JPS623066A - Ceramic composition - Google Patents

Ceramic composition

Info

Publication number
JPS623066A
JPS623066A JP60141177A JP14117785A JPS623066A JP S623066 A JPS623066 A JP S623066A JP 60141177 A JP60141177 A JP 60141177A JP 14117785 A JP14117785 A JP 14117785A JP S623066 A JPS623066 A JP S623066A
Authority
JP
Japan
Prior art keywords
weight
green sheet
insulating layer
ceramic
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60141177A
Other languages
Japanese (ja)
Inventor
菊池 紀實
江上 春利
市森 栄吉
柳沢 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60141177A priority Critical patent/JPS623066A/en
Publication of JPS623066A publication Critical patent/JPS623066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、セラミック組成物に関し、特にアルミナ多層
配線基板の製造く用いるセラミック組成物の改良に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to ceramic compositions, and particularly to improvements in ceramic compositions used in the manufacture of alumina multilayer wiring boards.

(発明の技術的背景とその問題点) 従来、アルミナ多層配線基板は、グリーンシート積層方
式や多層印刷方式により製造されている。
(Technical background of the invention and its problems) Conventionally, alumina multilayer wiring boards have been manufactured by a green sheet lamination method or a multilayer printing method.

前者の方式は、まず、アルミナを主成分とするセラミッ
ク原料を調合、粉砕し、これをでスラリー状とし、ドク
ターブレード成形により未焼成のグリーンシートを作製
する。つづいて、グリーンシート上にタングステン、モ
リブデンを主体として導体ベーストを用いて、スクリー
ン印刷により所望の導体パターンを形成する。次いで、
これら導体パターンが形成されたグリーンシートを複数
枚重ね、加熱圧着して積層した後、焼成してアルミナ多
層配線基板を製造する。、後者の方式は、まず、前述し
たのと同様な方法でグリーンシートを作製した後、この
グリーンシート上にスクリーン印刷により導体パターン
と絶縁層とを順次交互に形成する。この後、焼成してセ
ラミック多層配線基板を製造する。
In the former method, first, a ceramic raw material containing alumina as a main component is prepared and pulverized, this is made into a slurry, and an unfired green sheet is produced by forming the slurry with a doctor blade. Subsequently, a desired conductor pattern is formed on the green sheet by screen printing using a conductor base mainly composed of tungsten and molybdenum. Then,
A plurality of green sheets having conductor patterns formed thereon are stacked, heat-pressed and laminated, and then fired to produce an alumina multilayer wiring board. In the latter method, first, a green sheet is prepared in the same manner as described above, and then conductive patterns and insulating layers are sequentially and alternately formed on this green sheet by screen printing. Thereafter, it is fired to produce a ceramic multilayer wiring board.

ところで、上記各方法により製造されたセラミック多層
配線基板において、層間の絶縁抵抗は充分に高くないと
、配線間で電気的短絡を生じ、実用に耐えなくなる。か
かる絶縁抵抗の値は、室温での体積固有抵抗(Rv)が
少なくとも2X101’Ωcm以上が望ましい。
By the way, in the ceramic multilayer wiring boards manufactured by each of the above-mentioned methods, if the insulation resistance between the layers is not sufficiently high, electrical short circuits will occur between the wirings, making the boards unusable for practical use. The value of the insulation resistance is preferably such that the volume resistivity (Rv) at room temperature is at least 2×10 1'Ωcm or more.

上述したグリーンシート積層方式では、絶縁層となるグ
リーンシーi−が0.2〜O〜4mと比較的厚いために
、従来のセラミック組成物から形成されたグリーンシー
トの体積固有抵抗が1013Ωα程度でも層間絶縁抵抗
は108Ω前後となるため、一部実用に供されている。
In the above-mentioned green sheet lamination method, since the green sheet i- serving as the insulating layer is relatively thick at 0.2 to 0 to 4 m, even if the volume resistivity of the green sheet formed from the conventional ceramic composition is about 1013Ωα, Since the interlayer insulation resistance is around 108Ω, some of them are put into practical use.

しかしながら、多層印刷方式では絶縁層の厚さが0.0
3〜0.06mと薄いために、従来のセラミック組成物
からなる絶縁ペーストより形成された体積固有抵抗が1
013Ωα程度の絶縁層では前記層間絶縁抵抗が108
Ωより大幅に下回り、実用に供しえない。スクリーン印
刷で形成される絶縁層の厚さは、一般に0.01〜0.
015mである。その結果、体積固有抵抗が3X101
3Ω1のセラミック組成物の絶縁ペーストを用いてスク
リーン印刷する場合の絶縁層の最大厚さが0.015m
としても、0.08mmの絶縁層を形成するには5乃至
6回の印刷、乾燥工程を繰返す必要がある。また、これ
に伴って上下の導体パターン間を接続するためのピアホ
ール中への導体ペーストの充填工程も5〜6回必要とな
る。従って、作業時間の増大、それによるミス発生の増
加を招き、ひいてはセラミック多層配線基板の製造に際
しての歩留り低下、コストの高騰、更に^iI!厚化と
いう問題を生じる。
However, in the multilayer printing method, the thickness of the insulating layer is 0.0
Because it is as thin as 3 to 0.06 m, the volume resistivity of conventional insulating pastes made of ceramic compositions is 1.
In an insulating layer of about 0.013Ωα, the interlayer insulation resistance is 108
It is significantly lower than Ω and cannot be put to practical use. The thickness of the insulating layer formed by screen printing is generally 0.01 to 0.0.
It is 015m. As a result, the volume resistivity is 3X101
The maximum thickness of the insulating layer when screen printing using an insulating paste of a 3Ω1 ceramic composition is 0.015 m.
However, in order to form an insulating layer of 0.08 mm, it is necessary to repeat the printing and drying process 5 to 6 times. Additionally, along with this, the process of filling conductor paste into the peer holes for connecting the upper and lower conductor patterns is also required five to six times. This results in an increase in work time and an increase in the number of errors, which in turn leads to a decrease in yield and a rise in costs when manufacturing ceramic multilayer wiring boards, and furthermore, ^iI! This causes the problem of thickening.

〔発明の目的〕[Purpose of the invention]

本発明は、高絶縁性を有し、これをセラミック多層配線
基板の製造時のグリーンシートや絶縁ペーストとして用
いることによって大幅な工程削減、歩留り向上、コスト
低減、更に薄膜化を達成し得るセラミック組成物を提供
しようとするものである。
The present invention provides a ceramic composition that has high insulating properties and can be used as a green sheet or insulating paste in the production of ceramic multilayer wiring boards to significantly reduce process steps, improve yields, reduce costs, and further reduce the thickness of the film. It tries to provide something.

〔発明の概要〕[Summary of the invention]

本発明者らは、絶縁層やグリーンシートの出発材として
のセラミック組成物について鋭意研究を重ねた結果、ア
ルミナを主体とし、酸化チタン、酸化クロム、シリカ、
カルシア、マグネシアを夫々特途の配合割合、特に酸化
チタン0.1重量%以上で0.5重量%未満、酸化クロ
ム3.5〜4.5重量%にすることによって、セラミッ
ク多層配m基板のグリーンシートや絶縁層に適した高絶
縁性のセラミック組成物を見出した。
As a result of intensive research into ceramic compositions as starting materials for insulating layers and green sheets, the present inventors have found that the composition is mainly composed of alumina, titanium oxide, chromium oxide, silica, etc.
By adjusting the blending ratios of calcia and magnesia in a specific manner, especially titanium oxide at 0.1% by weight or more and less than 0.5% by weight, and chromium oxide at 3.5 to 4.5% by weight, ceramic multilayer substrates can be prepared. We have discovered a highly insulating ceramic composition suitable for green sheets and insulating layers.

すなわち、本発明は酸化チタン0.1重−%以上で0.
5重量%未満、酸化クロム3.5〜4.5重量%、シリ
カ3〜6重量%、カルシア0.5〜2重量%、マグネシ
ア0.5〜2重量%、残部がアルミナからなるセラミッ
ク組成物である。
That is, in the present invention, titanium oxide is 0.1% by weight or more and 0.1% by weight or more.
Ceramic composition consisting of less than 5% by weight, 3.5 to 4.5% by weight of chromium oxide, 3 to 6% by weight of silica, 0.5 to 2% by weight of calcia, 0.5 to 2% by weight of magnesia, and the balance consisting of alumina. It is.

次に、本発明のセラミック組成、物を構成する各成分の
限定理由について説明する。
Next, the reason for limiting each component constituting the ceramic composition and product of the present invention will be explained.

(1)酸化チタン(TiOz) 酸化チタンの配合量を0.1重量%未満にすると、セラ
ミック粉体全体との均一混合性が悪化する。一方、酸化
チタンの配合量が0.5重酸%以上になると、グリーン
シートや絶縁層として用いた場合、層間絶縁抵抗が低下
する。
(1) Titanium oxide (TiOz) If the amount of titanium oxide is less than 0.1% by weight, uniform mixing with the entire ceramic powder will deteriorate. On the other hand, when the amount of titanium oxide is 0.5% or more, the interlayer insulation resistance decreases when used as a green sheet or an insulating layer.

(II)II化ツクロムCr203) 酸化クロムの配合量を3.511%未満にすると、焼成
時にムラが発生しやすく、強度の点で問題を生じる。一
方、酸化クロムの配合量が4.5重量%を越えると、酸
化チタンとの関係で居間絶縁抵抗が低下し、しかも焼結
性も悪化する。
(II) Chromium II oxide Cr203) If the blending amount of chromium oxide is less than 3.511%, unevenness tends to occur during firing, which causes problems in terms of strength. On the other hand, if the amount of chromium oxide exceeds 4.5% by weight, the living room insulation resistance decreases due to the relationship with titanium oxide, and the sinterability also deteriorates.

(III)シリカ(S i 02 ) シリカの配合量を3重量%未満にすると、導体パターン
との濡れ性、密着性が低下する。一方、シリカの配合量
が6重量%を越えると、アルミナとの関係で層間絶縁抵
抗が低下する。
(III) Silica (S i 02 ) If the amount of silica is less than 3% by weight, the wettability and adhesion with the conductor pattern will decrease. On the other hand, if the blending amount of silica exceeds 6% by weight, interlayer insulation resistance decreases in relation to alumina.

(IV )カルシア(CaC)) カルシアの配合量゛を0.51m%未満にすると、焼結
性が低下する。一方、カルシアの配合量が2重厘%を越
えると、層間絶縁抵抗が低下する。
(IV) Calcia (CaC)) When the amount of calcia added is less than 0.51 m%, sinterability decreases. On the other hand, if the amount of calcia exceeds 2%, interlayer insulation resistance decreases.

(V)マグネシア(Mac) マグネシアの配合lを0.5重量%未満にすると、焼結
性が低下する。一方、マグネシアの配合量が2重量%を
越えると、層間絶縁抵抗が低下するばかりか、焼成時の
粒成長が大きくなって繍械的が低下する。
(V) Magnesia (Mac) When the magnesia content is less than 0.5% by weight, the sinterability decreases. On the other hand, when the blending amount of magnesia exceeds 2% by weight, not only the interlayer insulation resistance decreases, but also the grain growth during firing increases and the mechanical properties deteriorate.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜6 まず、下記第1表及び第2表に示す組成割合の6種のセ
ラミック組成物を調合した後、これらセラミック組成物
を撮動ミルで粉砕、混合した。つづいて、これら原料粉
体100重量部にトリクロ−ルエチレン20重最部、n
−ブチラール10重量部、テトラクロルエチレン8重量
部、トリブチルホスフェイト5重量部及びポリピニルボ
スフエイト2重量部を添加し、ボールミルで24時間混
合した後、脱泡してグリーンシート原料を調合した。ひ
きつづき、これら原料をドクターブレード法により厚さ
0.4m++のグリーンシートを作製した後、これらを
各々4枚づつ積層して厚さ1.6顛のグリーンシートと
した。この後、各グリーンシートの表面にタングステン
を主体とする導体ペーストを用いてスクリーン印刷して
所望の第1導体パターンを形成し、更に乾燥した。
Examples 1 to 6 First, six types of ceramic compositions having the composition ratios shown in Tables 1 and 2 below were prepared, and then these ceramic compositions were ground and mixed using a moving mill. Subsequently, to 100 parts by weight of these raw material powders, 20 parts by weight of trichlorethylene, n
- Add 10 parts by weight of butyral, 8 parts by weight of tetrachlorethylene, 5 parts by weight of tributyl phosphate, and 2 parts by weight of polypynylbosphate, mix in a ball mill for 24 hours, and then defoamer to prepare a green sheet raw material. did. Subsequently, green sheets with a thickness of 0.4 m++ were prepared from these raw materials by the doctor blade method, and then four sheets of each of these were laminated to form a green sheet with a thickness of 1.6 meters. Thereafter, a desired first conductor pattern was formed on the surface of each green sheet by screen printing using a conductor paste mainly composed of tungsten, and the green sheets were further dried.

次いで、前記セラミック組成物を振動ミルい粉砕混合し
た原料粉体より絶縁ペーストを調合し、この絶縁ペース
トを前記グリーンシートの第1導体パターンの形成表面
に2回又は6回印刷し、乾燥して厚さ0.03II11
又は0.08mの絶縁層を形成した。つづいて、これら
絶縁層に上下に貫通する穴を開孔し、スクリーン印刷法
により導体ペーストを該穴内に充填してピアホールを形
成した。
Next, an insulating paste is prepared from the raw material powder obtained by vibratory milling and pulverizing the ceramic composition, and this insulating paste is printed on the surface of the green sheet on which the first conductor pattern is formed two or six times, and is dried. Thickness 0.03II11
Alternatively, an insulating layer of 0.08 m was formed. Subsequently, holes penetrating vertically through these insulating layers were formed, and the holes were filled with conductive paste using a screen printing method to form pier holes.

ひきつづき、絶縁層上に導体ペーストを用い、スクリー
ン印刷法により第2導体パターンを形成した。こうして
印刷を行なった後の状態を図面に示す。なお、図中の1
は積層グリーンシート、2は第1導体パターン、3は絶
縁層、4は上下導体パターンを接続するピアホール、5
は第2導体パターンである。
Subsequently, a second conductor pattern was formed on the insulating layer by screen printing using a conductor paste. The drawing shows the state after printing in this manner. In addition, 1 in the figure
is a laminated green sheet, 2 is a first conductor pattern, 3 is an insulating layer, 4 is a peer hole connecting the upper and lower conductor patterns, 5
is the second conductor pattern.

しかして、前記印匍済のグリーンシートを1560℃の
弱還元性雰囲気中で焼成し、得られた各焼成済基板につ
いて、上下導体パターン間の絶縁層(厚さ0.03JI
K及び0.08all)の絶縁抵抗並びに体積固有抵抗
を超絶縁計(東亜電波社製商品名:5M−10E型)に
より測定した。その結果を同第1表及び第2表に併記し
た。なお、第1表及び第2表中には成分、特に酸化チタ
ン、酸化クロムの配合量が本発明の間開から外れたセラ
ミック組成物を用いて前記実施例と同様な方法で作製し
た焼成済基板の評価を比較例1.2として併記した。
Then, the printed green sheet was fired in a weakly reducing atmosphere at 1560°C, and an insulating layer (thickness 0.03 JI
K and 0.08all) and volume resistivity were measured using a super megohmmeter (trade name: 5M-10E type, manufactured by Toa Denpa Co., Ltd.). The results are also listed in Tables 1 and 2. Note that Tables 1 and 2 show ceramic compositions in which the ingredients, especially titanium oxide and chromium oxide, are mixed in amounts that are outside the range of the present invention, and are prepared in the same manner as in the above examples. The evaluation of the substrate is also listed as Comparative Example 1.2.

第1表 第2表 上記第1表及び第2表から明らかな如く、本発明のセラ
ミック組成物からなる絶縁層は体積固有抵抗が2X10
1番ΩCH〜7X101’Ω1と高い絶縁性を有し、こ
のため絶縁層の厚さを0.03mと薄くしても導体パタ
ーン間の短絡を生じない層間絶縁抵抗を108Ω以上で
きる。これに対し、比較例1.2のセラミック組成物か
らなる絶縁層は体積固有抵抗が3X1013ΩcjlI
又は2X1013Ωαと絶縁性に劣り、このため絶縁層
の厚さを0.08s+LJ、上と厚くしなければ、導体
パターン間の短絡を生じない層間絶縁抵抗にすることが
できない。
Table 1 Table 2 As is clear from Tables 1 and 2 above, the insulating layer made of the ceramic composition of the present invention has a volume resistivity of 2X10
It has a high insulation property of 1ΩCH~7×101′Ω1, and therefore, even if the thickness of the insulating layer is made as thin as 0.03m, the interlayer insulation resistance can be 108Ω or more without causing a short circuit between the conductor patterns. On the other hand, the insulating layer made of the ceramic composition of Comparative Example 1.2 has a volume resistivity of 3×1013ΩcjlI
Or, the insulating property is poor at 2×10 13 Ωα, and therefore, unless the thickness of the insulating layer is increased to 0.08 s+LJ or more, it is impossible to achieve an interlayer insulation resistance that does not cause short circuits between conductor patterns.

なお、上記実施例では多層印刷方式を例にして説明した
が、これに限定されず、グリーンシート積層方式に適用
しても、同様に各グリーンシートの厚さを薄くしても充
分な層間絶縁抵抗を得ることができる。
In addition, although the above embodiment has been explained using a multilayer printing method as an example, the invention is not limited to this, and even when applied to a green sheet lamination method, sufficient interlayer insulation can be achieved even if the thickness of each green sheet is thinned. resistance can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明によれば以下に示す種々の効果を発
揮できる。
According to the present invention described in detail above, various effects shown below can be exhibited.

■、出発材としのセラミック組成物が高絶縁性を有する
ため、多層印刷方式に適用した場合、絶縁層の厚さを薄
くでき、印刷工数を2/8〜3/8に減少できる。
(2) Since the ceramic composition used as a starting material has high insulating properties, when applied to a multilayer printing method, the thickness of the insulating layer can be reduced, and the number of printing steps can be reduced to 2/8 to 3/8.

■、印刷工数が少なくなったことによって、スクリーン
の位置合せミスやハンドリング中の落下、コミ等による
トラブルを30%程度で減少でき、その結果、印刷から
焼成までの歩留りを向上でき、ひいては大幅なコスト低
減を実現できる。
■By reducing the number of printing steps, troubles such as misalignment of the screen, falling during handling, and dust can be reduced by about 30%, and as a result, the yield from printing to firing can be improved, resulting in a significant improvement. Cost reduction can be achieved.

■、焼成温度を20〜30’C程度下げることができ、
省エネルギー化を達成できる。
■The firing temperature can be lowered by about 20-30'C,
Energy saving can be achieved.

■、多層印刷方式及びグリーンシート積層方式、いずれ
の場合には製造された絶縁層やグリーンシートの焼成物
の厚さを薄くできることによって、sm、軽量、小型化
されたセラミック多層配線基板を得ることができる。
■ To obtain a compact, lightweight, and compact ceramic multilayer wiring board by reducing the thickness of the produced insulating layer or green sheet fired product using the multilayer printing method or the green sheet lamination method. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本実施例で得られた第2導体パターン形成後の
グリーンシートの状態を示す断面図である。 1・・・I!グリーンシー1〜.2・・・第1導体パタ
ーン、3・・・絶縁層、4・・・ピアホール、5・・・
第2導体パターン。
The drawing is a cross-sectional view showing the state of the green sheet after forming the second conductor pattern obtained in this example. 1...I! Green Sea 1~. 2... First conductor pattern, 3... Insulating layer, 4... Pier hole, 5...
Second conductor pattern.

Claims (1)

【特許請求の範囲】[Claims]  酸化チタン0.1重量%以上で0.5重量%未満、酸
化クロム3.5〜4.5重量%、シリカ3〜6重量%、
カルシア0.5〜2重量%、マグネシア0.5〜2重量
%、残部がアルミナからなるセラミック組成物。
Titanium oxide 0.1% by weight or more and less than 0.5% by weight, chromium oxide 3.5-4.5% by weight, silica 3-6% by weight,
A ceramic composition consisting of 0.5-2% by weight of calcia, 0.5-2% by weight of magnesia, and the balance alumina.
JP60141177A 1985-06-27 1985-06-27 Ceramic composition Pending JPS623066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60141177A JPS623066A (en) 1985-06-27 1985-06-27 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141177A JPS623066A (en) 1985-06-27 1985-06-27 Ceramic composition

Publications (1)

Publication Number Publication Date
JPS623066A true JPS623066A (en) 1987-01-09

Family

ID=15285934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141177A Pending JPS623066A (en) 1985-06-27 1985-06-27 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS623066A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241193A (en) * 1988-03-23 1989-09-26 Toshiba Corp Ceramic substrate
JPH0222166A (en) * 1988-04-26 1990-01-25 Toto Ltd Dielectric ceramics for electrostatic chuck and production thereof
JPH0516757U (en) * 1991-08-12 1993-03-02 株式会社西村製作所 Winding machine automatic winding device
JP2007147072A (en) * 2005-10-27 2007-06-14 Nsk Ltd Electrolytic corrosion preventive insulating rolling bearing and its manufacturing method
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
JP2013199414A (en) * 2012-03-26 2013-10-03 Kyocera Corp Alumina ceramic and wiring board using the same
JP2014111524A (en) * 2012-10-30 2014-06-19 Kyocera Corp Alumina sintered compact, voltage resistance member subject and microwave transmission window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111310A (en) * 1977-02-25 1978-09-28 Fujitsu Ltd Ceramic composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111310A (en) * 1977-02-25 1978-09-28 Fujitsu Ltd Ceramic composites

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241193A (en) * 1988-03-23 1989-09-26 Toshiba Corp Ceramic substrate
JPH0222166A (en) * 1988-04-26 1990-01-25 Toto Ltd Dielectric ceramics for electrostatic chuck and production thereof
JPH0516757U (en) * 1991-08-12 1993-03-02 株式会社西村製作所 Winding machine automatic winding device
JP2007147072A (en) * 2005-10-27 2007-06-14 Nsk Ltd Electrolytic corrosion preventive insulating rolling bearing and its manufacturing method
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
JP2013199414A (en) * 2012-03-26 2013-10-03 Kyocera Corp Alumina ceramic and wiring board using the same
JP2014111524A (en) * 2012-10-30 2014-06-19 Kyocera Corp Alumina sintered compact, voltage resistance member subject and microwave transmission window

Similar Documents

Publication Publication Date Title
JPH03241724A (en) Composite circuit board with a built-in capacitor
JPS623066A (en) Ceramic composition
JPS5914203B2 (en) dielectric composition
JPS63281308A (en) Porcelain capacitor
JP3127797B2 (en) Glass ceramic substrate with built-in capacitor
JP2964725B2 (en) Composition for ceramic substrate
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP3315182B2 (en) Composition for ceramic substrate
JP2652229B2 (en) Multilayer circuit ceramic substrate
JPH0551127B2 (en)
JP3315233B2 (en) Composition for ceramic substrate
JPS62209895A (en) Insulating paste for ceramic multilayer interconnection board
JPH04290492A (en) Manufacture of ceramic circuit board with low dielectric constant
JP2989945B2 (en) Composite circuit board with built-in capacitor
JPS62132762A (en) Ceramic composition
JPS62180906A (en) Dielectric porcelain compound
JPS60170286A (en) Method of producing glass ceramic substrate
JPH04359811A (en) Ceramic capacitor and its manufacture
JP2866508B2 (en) Composite circuit board with built-in capacitor
JPS622406A (en) Insulating paste for multilayer substrate
JPH01239052A (en) Production of superconducting ceramic
JPS6386316A (en) Dielectric ceramic composition
JPH01300594A (en) Manufacture of multilayer board using superconducting ceramics
JPH0226864A (en) Ceramic composition sinterable at low temperature
JPS6235697A (en) Multilayer ceramic substrate for electric circuit