JPH0226864A - Ceramic composition sinterable at low temperature - Google Patents

Ceramic composition sinterable at low temperature

Info

Publication number
JPH0226864A
JPH0226864A JP63174319A JP17431988A JPH0226864A JP H0226864 A JPH0226864 A JP H0226864A JP 63174319 A JP63174319 A JP 63174319A JP 17431988 A JP17431988 A JP 17431988A JP H0226864 A JPH0226864 A JP H0226864A
Authority
JP
Japan
Prior art keywords
powder
low
temperature
ceramic composition
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63174319A
Other languages
Japanese (ja)
Inventor
Masahiro Sone
正浩 曽根
Hideyuki Sato
佐藤 日出之
Kazuyoshi Otake
大竹 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63174319A priority Critical patent/JPH0226864A/en
Publication of JPH0226864A publication Critical patent/JPH0226864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic compsn. sinterable at a low temp., having a low coefft. of thermal expansion and enabling the production of a circuit using an Ag-rich Ag/Pd conductor by incorporating specified amts. of Al2O3, SiO2 and PbO powders. CONSTITUTION:A ceramic compsn. sinterable at a low temp. is obtd. by incorporating 45-60wt.% Al2O3 powder, 15-30wt.% SiO2 powder and 20-35wt.% PbO powder. When the compsn. is mixed with <=5wt.% powder of at least one among ZnO, CaO, MgO, SrO and CaF2, the crystallization of a sintered body takes place at a lower temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低温焼成セラミックス組成物に関し、詳しくは
、電子機器の回路に使用されるセラミック基板に供して
好適な低温焼成セラミックス組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-temperature fired ceramic composition, and more particularly to a low-temperature fired ceramic composition suitable for use in a ceramic substrate used in a circuit of an electronic device.

[従来の技#I] 近年の電子機器の小型化、高性能化等に伴い、IC,L
SI等の回路も高集積化の傾向にあり、高集積の回路と
して多層回路が実用化されてきている。この多層回路は
、セラミック基板、Ag/Pd、W、MO等の導体材料
、RuQt/ガラス等の抵抗材料、3a丁103/ガラ
ス等のコンデンサー材料おにびPbO/5iOz/Bz
O3系等のガラス材料などを多層に設けて得られるもの
である。この多層回路は、厚膜配線法、同時焼成法、薄
膜配線法により製造される。厚膜配線法では、焼結した
セラミック基板上に、ペースト状の導体材料等を順次ス
クリーン印刷し、そのたびに焼成して製造する。また、
同時焼成法では、まず、ドクターブレード法によって作
成されたセラミック基板の材料(グリーンシート)を所
定の寸法に切断し、これにペースト状の導体材料等を印
刷し、これらを積層、圧着、同時焼成して製造する。ま
た、薄膜配線法では、焼結したセラミック基板上に、真
空蒸着又はスパッタリングにより導体材料゛を施し、こ
れに写真食刻法により回路パターンを形成して製造する
。これらの方法のうち、最もよく用いられ最も効率がよ
いのは同時焼成法である。
[Conventional technique #I] With the miniaturization and higher performance of electronic devices in recent years, IC, L
There is also a trend towards higher integration of circuits such as SI, and multilayer circuits are being put into practical use as highly integrated circuits. This multilayer circuit consists of ceramic substrates, conductor materials such as Ag/Pd, W, and MO, resistive materials such as RuQt/glass, and capacitor materials such as PbO/5iOz/Bz.
It is obtained by providing multiple layers of glass materials such as O3-based materials. This multilayer circuit is manufactured by a thick film wiring method, a co-firing method, or a thin film wiring method. In the thick film wiring method, a paste-like conductive material or the like is sequentially screen printed on a sintered ceramic substrate and fired each time. Also,
In the co-firing method, first, the ceramic substrate material (green sheet) created by the doctor blade method is cut into predetermined dimensions, a paste-like conductive material, etc. is printed on it, and these are laminated, crimped, and co-fired. and manufacture it. Further, in the thin film wiring method, a conductive material is applied on a sintered ceramic substrate by vacuum deposition or sputtering, and a circuit pattern is formed thereon by photolithography. Of these methods, the most commonly used and most efficient is the co-firing method.

ところで、近年の回路の発達は、セラミック基板の高性
能化を要求している。このセラミック基板の高性能化の
一つとして、低温焼成化がある。
Incidentally, the recent development of circuits requires higher performance of ceramic substrates. One way to improve the performance of this ceramic substrate is to lower the firing temperature.

すなわち、従来の一般的なセラミック基板はAffi2
03からなるため、焼結させるためには約1600℃の
高温で、しかも水素炉等を用いて還元雰囲気で焼成する
必要がある。そのため、例えば、前記同時焼成法で同時
に焼成される導体材料としてW、MO等の電気抵抗およ
び価格の高い高融点材料を使用しなければならず、多層
回路等は信号遅延、高コスト等の課題を有していた。
In other words, the conventional general ceramic substrate is Affi2.
03, in order to sinter it, it is necessary to sinter it at a high temperature of about 1600° C. and in a reducing atmosphere using a hydrogen furnace or the like. Therefore, for example, it is necessary to use a high melting point material such as W or MO which has high electric resistance and price as the conductive material fired at the same time in the above-mentioned simultaneous firing method, and multilayer circuits etc. have problems such as signal delay and high cost. It had

そして、多層回路用低温焼成セラミックス組成物として
、ガラスにフィラーを加えるガラス複合系、結晶化ガラ
ス系、ガラスを用いない非ガラス系の三種が検討されて
きている。ガラス複合系の低温焼成セラミックス組成物
としては、例えば、S i 0f−Ai z 03−P
bO系カラス粉末と、アルミナ、ジルコン又はコージェ
ライトのセラミック粉末とからなる回路基板用組成物(
特開昭61−205658号公報)、屈伏点700℃以
上のガラス粉末とアルミナとからなる低温焼成セラミッ
クス(特開昭61−222957号公報)等が知られて
いる。また、結晶化ガラス系の低温焼成セラミックス組
成物としては、例えばコージェライト(2Mg0・2A
ffizO3・5SiOz)系のもの等が知られている
。また非ガラス系の低温焼成セラミックス組成物として
は、例えば、酸化アルミニウム、酸化鉛、酸化ホウ素、
二酸化硅素、■族元素酸化物、■族元素酸化物からなる
セラミック層をもつ多層セラミック基板(特開昭57−
17474号公報)、Ag2O3と5iozと8203
とCab、SrO,BaOおよびZnOの一種以上とか
らなる絶縁性磁器組成1h(特開昭60−226454
号公報)等が知られている。
Three types of low-temperature fired ceramic compositions for multilayer circuits have been studied: a glass composite system in which a filler is added to glass, a crystallized glass system, and a non-glass system that does not use glass. As a glass composite type low temperature fired ceramic composition, for example, S i Of-Aiz 03-P
A circuit board composition comprising bO-based glass powder and alumina, zircon or cordierite ceramic powder (
JP-A No. 61-205658), low-temperature fired ceramics made of alumina and glass powder with a yield point of 700° C. or more (Japanese Patent Laid-Open No. 61-222957), and the like are known. In addition, as a crystallized glass-based low-temperature fired ceramic composition, for example, cordierite (2Mg0.2A
ffizO3.5SiOz) type materials are known. Examples of non-glass-based low-temperature fired ceramic compositions include aluminum oxide, lead oxide, boron oxide,
A multilayer ceramic substrate with a ceramic layer consisting of silicon dioxide, oxides of group II elements, and oxides of group II elements
17474), Ag2O3 and 5ioz and 8203
and one or more of Cab, SrO, BaO and ZnO.
Publication No.) etc. are known.

[発明が解決しようとする課題] ところが、従来より検討されている前記低温焼成セラミ
ックス組成物も、低温焼成、熱膨張係数の点で十分満足
できるものではない。また、従来の低温焼成セラミック
ス組成物のうち、前記ガラス複合系は、高価なガラスを
使用しており、コストの点で課題を有する。
[Problems to be Solved by the Invention] However, the low-temperature fired ceramic compositions that have been studied so far are not fully satisfactory in terms of low-temperature firing and thermal expansion coefficient. Moreover, among the conventional low-temperature fired ceramic compositions, the glass composite system uses expensive glass and has a problem in terms of cost.

さらに、導体材料として使用されるAq/Pd導体は、
Agの割合が多い組成はど面積抵抗が小さいため信号処
理が速く、かつ低コストであり、優れていることが知ら
れている。しかしこのAQの割合が多いAg/Pd導体
は、融点が低い。このためこの融点の低いAq/Pd導
体を用いても焼成可能な低温焼成セラミックス組成物の
開発が望まれていた。
Furthermore, the Aq/Pd conductor used as the conductor material is
It is known that a composition with a high proportion of Ag has a small sheet resistance, so signal processing is fast, and the cost is low, which is excellent. However, Ag/Pd conductors with a high proportion of AQ have a low melting point. Therefore, it has been desired to develop a low-temperature firing ceramic composition that can be fired even when using this low melting point Aq/Pd conductor.

本発明は、上記のような課題に着目してなされたもので
あって、低温で焼成が可能であり、かつ熱膨張係数が小
さく、したがってAgの割合の多いAQ/PcJ導体を
用いた回路を製造できる低温焼成セラミックス組成物を
提供することを目的とする。
The present invention was made with attention to the above-mentioned problems, and it is possible to create a circuit using an AQ/PcJ conductor that can be fired at a low temperature, has a small coefficient of thermal expansion, and therefore has a high proportion of Ag. The purpose of the present invention is to provide a low-temperature fired ceramic composition that can be manufactured.

[課題を解決するための手段] 本発明の低温焼成セラミックス組成物は、A文203粉
末:45〜60重間%(以下、%という。
[Means for Solving the Problems] The low-temperature firing ceramic composition of the present invention contains A-mon 203 powder: 45 to 60% by weight (hereinafter referred to as %).

)、5iOz粉末:15〜30%およびpb○粉末=2
0〜35%よりなることを特徴とするものである。
), 5iOz powder: 15-30% and pb○ powder = 2
It is characterized by consisting of 0 to 35%.

また、本発明の低温焼成セラミックス組成物は、上記主
成分と、ZnO粉末、CaO粉末、MqO粉末、SrO
粉末およびCaFz粉末の少なくとも一種=5%以下と
から構成することもできる。
Furthermore, the low-temperature fired ceramic composition of the present invention contains the above-mentioned main components, ZnO powder, CaO powder, MqO powder, and SrO powder.
It can also be composed of 5% or less of at least one of powder and CaFz powder.

AffizO3は、焼結後の熱伝導=T−および抗折強
度を大きくするためのものである。45%未満ではこれ
らの効果が少なく、60%を超えると低温焼成の効果を
減少させて、かつ緻密性を悪くする。
AffizO3 is used to increase thermal conductivity (T-) and bending strength after sintering. If it is less than 45%, these effects will be small, and if it exceeds 60%, the effect of low-temperature firing will be reduced and the density will be poor.

また、5iOzは、焼結後にケイ酸塩結晶を生成し、低
熱膨張性を付与する。15%未満では焼結しにくくなる
とともに低熱膨張の効果が少なく、30%を超えると熱
伝導率が低下するとともに熱膨張係数が大きくなる。
Furthermore, 5iOz produces silicate crystals after sintering and provides low thermal expansion. If it is less than 15%, it becomes difficult to sinter and the effect of low thermal expansion is small, and if it exceeds 30%, the thermal conductivity decreases and the coefficient of thermal expansion increases.

ざらにPbOは、低温で低熱膨張性を付与する。In general, PbO provides low thermal expansion at low temperatures.

20%未満では低温で焼結しにく(なり、35%を超え
ると導体との接着性を悪化させるとともに逆に焼結しに
くくなる。
If it is less than 20%, it will be difficult to sinter at low temperatures, and if it exceeds 35%, the adhesiveness with the conductor will deteriorate and conversely it will become difficult to sinter.

ZnO,Cab、MqOSSrOおよびCaF2は、さ
らに低温焼成を可能とする。これらの少なくとも一種が
5%を超えると緻密化がかえって悪くなる。より好まし
い範囲は1〜3%である。
ZnO, Cab, MqOSSrO and CaF2 allow even lower firing temperatures. If at least one of these exceeds 5%, densification will actually become worse. A more preferable range is 1 to 3%.

これらAλ203粉末、5iOz粉末およびPbO粉末
又は所望により含有されるZnO粉末、CaO粉末、M
qO粉末、SrO粉末およびCaFt粉末の少なくとも
一種は、全体で100%とし、従来公知の方法により調
合、混合し、焼成すればよい。
These Aλ203 powder, 5iOz powder and PbO powder or ZnO powder, CaO powder, M
At least one of the qO powder, SrO powder, and CaFt powder may be used in a total amount of 100%, and may be prepared, mixed, and fired by a conventionally known method.

なお、回路に影響を与えない程度での不可避の不純物を
徴醋含んでもかまわない。
Incidentally, unavoidable impurities may be included to the extent that they do not affect the circuit.

また、使用する原料としては、結晶質、非晶質いずれで
もかまわない。
Further, the raw material used may be either crystalline or amorphous.

[作用] 本発明のAffitO3,5iftおよびPbOの3成
分系の低温焼成セラミックス組成物を焼結して得られた
焼結体における熱膨張係数と焼成温度および結晶化度と
焼成温度の関係を縮図にすると、第1図のようになる。
[Function] The relationship between the coefficient of thermal expansion, the firing temperature, and the degree of crystallinity and the firing temperature in a sintered body obtained by sintering the low-temperature fired ceramic composition of the present invention consisting of AffitO3, 5ift and PbO is shown below. If you do this, it will look like Figure 1.

また図中に、700℃、875℃およびi ooo℃で
焼成したときの結晶および結晶化度を示すX線回折図形
を示す。この3成分系においては、第1図に示すように
、焼成温度の上昇とともに部分的に共融し、ガラス化す
ることにより緻密化することがわかる。さらに、高温で
焼成することにより一部のガラス相がPbARzsiz
oa結晶に変化し、低熱膨張性を付与することがわかる
Also shown in the figure are X-ray diffraction patterns showing crystals and crystallinity when fired at 700°C, 875°C, and ioooo°C. In this three-component system, as shown in FIG. 1, it is found that as the firing temperature rises, there is partial eutectic melting and vitrification, resulting in densification. Furthermore, by firing at high temperature, some of the glass phase becomes PbARzsiz
It can be seen that it changes into an OA crystal and imparts low thermal expansion.

また、上記主成分と、ZnO粉末、CaO粉末、MgO
粉末、SrO粉末およびCaF2粉末の少なくとも一種
が5%以下とからなる本発明の低温焼成セラミックス組
成物を焼結して得られた焼結体においては、前記PbA
J!zsizoaの結晶化がさらに低温で起こる。
In addition, the above main components, ZnO powder, CaO powder, MgO
In the sintered body obtained by sintering the low-temperature fired ceramic composition of the present invention comprising 5% or less of at least one of powder, SrO powder and CaF2 powder, the PbA
J! Crystallization of zsizoa occurs at even lower temperatures.

[実施例] 次に、本発明を具体化した実施例を説明する。[Example] Next, embodiments embodying the present invention will be described.

本実施例として、第1表に示す組成を6つ低温焼成セラ
ミックス組成物を調合した。そして、これら低温焼成セ
ラミックス組成物を用いて前記同時焼成法により多層回
路を製造した。製造した多層回路を試料(1〜20)と
する。なお、各試料において、低温焼成セラミックス組
成物の組成(%)、焼成温度(℃)、導体ペーストの割
合(AQ/Pd)を変化させている。以下、試料9を例
にとって説明する。
In this example, six low-temperature fired ceramic compositions having the compositions shown in Table 1 were prepared. Then, a multilayer circuit was manufactured using these low-temperature fired ceramic compositions by the above-mentioned co-firing method. The manufactured multilayer circuits are referred to as samples (1 to 20). Note that in each sample, the composition (%) of the low-temperature fired ceramic composition, the firing temperature (°C), and the ratio of conductor paste (AQ/Pd) were varied. Below, sample 9 will be explained as an example.

まず、粒径1.oμmのAl1tO3粉末466Q、粒
径5μmのS i Ot 1>)末204g、粒径5μ
mのpbo粉末300Qおよび粒径1μmの2nQ粉末
30gを調合し、低温焼成セラミックス組成物とした。
First, particle size 1. 0μm Al1tO3 powder 466Q, particle size 5μm S i Ot 1>) powder 204g, particle size 5μm
PBO powder 300Q having a particle size of 1 μm and 30 g of a 2nQ powder having a particle size of 1 μm were mixed to prepare a low-temperature fired ceramic composition.

そして、この低温焼成セラミックス組成物に、エタノー
ル:n−ブタノール: 5ec−ブタノール−1:1:
1の混合溶剤400Qおよび解こう剤E503 (中東
油脂製)69を加え、ボールミルにて70時間混合粉砕
した。次に、このボールミル中にバインダーとしてポリ
ビニルブチラール(PVB)40gおよびジブチルフタ
レート(DBP>50gを加え、さらに40時間混合し
、その後、真空中にて撹拌、脱泡し、粘度5.000〜
20.0OOcpsのスラリーを1りた。そして、この
スラリーを用い、ドクターブレード法により厚さ0.2
5111111のグリーンシートを複数枚作り、これら
を100mm角に切断した。また、これらグリーンシー
トにスルーホールを形成した。そして、Ag/Pd=1
0010である市販の導体ペースト等をこのグリーンシ
ートにスクリーン印刷法により印刷し、回路パターンを
形成した。この回路パターンを形成したグリーンシート
を6枚重ね、200 ko/ C1の圧力を加え、厚さ
約i、2mmの板状体とした。この板状体から6 X 
60 mmの板状体を切り出し、毎時100℃の割合で
昇温し、500℃に2時間保持することにより前記PV
B1DBPを除去し、セラミック脱脂体を得た。このセ
ラミック脱脂体を空気中にて毎時300℃の割合で昇温
し、900℃の焼成温度に1時間保持し、炉冷にて冷却
した。こうして多層回路を得た。この多層回路は第1表
の試料9である。
Then, ethanol:n-butanol:5ec-butanol-1:1:
A mixed solvent 400Q of No. 1 and peptizer E503 (manufactured by Chukyo Yushi Co., Ltd.) 69 were added, and the mixture was mixed and ground in a ball mill for 70 hours. Next, 40 g of polyvinyl butyral (PVB) and dibutyl phthalate (DBP > 50 g) were added as a binder into this ball mill, and the mixture was further mixed for 40 hours, and then stirred and defoamed in a vacuum to achieve a viscosity of 5.000 to 5.000.
A slurry of 20.0OOcps was produced. Then, using this slurry, a thickness of 0.2 was obtained using the doctor blade method.
A plurality of green sheets of 5111111 were made and cut into 100 mm squares. Additionally, through holes were formed in these green sheets. And Ag/Pd=1
A commercially available conductive paste such as No. 0010 was printed on this green sheet by screen printing to form a circuit pattern. Six green sheets with this circuit pattern formed thereon were stacked and a pressure of 200 ko/C1 was applied to form a plate-shaped body with a thickness of about i and 2 mm. From this plate-shaped body 6
A 60 mm plate was cut out, heated at a rate of 100°C per hour, and held at 500°C for 2 hours.
B1DBP was removed to obtain a ceramic degreased body. This ceramic degreased body was heated in air at a rate of 300°C per hour, held at a firing temperature of 900°C for 1 hour, and cooled in a furnace. In this way, a multilayer circuit was obtained. This multilayer circuit is Sample 9 in Table 1.

同様に、試料を合計20片製造した。なお、第1表には
使用した導体ペーストの割合と焼成温度も示した。
Similarly, a total of 20 samples were manufactured. Note that Table 1 also shows the proportion of the conductive paste used and the firing temperature.

そして、各試料のセラミック基板の熱膨張係数、結晶化
度および結晶化温疾を測定した。
Then, the coefficient of thermal expansion, degree of crystallinity, and crystallization temperature of the ceramic substrate of each sample were measured.

熱膨張係数は、各試料のセラミック基板の20〜500
℃の温度間における線熱膨張係数(07℃)を測定した
The coefficient of thermal expansion is 20 to 500 for the ceramic substrate of each sample.
The coefficient of linear thermal expansion (07°C) between temperatures of 0°C was measured.

結晶化度は、各試料のセラミック基板を乳ばちにて粉砕
し、X線回折装置により2θ−10〜700の角度の範
囲で測定を行い、バックグラウンドを除去した後の結晶
質ピークと非晶質ピークの回折強度の総和に対する結晶
質ピークの比率(%)として求めた。
The degree of crystallinity is determined by crushing the ceramic substrate of each sample with a mortar and measuring it in the angle range of 2θ-10 to 700 using an X-ray diffraction device, and comparing the crystalline peak and non-crystalline peak after removing the background. It was determined as the ratio (%) of the crystalline peak to the total diffraction intensity of the crystalline peak.

これら熱膨張係数、結晶化度も第1表に示す。These thermal expansion coefficients and crystallinity degrees are also shown in Table 1.

また、試料2.9と同一組成の低温焼成セラミックス組
成物を複数個用意し、焼成温度を700〜1000℃に
変化させた場合における熱膨張係数を上記同様に測定し
、第2図に示した。
In addition, a plurality of low-temperature fired ceramic compositions with the same composition as Sample 2.9 were prepared, and the coefficient of thermal expansion was measured in the same manner as above when the firing temperature was varied from 700 to 1000°C, and the results are shown in Figure 2. .

結晶化温度(’C)は、各試料のセラミック基板をめの
う乳ばちにて粉砕した粉末試料を示差熱分析装置(D丁
A)により毎分10℃の割合で昇温し、その発熱ピーク
より求めた。この結果も第1表に合せて示す。また、試
料2.9.11.13.14のセラミック基板の温度に
対する示差熱線図を第3図に示す。
The crystallization temperature ('C) was determined by heating a powder sample obtained by pulverizing the ceramic substrate of each sample with an agate mortar at a rate of 10°C per minute using a differential thermal analyzer (D-A), and measuring the exothermic peak. I asked for more. The results are also shown in Table 1. Further, a differential thermal diagram of the temperature of the ceramic substrate of sample 2.9.11.13.14 is shown in FIG.

(以下余白) 第1表かられかるように、本実施例の低温焼成セラミッ
クス組成物(試料1〜5)は、結晶化温度が950〜1
040℃と低いため、900〜950℃と低温で焼成可
能であり、かつ5.2〜7゜5X10−6/’Cの低い
熱膨張係数を有している。
(Left below) As can be seen from Table 1, the low temperature firing ceramic compositions of this example (Samples 1 to 5) have crystallization temperatures of 950 to 1
Since it is as low as 040°C, it can be fired at a low temperature of 900 to 950°C, and has a low coefficient of thermal expansion of 5.2 to 7°5X10-6/'C.

また第2図から、ZnOを含有させた実施例(試料9)
が3成分系以外含有しない実施例(試F12)よりも低
温の焼成で低熱膨張性を付与することがわかる。
Also, from FIG. 2, an example containing ZnO (sample 9)
It can be seen that lower thermal expansion is imparted by firing at a lower temperature than in the example (sample F12) which does not contain anything other than a three-component system.

さらに第3図から、3成分系以外含有しない実施例(試
料2)よりもZnO1Cab、SrO又はCaFtを含
有した実施例(試料9.11.13.14)が低温で結
晶化できることがわかる。
Further, from FIG. 3, it can be seen that the examples containing ZnO1Cab, SrO, or CaFt (sample 9.11.13.14) can be crystallized at a lower temperature than the examples (sample 2) that do not contain anything other than the three-component system.

なお、Mgoを添加した試料は図示していない。Note that the sample to which Mgo was added is not shown.

このように第2図、第3図および第1表かられかるよう
に、本実施例の低温焼成セラミックス組成物(試料6〜
20)は、結晶化温度が848℃〜993℃とさらに低
いため、900〜950℃と低温で焼成した場合に結晶
化度が60%から80%以上と高く、より優れている。
As can be seen from FIG. 2, FIG. 3, and Table 1, the low-temperature fired ceramic compositions of this example (Samples 6 to 6)
20) has a lower crystallization temperature of 848°C to 993°C, so when fired at a low temperature of 900 to 950°C, the crystallinity is as high as 60% to 80% or more, which is more excellent.

また4、5〜6.5X10−6/’Cとさらに低い熱膨
張係数を有している。
It also has an even lower coefficient of thermal expansion of 4.5 to 6.5X10-6/'C.

なお、上記実施例と異なる方法でスラリーとし、多層回
路用のセラミック基板を焼成した。まず、AR203粉
末470g、5if2粉末2649、PbO粉末264
9およびZnO粉末109を調合し、低温焼成セラミッ
クス組成物とした。そして、このセラミック組成物に、
エタノール500qおよび解こう剤E503 (中京油
脂製)6gを加え、ボールミルにて70時間混合粉砕し
た後、100℃で乾燥し、平均粒径1μmの混合粉とし
た。そして、この混合粉を650℃にて2時間保持し非
晶質化した後、冷却し、乳ばちにて平均粒径3μmまで
粉砕し、セラミック仮焼粉体とした。
Note that a slurry was prepared using a method different from that in the above example, and a ceramic substrate for a multilayer circuit was fired. First, 470g of AR203 powder, 2649g of 5if2 powder, 264g of PbO powder
9 and ZnO powder 109 were prepared to prepare a low-temperature fired ceramic composition. And in this ceramic composition,
500q of ethanol and 6g of peptizer E503 (manufactured by Chukyo Yushi Co., Ltd.) were added, mixed and ground in a ball mill for 70 hours, and then dried at 100°C to obtain a mixed powder with an average particle size of 1 μm. Then, this mixed powder was held at 650° C. for 2 hours to become amorphous, cooled, and ground with a mortar to an average particle size of 3 μm to obtain a ceramic calcined powder.

その模、この仮焼粉体1000gに対し、解こう剤E5
03 (中京油脂製)6Q、PVB40a、DBP50
Qを加え、さらにエタノール:n−ブタノール:5ec
−ブタノールの混合比1:1:1の混合溶剤を40g加
え、ボールミルにて40時時間音した後、脱泡し、粘度
5.000〜20゜000Cpsのスラリーとした。あ
とは上記実施例と同様の製造方法でセラミック基板とし
た。この方法によっても結果は同じであり、本発明の低
温焼成セラミックス組成物の作用および効果を有してい
た。
In this case, for 1000g of this calcined powder, deflocculant E5
03 (Chukyo Yushi) 6Q, PVB40a, DBP50
Add Q and further ethanol:n-butanol:5ec
- 40 g of a mixed solvent with a mixing ratio of butanol of 1:1:1 was added, and the mixture was heated in a ball mill for 40 hours, and then defoamed to obtain a slurry with a viscosity of 5.000 to 20°000 Cps. The rest was a ceramic substrate using the same manufacturing method as in the above example. This method also gave the same results and had the effects and effects of the low-temperature fired ceramic composition of the present invention.

また、実施例の低温焼成セラミックス組成物は、同時焼
成法により多層回路としたが、これに限定されることは
なく、他の方法により製造することもできる。
Moreover, although the low-temperature fired ceramic compositions of the examples were formed into multilayer circuits by the simultaneous firing method, the present invention is not limited to this, and may be manufactured by other methods.

[発明の効果] 本発明の低温焼成セラミックス組成物では、Aλ203
粉末:45〜60重量%、3iQz粉末:15〜30重
量%およびPbO粉末=20〜3511%よりなる組成
を有し、または、この主成分と、ZnO粉末、CaO粉
末、MgO粉末、SrO粉末およびCaF2粉末の少な
くとも一種=5重量%以下とからなる組成を有するため
、低温で焼成が可能であり、熱膨張係数が小さい。従っ
て、A9の割合の多いA g/Pd導体を用いて電子機
器の回路を製造することができる。
[Effect of the invention] In the low temperature fired ceramic composition of the present invention, Aλ203
It has a composition consisting of powder: 45 to 60% by weight, 3iQz powder: 15 to 30% by weight, and PbO powder = 20 to 3511%, or this main component and ZnO powder, CaO powder, MgO powder, SrO powder and Since it has a composition consisting of at least one type of CaF2 powder = 5% by weight or less, it can be fired at low temperatures and has a small coefficient of thermal expansion. Therefore, circuits for electronic devices can be manufactured using an Ag/Pd conductor with a high proportion of A9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発t11(7)A1zO3,5iOtお、
にびPbOの3成分系の低温焼成セラミックス組成物を
焼結して得られた焼結体における熱膨張係数と焼成温度
および結晶化度と焼成温度の関係を示す縮図と、X線回
折図形である。第2図は、実施例においてZnO含有に
よるPbAλxsiz。 8の焼成温度と熱膨張係数との関係を示す縮図である。 第3図は、実施例においてZnO1CaO1SrO,C
aFz含有による示差熱線図である。 特許出願人   日本電装株式会社 代理人    弁理士 大川 宏 x1o’ 第1図 現収温度(0C) J徒 (’Cン
Figure 1 shows the original t11(7)A1zO3,5iOt,
A microcosm showing the relationship between the coefficient of thermal expansion and the firing temperature, and the relationship between the degree of crystallinity and the firing temperature in a sintered body obtained by sintering a low-temperature fired ceramic composition of a three-component system of Nibi PbO, and an X-ray diffraction pattern. be. FIG. 2 shows PbAλxsiz containing ZnO in the example. 8 is a miniature diagram showing the relationship between the firing temperature and the coefficient of thermal expansion of No. 8. FIG. 3 shows ZnO1CaO1SrO, C
It is a differential thermal diagram due to aFz content. Patent applicant Nippondenso Co., Ltd. Agent Patent attorney Hiroshi Okawa

Claims (2)

【特許請求の範囲】[Claims] (1)Al_2O_3粉末:45〜60重量%、SiO
_2粉末:15〜30重量%および PbO粉末:20〜35重量%よりなることを特徴とす
る低温焼成セラミックス組成物。
(1) Al_2O_3 powder: 45-60% by weight, SiO
A low-temperature firing ceramic composition comprising _2 powder: 15 to 30% by weight and PbO powder: 20 to 35% by weight.
(2)Al_2O_3粉末:45〜60重量%、SiO
_2粉末:15〜30重量%および PbO粉末:20〜35重量%よりなる主成分と、 ZnO粉末、CaO粉末、MgO粉末、SrO粉末およ
びCaF_2粉末の少なくとも一種:5重量%以下とか
らなることを特徴とする低温焼成セラミックス組成物。
(2) Al_2O_3 powder: 45-60% by weight, SiO
The main components are _2 powder: 15 to 30% by weight and PbO powder: 20 to 35% by weight, and at least one of ZnO powder, CaO powder, MgO powder, SrO powder and CaF_2 powder: 5% by weight or less. Characteristic low-temperature firing ceramic composition.
JP63174319A 1988-07-13 1988-07-13 Ceramic composition sinterable at low temperature Pending JPH0226864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174319A JPH0226864A (en) 1988-07-13 1988-07-13 Ceramic composition sinterable at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174319A JPH0226864A (en) 1988-07-13 1988-07-13 Ceramic composition sinterable at low temperature

Publications (1)

Publication Number Publication Date
JPH0226864A true JPH0226864A (en) 1990-01-29

Family

ID=15976570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174319A Pending JPH0226864A (en) 1988-07-13 1988-07-13 Ceramic composition sinterable at low temperature

Country Status (1)

Country Link
JP (1) JPH0226864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023040A (en) * 2000-09-22 2002-03-28 박판호 Conductor of manufacturing method using silver and ceramic compound matter and the Conductor thereof
KR20020023039A (en) * 2000-09-22 2002-03-28 박판호 Conductor of manufacturing method using silver and ceramic compound matter and the Conductor thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023040A (en) * 2000-09-22 2002-03-28 박판호 Conductor of manufacturing method using silver and ceramic compound matter and the Conductor thereof
KR20020023039A (en) * 2000-09-22 2002-03-28 박판호 Conductor of manufacturing method using silver and ceramic compound matter and the Conductor thereof

Similar Documents

Publication Publication Date Title
US4749665A (en) Low temperature fired ceramics
US5024975A (en) Crystallizable, low dielectric constant, low dielectric loss composition
EP1083600B1 (en) Multilayered circuit substrate
US5206190A (en) Dielectric composition containing cordierite and glass
JPH04243962A (en) Inorganic composition with low dielectric constant for multi-layered ceramic package and method for preparation thereof
JPH05211005A (en) Dielectric composition
JPS62278145A (en) Sintered material of glass ceramic
JPS63107838A (en) Glass-ceramic sintered body
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
JPH0226864A (en) Ceramic composition sinterable at low temperature
JPH0617249B2 (en) Glass ceramic sintered body
JPH0617250B2 (en) Glass ceramic sintered body
JP2964725B2 (en) Composition for ceramic substrate
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JPS61219741A (en) Oxide dielectric material
JP2686446B2 (en) Low temperature firing ceramic sintered body
JP3315233B2 (en) Composition for ceramic substrate
JP3315182B2 (en) Composition for ceramic substrate
JPH07277791A (en) Ceramic composition for insulating base and ceramic multilayer wiring circuit board
EP0445968A1 (en) Low-temperature sinterable inorganic composition having low dielectric constant
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP3008548B2 (en) Low temperature firing ceramic composition
JPH04130052A (en) Starting material composition for ceramic substrate and production of substrate using the same
JPS6131347A (en) Ceramic composition
JPH04254468A (en) Production of mullite-based porcelain