate, then the flow rate at the charging start time and the above flow rate at the time when the shortest furnace time is added to the charging time is With respect to the connecting flow rate straight line, a flow rate curve that curves downward to provide the minimum usable flow rate is determined, and the steel ingot is charged with a solidification rate of 70 to 80% or less, and the solidification rate is reached to the specified solidification rate in the fuel injection and shutdown furnace. A method for operating a soaking furnace, characterized in that when the furnace temperature reaches the set value, fuel injection is started, and thereafter the flow rate is controlled along the flow rate curve, and then when the furnace temperature reaches the set value, the ready steel ingot is extracted.
JP6715379A 1979-05-30 1979-05-30 How to operate a soaking furnace Expired JPS5858416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6715379A JPS5858416B2 (en) 1979-05-30 1979-05-30 How to operate a soaking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6715379A JPS5858416B2 (en) 1979-05-30 1979-05-30 How to operate a soaking furnace

Publications (2)

Publication Number Publication Date
JPS55158230A JPS55158230A (en) 1980-12-09
JPS5858416B2 true JPS5858416B2 (en) 1983-12-24

Family

ID=13336668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6715379A Expired JPS5858416B2 (en) 1979-05-30 1979-05-30 How to operate a soaking furnace

Country Status (1)

Country Link
JP (1) JPS5858416B2 (en)

Also Published As

Publication number Publication date
JPS55158230A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
CN114264153B (en) Method, system and terminal for monitoring temperature of aluminum melting furnace and optimizing operation control
CN108637199B (en) Method for reducing molten steel temperature of first-furnace ladle for pouring of tundish
CN114317860A (en) Combustion control method of heat accumulating type hot blast stove
CN113664173A (en) Control method for longitudinal crack defect of high-strength steel of wide and thick plate blank
JPS5858416B2 (en) How to operate a soaking furnace
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JP3562116B2 (en) Control method of molten steel temperature in tundish
US4120642A (en) Method for heating ingot in soaking pit
JP2820895B2 (en) Method of improving hot water supply accuracy in pre-level hot water supply control method
JPH0399762A (en) Continuous casting method
JP3982042B2 (en) Combustion control method for continuous heating furnace
CN108469176B (en) Heating furnace heating means and heating furnace heating system
CN220887633U (en) Multi-furnace body heating furnace
CN220247673U (en) A regulation and control system for reducing external restraint crack of split pouring concrete
JPH0381049A (en) Method for mater-cooling continuous casting mold
CN104625037A (en) Ladle preheating kiln
JPS6393452A (en) Promoting method for floating inclusion in molten steel in tundish
JPS5848010B2 (en) Heating furnace automatic combustion control method
CN117628916A (en) System and method for predicting cooling flue gas outlet temperature of sintering belt cooler
JPS6027739B2 (en) Method of charging steel ingots into soaking furnace
JPS6013026A (en) Method for controlling combustion of continuous heating furnace
SU1032022A1 (en) Method for detecting the end of heating of metal charge in open hearth furnace
JPH06106302A (en) Method for continuously casting martenstic stainless steel
JPS5815527B2 (en) Koukainokanetseigiyouhou
JPS606737B2 (en) Secondary cooling water control method in continuous casting