JPS6231637B2 - - Google Patents
Info
- Publication number
- JPS6231637B2 JPS6231637B2 JP10103479A JP10103479A JPS6231637B2 JP S6231637 B2 JPS6231637 B2 JP S6231637B2 JP 10103479 A JP10103479 A JP 10103479A JP 10103479 A JP10103479 A JP 10103479A JP S6231637 B2 JPS6231637 B2 JP S6231637B2
- Authority
- JP
- Japan
- Prior art keywords
- denitrification
- amount
- bacteria
- denitrifying
- denitrifying bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 241000894006 Bacteria Species 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 63
- 239000002351 wastewater Substances 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 84
- 230000001580 bacterial effect Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000012545 processing Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001546 nitrifying effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
本発明は、下水、し尿、産業廃水、その他の排
水などの有機性廃水を生物学的に処理し浄化する
ための方法、特に脱窒工程の媒体上に付着した脱
窒素菌を利用して脱窒する廃水の生物学的脱窒法
に関するものである。
この生物学的脱窒法は、活性汚泥法と、粒状、
塊状、板状、網状、棒状、繊維状、管状の媒体に
微生物を付着して利用する生物固定床法に大別さ
れるが、設置面積に制限のある処理施設では、硝
化菌、脱窒菌を純粋かつ高濃度に維持でき、装置
の縮小が可能な固定床法が実用化されている。従
来の固定床法の脱窒処理は通常廃水中の窒素化合
物、例えばNH4を硝化工程でNO2あるいはNO3
(以下NOxとする)に硝化したのち、脱窒素菌が
付着した媒体によつて固定層あるいは流動層の形
成されている脱窒工程でNOxをN2ガスにまで還
元分解(脱窒)するものである。この方法で発生
する余剰菌の処理は、媒体を再利用するため、媒
体を脱窒工程より引抜いた後、前記媒体に付着し
た菌体と媒体とを分離し、媒体は脱窒工程に返送
し、一方菌体は脱水、乾燥、焼却されるが、この
方法は媒体に対する菌体の付着が強力なため剥離
に大きなエネルギーを必要とするし、また剥離さ
れた菌体は純粋培養化されているので極めて脱水
性が悪い等の欠点がある。また嫌気的消化法を利
用して、媒体上の菌体を可溶化し、媒体より分離
する方法もあるが、これも媒体の可溶化に長時間
を要するうえ消化脱離液の再処理が必要であると
いう欠点を有する。このような従来の余剰菌の処
理法はいずれも操作が煩雑であるうえ前記欠点が
あり当業界にとつて憂慮されている問題であつ
た。とりわけ余剰脱窒素菌の処理法の改良が大き
な問題となつているが、これは、利用する硝化菌
の増殖量が0.1増殖菌量/NH4−N(g/g)で
あるのに対し、脱窒素菌の増殖量は、菌体収率の
小さいメタノール資化性脱窒素菌でも0.4増殖菌
量/NO3−N(g/g)と、除去窒素あたり硝化
菌の4倍量にも達するためである。
本発明は、これら従来法の諸欠点を解消するも
のであり、脱窒処理を効率よく行ない、菌体を脱
窒工程から引抜くことも、菌体を媒体より分離す
ることもなく、極めて容易で経済的な余剰脱窒素
菌の処理処分をも可能にする廃水の生物学的脱窒
法を提供することを目的とするものである。
本発明は、脱窒工程を複数直列に連結した脱窒
処理系で各脱窒工程における有機炭素源の注入量
をそれぞれの脱窒素菌体の増殖に十分なる量と、
零乃至脱窒素菌の増殖に不足な量とに交互に調節
して処理することでメタノールによる脱窒反応
(外呼吸型脱窒反応)で媒体上に増殖した脱窒素
菌をメタノールを減少、即ち脱窒素菌の構成成分
自体を還元剤とする脱窒反応(内呼吸型脱窒反
応)によつて媒体上に増殖した余剰脱窒素菌を減
少せしめたのち再びメタノールによる脱窒反応で
脱窒素菌を増殖するという方法を複数の脱窒工程
を利用し、工程全体の脱窒素菌量が一定量保持さ
れるようにして処理することを特徴とした生物学
的脱窒法である。
次に本発明の実施態様を図面に基づいて説明す
ると、NH3を含有する廃水1は全部又は一部が硝
化工程2でNO3に硝化され、NO3のみを含有する
硝化水3は直接、メタノール6とともに脱窒工程
4に流入し、NO3の大部分は脱窒され、残部は脱
窒工程5でメタノール6なしで脱窒され、脱窒が
完了したのち処理水7として放流される。この場
合前記廃水1は必要に応じその一部又は全部がバ
イパス流路1′で直接前記脱窒工程4に流入して
処理することができる。
一方脱窒工程4ではメタノール6による脱窒反
応によつて脱窒素菌が増殖し、直列に続く脱窒工
程5では菌体成分自体を還元剤とする内呼吸型脱
窒反応により菌体は次第に減少する。内呼吸型の
脱窒速度はメタノール6による脱窒速度のおおよ
そ1/5〜1/10である。従つて、前記脱窒工程4,
5の菌体量が同じであれば、脱窒工程4に流入す
るNOxの80〜90%を除去し、次の脱窒工程5で
は残留する20〜10%のNOxを除去すれば効率的
な脱窒処理をすることができる。この脱窒工程
4,5の脱窒素菌がそれぞれ過剰に増加、減少す
る前に、脱窒工程4のメタノール6の注入を中
止、あるいは減少させ、脱窒工程5にメタノール
6を注入して脱窒し、再び脱窒工程4,5の脱窒
菌がそれぞれ過剰に減少、増加する前に、脱窒工
程5のメタノール6の注入を中止し、再び前段の
脱窒工程4にメタノール6を注入して脱窒すると
いう操作を繰返すことによつて脱窒工程全体の脱
窒素菌量を定量的に保持することができる。
なお、増殖した菌体の減少は、必ずしもメタノ
ール6の注入を完全に停止せずとも、脱窒工程の
菌体の増殖に不足な量にまで注入量を低下するこ
とによつて行うことができるが、減少速度はメタ
ノール無注入より遅くなる。しかし、脱窒工程の
菌体が全体的に少なめのときに有効である。
また前記脱窒工程は最低二工程直列に連結すれ
ばその目的をはたせるが、後段の脱窒工程5の後
にさらに脱窒工程8を連結し、三工程以上あつた
ほうがメタノール注入量、工程の菌体量を調節す
るうえで好ましい。
これら後段の脱窒工程8以下にも必要に応じメ
タノール6′を注入してもよい。
メタノールの注入、無注入の切換えは媒体に付
着している脱窒素菌量の増減を肉眼によつて観察
して手動的操作を行えばよい。この場合肉眼によ
る観察の際に脱窒素菌の増殖に不十分な有機炭素
源の注入量の見分け方としては媒体に付着してい
る脱窒素菌の量をみて、経験的に判断する。十分
な量の場合には菌量も増え生物膜も成長する。逆
に不十分な量にすると生物膜は収縮したように小
さくなり、流出水と一緒に流れ出るのを見分けれ
ばよい。例えば、小規模の廃水を処理する場合に
は脱窒工程に透明あるいは半透明なプラスチツク
構造物を用いるので、外側から増殖量を用いるの
で、外側から増殖量を観察することができるし、
また鋼板等の不透明な材料による構造体を用いる
場合には砂ろ過塔等に配備されているような覗き
窓を脱窒塔の側面に縦長に取り付けることによつ
て、塔内の脱窒菌の増殖量を観察することができ
る。
以上のような方法によつて塔内の脱窒菌量を観
察しながら、試行錯誤的に脱窒菌の増殖に不十分
な有機炭素源の注入量を決定することができる。
すなわち、脱窒菌量が次第に減少していくように
有機炭素源量の注入量を減少していくか、あるい
は注入を停止すればよい。
特に増殖に不足な量とは、有機炭素源を添加し
て菌が増殖すれば、十分な量であり、菌が増殖し
なければ不足な量となるのであるが、経済的変化
をみて判断する。即ちある時の菌の状態を基にし
て、次の時に菌がどうなつているかで判断する。
すなわち、次の時に前より菌が増えて生物膜が成
長していれば十分な量であり、菌が減少(収縮)
して生物膜が不安定な状態であれば、不足量であ
ると判断する。また媒体が粒状媒体である場合に
は、媒体上の脱窒素菌の増殖量の増減によつて媒
体層の高さも増減するので、この増減を光の透過
率あるいは他の手段による界面(固液界面)計を
用いて検知すれば、メタノールの注入、無注入を
無人で制御することができる。またタイマーで媒
体移送時間を設定し、間欠的に移送することもで
きる。この場合は、設定時間によつて変動する層
高の増減より、経験的に最適な移送時間を設定す
ればよい。
なお前記各脱窒工程における菌体量および脱窒
素量の調節は、メタノール注入工程、無注入工程
の配分とメタノール注入量の増減とを同時にある
いはそれぞれ単独に調整、制御することによつて
行うことができる。
さらに有機炭素源の注入量はそれぞれの脱窒素
菌体の増殖に十分な量および零乃至脱窒素菌の増
殖に不足な量に交互に調節し処理する場合、少な
くとも別の脱窒工程でそれぞれ行なうのがよく、
前記有機炭素源は脱窒工程の脱窒素菌が減少した
時点で注入され、増加した時点で中止乃至注入減
量を行なうようにすることが考慮されている。
このように、有機炭素源の添加量を脱窒菌の増
殖量に対応して制御すれば脱窒工程の菌体量を適
切な範囲に保持できるので、制御しない運転時に
予想される不都合を解消することができる。即
ち、有機炭素源が十分注入されている脱窒塔で脱
窒菌が運転の期間中に過度に増殖して付着媒体か
ら離れあるいは付着媒体とともに塔外に流出し、
配管の閉塞あるいは処理水固形物の増加をきたす
こととなつたり、脱窒菌が有機炭素源の十分注入
されている脱窒工程で過剰に増殖すると、流入す
るNOxが全て脱窒されるため、次段の塔の脱窒
塔が完全に嫌気状態となつて脱窒菌が腐敗、死滅
してしまう(特に水温が高い場合)ので、処理水
質が悪化し、一度脱窒菌が死滅すると再び増殖す
るまで相当の日数を要するので、その間メタノー
ルが利用されずにさらに処理が悪化するなどの問
題が生じるが、本発明ではこれら欠点はなく処理
できる。
本発明によれば脱窒処理が複数直列に連結され
た脱窒工程で各脱窒工程における有機炭素源の注
入量をそれぞれの脱窒素菌体の増殖に十分なる量
と、零乃至脱窒素菌の増殖に不足な量とに交互に
調節して処理することによりメタノールによる脱
窒反応(外呼吸型脱窒反応)で媒体上に増殖した
脱窒素菌をメタノールを減少、即ち脱窒素菌の構
成成分自体を還元剤とする脱窒反応(内呼吸型脱
窒反応)によつて媒体上に増殖した余剰脱窒素菌
を減少せしめたのち再びメタノールによる脱窒反
応で脱窒素菌を増殖するという方法を複数の脱窒
工程を利用し、工程全体の脱窒素菌量が一定量保
持されるので、余剰菌体の分離装置、脱水、乾燥
装置、焼却炉などの菌体の処理設備が不要とな
り、しかも、脱窒処理水の浄化効率が著しく向上
され処理操作も余剰菌体の処理がバルブなどの操
作だけですみ極めて簡単であつて運転管理も容易
で余剰菌の処理と同時に脱窒処理水の浄化も行う
ことができるので余剰脱窒素菌の処理処分に付随
する従来の欠点を解消し、大幅に改良された脱窒
処理とすることができ余剰菌の処理費用が不要と
なり、さらに内呼吸型脱窒によりメタノールも節
減され、処理コストも大巾に節減できる。
次に本発明の一実施例を示す。
実験装置
流動層式脱窒塔 50 円筒カラム二本
(φ200mm、高さ1600mm、有効容積50.2)
実験条件
実験廃水 人工硝化液 NO3−N 30mg/
(脱塩素水道水にNaNO3を添加して調整した
もの)
廃水処理量 2000/日
流動層媒体 砂
流動層菌量は流動層層高をもつて増減をみた
実験開始時の流動層層高
第1塔 600mm
第2〃 1000mm
実験開始時のメタノール注入量
第1塔 130g/日
第2〃 0g/日
実験結果
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for biologically treating and purifying organic wastewater, such as sewage, human waste, industrial wastewater, and other wastewater, and in particular for denitrification deposited on the medium of the denitrification process. This paper relates to a biological denitrification method for wastewater that uses nitrogen bacteria. This biological denitrification method consists of activated sludge method, granular,
It is broadly divided into biological fixed bed methods, which use microorganisms attached to lump-like, plate-like, net-like, rod-like, fibrous, and tubular media. A fixed bed method has been put into practical use that can maintain purity and high concentration and allow for downsizing of equipment. Conventional fixed bed denitrification treatment usually converts nitrogen compounds in wastewater, such as NH 4 , into NO 2 or NO 3 during the nitrification process.
After nitrification to NOx (hereinafter referred to as NOx), NOx is reduced and decomposed to N2 gas (denitrification) in a denitrification process in which a fixed bed or fluidized bed is formed by a medium to which denitrifying bacteria are attached. It is. In order to reuse the medium in this method, the medium is removed from the denitrification process, the bacteria adhering to the medium are separated from the medium, and the medium is returned to the denitrification process. On the other hand, the bacterial cells are dehydrated, dried, and incinerated, but this method requires a large amount of energy to detach because the bacterial cells adhere strongly to the medium, and the detached bacterial cells are pure cultures. Therefore, it has drawbacks such as extremely poor dehydration properties. There is also a method that uses anaerobic digestion to solubilize the bacterial cells on the medium and separate them from the medium, but this also requires a long time to solubilize the medium and requires reprocessing of the digestion fluid. It has the disadvantage of being All of these conventional methods for treating surplus bacteria are complicated in operation and have the above-mentioned drawbacks, which are problems that are of concern to the industry. In particular, improving the treatment method for surplus denitrifying bacteria has become a major issue, but this is because the growth rate of the nitrifying bacteria used is 0.1 growth rate/NH 4 -N (g/g). The growth rate of denitrifying bacteria is 0.4 bacterial growth/NO 3 -N (g/g), which is four times the amount of nitrifying bacteria per nitrogen removed, even for methanol-assimilating denitrifying bacteria with a small bacterial cell yield. It's for a reason. The present invention eliminates the various drawbacks of these conventional methods, and allows denitrification to be carried out efficiently and extremely easily without pulling out the bacteria from the denitrification process or separating the bacteria from the medium. The purpose of this study is to provide a biological denitrification method for wastewater that enables economical treatment and disposal of surplus denitrifying bacteria. The present invention provides a denitrification treatment system in which a plurality of denitrification processes are connected in series, and the amount of organic carbon source injected in each denitrification process is sufficient for the growth of each denitrification bacteria,
By alternately adjusting the amount to zero or insufficient for the growth of denitrifying bacteria, the denitrifying bacteria grown on the medium by methanol denitrification reaction (exo-breathing denitrification reaction) can be reduced by methanol. Excess denitrifying bacteria that have grown on the medium are reduced through a denitrification reaction using the constituent components of the denitrifying bacteria themselves as reducing agents (endo-respiration type denitrifying reaction), and then the denitrifying bacteria are removed again by a denitrifying reaction using methanol. This is a biological denitrification method that utilizes multiple denitrification steps to propagate the bacteria so that a constant amount of denitrification bacteria is maintained throughout the process. Next, an embodiment of the present invention will be described based on the drawings. The waste water 1 containing NH 3 is completely or partially nitrified to NO 3 in the nitrification step 2, and the nitrified water 3 containing only NO 3 is directly It flows into the denitrification step 4 together with methanol 6, and most of the NO 3 is denitrified, and the remainder is denitrified in the denitrification step 5 without methanol 6, and after the denitrification is completed, it is discharged as treated water 7. In this case, part or all of the wastewater 1 can be directly flowed into the denitrification process 4 through the bypass channel 1' and treated, if necessary. On the other hand, in the denitrification step 4, denitrifying bacteria proliferate due to the denitrification reaction with methanol 6, and in the serial denitrification step 5, the bacterial cells gradually grow due to the endorespiratory denitrification reaction using the bacterial component itself as a reducing agent. Decrease. The denitrification rate of endorespiration type is approximately 1/5 to 1/10 of that of methanol 6. Therefore, the denitrification step 4,
If the amount of bacteria in step 5 is the same, it will be efficient to remove 80 to 90% of the NOx flowing into denitrification step 4, and remove the remaining 20 to 10% of NOx in the next denitrification step 5. Can be denitrified. Before the denitrification bacteria in denitrification processes 4 and 5 increase or decrease excessively, injection of methanol 6 in denitrification process 4 is stopped or reduced, and methanol 6 is injected in denitrification process 5 to denitrify the bacteria. Before the denitrifying bacteria in denitrifying processes 4 and 5 excessively decrease and increase again, injection of methanol 6 in denitrifying process 5 is stopped, and methanol 6 is again injected into the previous denitrifying process 4. By repeating the denitrifying operation, the amount of denitrifying bacteria in the entire denitrifying process can be quantitatively maintained. Note that the number of bacterial cells that have proliferated can be reduced by reducing the injection amount to an amount insufficient for the growth of bacterial cells in the denitrification process, without necessarily stopping the injection of methanol 6 completely. However, the rate of decrease is slower than when methanol is not injected. However, it is effective when the number of bacterial cells in the denitrification process is relatively small overall. Furthermore, the purpose of the denitrification process can be achieved if at least two processes are connected in series, but it is better to further connect the denitrification process 8 after the latter denitrification process 5, and to have three or more processes, to reduce the amount of methanol injected and the bacteria in the process. Preferable for regulating body mass. Methanol 6' may also be injected into the subsequent denitrification steps 8 and below, if necessary. Switching between methanol injection and non-injection can be performed manually by observing with the naked eye the increase or decrease in the amount of denitrifying bacteria attached to the medium. In this case, the method of determining the amount of organic carbon source to be injected that is insufficient for the growth of denitrifying bacteria during visual observation is determined empirically by looking at the amount of denitrifying bacteria attached to the medium. If the amount is sufficient, the amount of bacteria will increase and a biofilm will grow. On the other hand, if the amount is insufficient, the biofilm will shrink and become smaller, and all you have to do is notice that it flows out with the runoff water. For example, when treating small-scale wastewater, a transparent or translucent plastic structure is used in the denitrification process, so the amount of growth can be observed from the outside, and the amount of growth can be observed from the outside.
In addition, when using a structure made of opaque materials such as steel plates, it is possible to increase the growth of denitrifying bacteria inside the tower by attaching a viewing window vertically on the side of the denitrification tower, such as the one installed in sand filter towers. The amount can be observed. By the method described above, while observing the amount of denitrifying bacteria in the tower, it is possible to determine by trial and error the amount of organic carbon source to be injected that is insufficient for the growth of denitrifying bacteria.
That is, the amount of organic carbon source injected may be reduced so that the amount of denitrifying bacteria gradually decreases, or the injection may be stopped. In particular, the amount insufficient for growth is an amount that is sufficient if an organic carbon source is added and the bacteria grow, and an insufficient amount if the bacteria do not grow, but it should be determined based on economic changes. . In other words, based on the state of the bacteria at one time, judgments are made based on the state of the bacteria at the next time.
In other words, if the next time there are more bacteria than before and the biofilm is growing, it is sufficient, and the bacteria will decrease (shrink).
If the biofilm is unstable, it is determined that the amount is insufficient. In addition, when the medium is a granular medium, the height of the medium layer increases or decreases depending on the growth rate of denitrifying bacteria on the medium. If detected using an interfacial (interface) meter, it is possible to control whether methanol is injected or not injected unattended. It is also possible to set the medium transfer time using a timer and transfer the medium intermittently. In this case, it is sufficient to empirically set the optimum transfer time based on the increase/decrease in the layer height which varies depending on the set time. The amount of bacterial cells and the amount of denitrification in each of the denitrification steps can be adjusted by adjusting and controlling the distribution of the methanol injection step and non-injection step and the increase/decrease of the methanol injection amount simultaneously or individually. I can do it. Furthermore, when the amount of organic carbon source injected is alternately adjusted to an amount sufficient for the growth of each denitrifying bacteria and an amount insufficient for the growth of the denitrifying bacteria to zero, each is performed in at least a separate denitrification process. It is better to
It is considered that the organic carbon source is injected when the number of denitrifying bacteria in the denitrification process decreases, and when the number of denitrifying bacteria increases, the amount of the organic carbon source is stopped or the amount of injection is reduced. In this way, if the amount of organic carbon source added is controlled in accordance with the growth rate of denitrifying bacteria, the amount of bacteria in the denitrifying process can be maintained within an appropriate range, which eliminates the inconveniences that may occur during uncontrolled operation. be able to. That is, in a denitrification tower into which a sufficient amount of organic carbon source has been injected, denitrification bacteria multiply excessively during the operation period and separate from the adhesion medium or flow out of the tower together with the adhesion medium.
If the pipes become blocked or solids in the treated water increase, or if denitrifying bacteria proliferate excessively in the denitrification process where a sufficient amount of organic carbon source has been injected, all of the inflowing NOx will be denitrified, resulting in The denitrification tower in the stage tower becomes completely anaerobic and the denitrifying bacteria rot and die (especially when the water temperature is high), so the quality of the treated water deteriorates and once the denitrifying bacteria die, it takes a considerable amount of time for them to grow again. Since it takes several days, there are problems such as methanol is not used during that time and the processing deteriorates further, but the present invention can be processed without these drawbacks. According to the present invention, in a denitrification process in which a plurality of denitrification processes are connected in series, the amount of organic carbon source injected in each denitrification process is sufficient for the growth of each denitrification bacteria, By alternately adjusting the amount of methanol to be insufficient for the growth of methanol, the denitrifying bacteria grown on the medium by methanol denitrification reaction (exo-breathing denitrification reaction) are reduced in methanol, that is, the composition of the denitrifying bacteria. A method in which excess denitrifying bacteria that have grown on the medium are reduced by a denitrifying reaction using the component itself as a reducing agent (endo-respiration type denitrifying reaction), and then the denitrifying bacteria are grown again by a denitrifying reaction using methanol. By using multiple denitrification processes, a constant amount of denitrifying bacteria is maintained throughout the process, so there is no need for equipment for separating excess bacteria, dehydration, drying equipment, incinerators, etc. Moreover, the purification efficiency of the denitrified water has been significantly improved, and the processing operation is extremely simple, as the treatment of excess bacteria can be done by simply operating valves, etc., and operation management is also easy. Since purification can also be performed, the conventional drawbacks associated with the treatment and disposal of surplus denitrifying bacteria can be eliminated, and the denitrification treatment can be significantly improved, eliminating the need for processing costs for surplus bacteria, and further improving the internal respiration type. Denitrification also saves methanol, making it possible to significantly reduce processing costs. Next, an embodiment of the present invention will be described. Experimental equipment Fluidized bed denitrification tower 2 cylindrical columns (φ200mm, height 1600mm, effective volume 50.2) Experimental conditions Experimental wastewater Artificial nitrification solution NO 3 -N 30mg/ (adjusted by adding NaNO 3 to dechlorinated tap water) Wastewater treatment amount 2000/day Fluidized bed medium Sand The amount of bacteria in the fluidized bed varied with the height of the fluidized bed Fluidized bed height at the start of the experiment 1st column 600mm 2nd 1000mm Methanol injection at the start of the experiment Amount 1st tower 130g/day 2nd 0g/day Experimental results [Table]
図面は本発明方法の実施態様のフローシートで
ある。
1…廃水、2…硝化工程、3…硝化水、4,
5,8…脱窒工程、6,6′…メタノール、7…
処理水。
The drawing is a flow sheet of an embodiment of the method of the invention. 1...wastewater, 2...nitrification process, 3...nitrified water, 4,
5, 8...Denitrification process, 6,6'...methanol, 7...
treated water.
Claims (1)
素(NOx−N)を廃水中から除去するための脱
窒処理するに際し、廃水を脱窒工程の複数に直列
に流過させ、各脱窒工程における有機炭素源の注
入量をそれぞれの脱窒素菌体の増殖に十分なる量
と、零乃至脱窒素菌の増殖に不足な量とに交互に
調節して処理することを特徴とする廃水の生物学
的脱窒法。 2 前記脱窒工程が、少なくとも3工程以上経て
廃水を処理するものである特許請求の範囲第1項
記載の廃水の脱窒法。 3 前記脱窒工程が、有機炭素源の注入量を前記
複数の脱窒工程の少なくとも一工程では脱窒素菌
体の増殖に十分な量にするとともに少なくとも一
工程では零乃至脱窒素菌体の増殖に不足な量にし
て処理するものである特許請求の範囲第1項又は
第2項記載の廃水の脱窒法。 4 前記脱窒工程が、有機炭素源は脱窒工程の脱
窒素菌が減少した時点で注入され、増加した時点
で中止乃至脱窒素菌体の増殖に不足な量にして処
理するものである特許請求の範囲第1項、第2項
又は第3項記載の廃水の脱窒法。 5 前記脱窒工程が、粒状媒体で処理されるもの
であつて、脱窒素菌の増減によつて生ずる媒体の
層高の増減によつて有機炭素源の注入量を制御す
るものである特許請求の範囲第1項、第2項、第
3項又は第4項記載の廃水の脱窒法。[Scope of Claims] 1. When performing denitrification treatment to remove oxidized nitrogen (NOx-N) from wastewater using denitrification bacteria attached to a medium, wastewater is subjected to multiple denitrification processes in series. The amount of organic carbon source injected in each denitrification process is adjusted alternately to an amount sufficient for the growth of each denitrifying bacteria and an amount that is zero or insufficient for the growth of the denitrifying bacteria. A biological denitrification method for wastewater characterized by the following. 2. The method for denitrifying wastewater according to claim 1, wherein the denitrification step involves treating the wastewater through at least three steps. 3. In the denitrification step, the amount of organic carbon source injected is sufficient for the growth of denitrifying bacteria in at least one of the plurality of denitrification steps, and the amount is reduced from zero to the growth of denitrifying bacteria in at least one step. A method for denitrifying wastewater according to claim 1 or 2, wherein the wastewater is treated in an insufficient amount. 4. In the denitrification process, the organic carbon source is injected when the number of denitrifying bacteria in the denitrification process decreases, and when the number of denitrifying bacteria increases, the process is stopped or the amount is reduced to be insufficient for the growth of the denitrifying bacteria. A method for denitrifying wastewater according to claim 1, 2, or 3. 5. A patent claim in which the denitrification step is performed using a granular medium, and the amount of organic carbon source injected is controlled by increasing or decreasing the layer height of the medium caused by increasing or decreasing the number of denitrifying bacteria. A method for denitrifying wastewater according to item 1, 2, 3 or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10103479A JPS5626592A (en) | 1979-08-08 | 1979-08-08 | Biological denitrifying method for waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10103479A JPS5626592A (en) | 1979-08-08 | 1979-08-08 | Biological denitrifying method for waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5626592A JPS5626592A (en) | 1981-03-14 |
JPS6231637B2 true JPS6231637B2 (en) | 1987-07-09 |
Family
ID=14289877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10103479A Granted JPS5626592A (en) | 1979-08-08 | 1979-08-08 | Biological denitrifying method for waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5626592A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270916A (en) * | 1985-09-24 | 1987-04-01 | Kubota Ltd | Boundary detecting method for self-traveling truck |
JPS63225808A (en) * | 1987-09-09 | 1988-09-20 | Kubota Ltd | Boundary detection for automatic running working vehicle |
JP2008023485A (en) * | 2006-07-24 | 2008-02-07 | Japan Organo Co Ltd | Biological denitrification method and apparatus therefor |
JP5149717B2 (en) * | 2008-07-03 | 2013-02-20 | オルガノ株式会社 | Denitrification treatment method and denitrification treatment apparatus |
JP5149728B2 (en) * | 2008-07-25 | 2013-02-20 | オルガノ株式会社 | Denitrification treatment method and denitrification treatment apparatus |
JP5355314B2 (en) * | 2009-09-09 | 2013-11-27 | オルガノ株式会社 | Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus |
JP5325124B2 (en) * | 2010-01-06 | 2013-10-23 | オルガノ株式会社 | Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water |
CN114988571A (en) * | 2022-07-07 | 2022-09-02 | 嘉兴学院 | Carbon source carrier filler for denitrifying bacteria and preparation method |
-
1979
- 1979-08-08 JP JP10103479A patent/JPS5626592A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5626592A (en) | 1981-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3709364A (en) | Method and apparatus for denitrification of treated sewage | |
US7547394B2 (en) | Wastewater treatment with aerobic granules | |
US4159945A (en) | Method for denitrification of treated sewage | |
JPS6231637B2 (en) | ||
JP3391057B2 (en) | Biological nitrogen removal equipment | |
Fang et al. | Removal of COD and nitrogen in wastewater using sequencing batch reactor with fibrous packing | |
JPH08238493A (en) | Method for processing aqueous waste by means of biofilter using immobilized cultured bacteria or other device | |
KR100331898B1 (en) | Advanced Treatment Process of Domestic Wastewater by Biological and Chemical | |
JPS61200893A (en) | Method of purifying waste water | |
SK282499B6 (en) | Municipal waste-water treatment method | |
JPS6231639B2 (en) | ||
JPS6231638B2 (en) | ||
JPS6331592A (en) | Method for making ultrapure water | |
CN217628048U (en) | Sewage treatment equipment of denitrification filter | |
JPS59145098A (en) | Plant for biological denitrification-dephosphorization of waste water | |
JP3819457B2 (en) | Biological denitrification of wastewater | |
JPS60166094A (en) | Treatment of waste water | |
KR101082516B1 (en) | System for treating wastewater | |
JPS6260157B2 (en) | ||
KR100433096B1 (en) | Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur | |
JP2834765B2 (en) | Wastewater treatment method | |
JPS6351758B2 (en) | ||
KR100504150B1 (en) | Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor | |
GB1580733A (en) | Method of biological purification of sewage | |
JP2005324131A (en) | Method and apparatus for treating waste water |