JPS6386316A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS6386316A
JPS6386316A JP61232822A JP23282286A JPS6386316A JP S6386316 A JPS6386316 A JP S6386316A JP 61232822 A JP61232822 A JP 61232822A JP 23282286 A JP23282286 A JP 23282286A JP S6386316 A JPS6386316 A JP S6386316A
Authority
JP
Japan
Prior art keywords
mol
sample
value
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61232822A
Other languages
Japanese (ja)
Other versions
JPH0551124B2 (en
Inventor
広一 茶園
村井 俊二
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP61232822A priority Critical patent/JPS6386316A/en
Publication of JPS6386316A publication Critical patent/JPS6386316A/en
Publication of JPH0551124B2 publication Critical patent/JPH0551124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ニッケル等の卑金属を内部7j:、極とする
温度補償用積層磁器コンデンサの誘電体として好適な誘
電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dielectric ceramic composition suitable as a dielectric of a temperature-compensating multilayer ceramic capacitor having an internal pole made of a base metal such as nickel.

[従来の技術] 特開昭59−227769号公報に、((Sr   C
a  )1−×× 0)  TiO2から成る基本成分と、Li 20と5
in2とMO(但し、MOはBa O,Ca O及びS
rOの内の少なくとも1種の金属酸化物)から成る添加
成分とを含む誘電体磁器組成物が開示されている。この
磁器組成物は非酸化性雰囲気中で焼結可能であるので、
これを使用してニッケル等の卑金属を内部電極とする温
度補償用積層磁器コンデンサを提供することが出来る。
[Prior art] Japanese Patent Application Laid-Open No. 59-227769 describes ((Sr C
a) 1-xx 0) Basic component consisting of TiO2 and Li 20 and 5
in2 and MO (however, MO is BaO, CaO and S
A dielectric ceramic composition containing an additive component consisting of at least one metal oxide of rO is disclosed. Since this porcelain composition can be sintered in a non-oxidizing atmosphere,
Using this, it is possible to provide a temperature-compensating multilayer ceramic capacitor whose internal electrodes are made of a base metal such as nickel.

ところで、温度補償用磁器コンデンサを高性能化及び小
型化するために、高いQ及び高い抵抗率ρを有する誘電
体磁器組成物が要求されるが、上記公開公報に開示され
ている誘電体磁器組成物では、誘電率の温度係数(TC
)が+350〜−1000(DpI!/”C) ノ範囲
に於いて、Qが4400以下であり、必ずしも十分なQ
が得られない、そこで本件出願人は、特願昭60−29
8003号明細書において、((Sr    Ca  
M  )Ofk(Ti1゜1−x−y   x  y L i 20とSiO2とMO(Ba O,M90、Z
n O,Sr O及びCaOの少なくとも1種)とから
成る添加成分とから成る新しい誘電体磁器組成物を開示
した。この新しい誘電体磁器組成物によれば、温度係数
(TC)が+350〜−1000 (pt11/”C)
の範囲内及び外において、4500以上のQと20℃で
1.OX107Ma・C1以上の抵抗率ρとを得ること
ができる。
By the way, in order to improve the performance and reduce the size of temperature-compensating ceramic capacitors, a dielectric ceramic composition having a high Q and a high resistivity ρ is required, and the dielectric ceramic composition disclosed in the above-mentioned publication is required. For materials, the temperature coefficient of dielectric constant (TC
) is +350 to -1000 (DpI!/”C), Q is 4400 or less, and there is not necessarily sufficient Q.
Therefore, the applicant filed a patent application 1986-29.
In the specification of No. 8003, ((Sr Ca
M) Ofk(Ti1゜1-x-y x y Li 20 and SiO2 and MO(BaO, M90, Z
A new dielectric ceramic composition comprising an additive component consisting of at least one of n O, Sr O, and CaO has been disclosed. According to this new dielectric ceramic composition, the temperature coefficient (TC) is +350 to -1000 (pt11/"C)
Q above 4500 and 1 at 20°C within and outside the range of . A resistivity ρ of OX107Ma·C1 or higher can be obtained.

[発明が解決しようとする問題点コ 上記明細書に開示されている誘電体磁器組成物は、通常
の環境条件(例えば−25℃〜+85℃)で使用される
コンデンサの誘電体基体として十分に使用可能であるが
、過酷な環境条件(例えば125℃)で使用される可能
性のあるコンデンサの誘電体基体としては十分でないこ
とが分かった。即ち、上記明細書に開示されている誘電
体磁器組成物ではQを5000以上に保つようにして高
温(例えば125℃)での抵抗率ρを1.OXl05M
a−cm以上番こすることは不可能又は困難である。従
って、本発明の目的は非酸化性雰囲気、1200°C以
下の焼成で得ることができるものであり、Qが5000
以上、125℃における抵抗率ρが1.OXl05Ma
・cm以上である誘電体磁器組成物を提供することにあ
[問題点を解決するための手段] 上記問題点を解決し、上記目的を達成するなめの本発明
は、100重量部の基本成分と、0.2〜1゜、0重量
部の添加成分とから成り、前記基本成分が、((Ma 
  Mb Mn )0)k (Ti1−Wl−y−z 
  y   z Z「 )02 (但し、MaはSr  (ストロンチウ
ム)とCa  (カルシウム)との内の少なくとも1種
の金属、MbはM(+  (マグネシウム)とzn(亜
鉛)との内の少なくとも1種の金属、y、z、k%wは
、0.005≦y≦0.100 、0.001≦2≦0
゜100.1.00≦k≦1.200.0.005≦W
≦0.100の範囲の数値)であり、前記添加成分が、
Li 20と5102とMO(但し、MOはBaOlM
f) 01Zn O,Sr Ol及びCaOの内の少な
くと61種の金属酸化物)との組成を示す三角図におけ
る、前記Li  Oが1モル%、前記5in2が80モ
ル%、前記MOが19モル%の点(A)と、前記L i
  Ofi’ 1 モル%、前記Sio2が491ニル
%、前記MOが50モル%の点(B)と、前記Li2O
が25モル%、前記SiO2が35モル%、前記MOが
40モル%の点(C)と、前記Li 20が50モル%
、前記5in2が50モル%、前記MOが0モル%の点
(D)と、前記L i 20が20モル%、前記S i
 O2が80モル%、前記MOが0モル%の点(E)と
を順に結ぶ5本の直線で囲まれな領域内のものである誘
電体磁器組成物に係わるものである。
[Problems to be Solved by the Invention] The dielectric ceramic composition disclosed in the above specification is sufficient as a dielectric substrate for capacitors used under normal environmental conditions (for example, -25°C to +85°C). Although usable, it has been found to be unsatisfactory as a dielectric substrate for capacitors that may be used in harsh environmental conditions (eg, 125° C.). That is, in the dielectric ceramic composition disclosed in the above specification, the resistivity ρ at high temperature (for example, 125°C) is set to 1. OXl05M
It is impossible or difficult to rub more than a cm. Therefore, the object of the present invention is to obtain a material that can be obtained by firing in a non-oxidizing atmosphere at 1200°C or less, and has a Q of 5000.
As mentioned above, the resistivity ρ at 125°C is 1. OXl05Ma
- cm or more [Means for solving the problems] The present invention, which solves the above problems and achieves the above objects, consists of 100 parts by weight of the basic components. and 0.2 to 1° and 0 parts by weight of additional components, and the basic component is ((Ma
Mb Mn )0)k (Ti1-Wl-y-z
y z Z" )02 (However, Ma is at least one metal selected from Sr (strontium) and Ca (calcium), and Mb is at least one selected from M(+ (magnesium) and zn (zinc). metal, y, z, k%w are 0.005≦y≦0.100, 0.001≦2≦0
゜100.1.00≦k≦1.200.0.005≦W
≦0.100), and the additive component is
Li 20, 5102 and MO (however, MO is BaOlM
f) In the triangular diagram showing the composition of at least 61 types of metal oxides among ZnO, SrOl, and CaO, the LiO is 1 mol%, the 5in2 is 80 mol%, and the MO is 19 mol. % point (A) and the L i
Point (B) where Ofi' 1 mol%, the Sio2 is 491 nyl%, the MO is 50 mol%, and the Li2O
is 25 mol%, the SiO2 is 35 mol%, the MO is 40 mol%, and the Li 20 is 50 mol%.
, a point (D) where the 5in2 is 50 mol% and the MO is 0 mol%, and the Li 20 is 20 mol% and the Si
This relates to a dielectric ceramic composition that is within a region surrounded by five straight lines connecting in order the point (E) where O2 is 80 mol % and the MO is 0 mol %.

[発明の作用効果コ 上記発明の誘電体磁器組成物は、非酸化性雰囲気、12
00℃以下の焼成で得られるので、ニッケル等の卑金属
を内部電極とする温度補傷用積層磁器コンデンサの誘電
体として好適なものである。この誘電体磁器組成物によ
れば、比誘電率ε が160〜325 、Qが5000
以上、誘電率の温度係数TCが−630〜−3400E
IE)Im /’C1抵抗率ρが20℃で1x10MΩ
・1以上、125℃で1.OX10” Ma・C1以上
の温度補償用磁器コンデンサを得ることができる。前述
の特願昭60−298003号明細書に開示されている
誘電体磁器組成物と本願発明の誘電体磁器組成物との大
きな相違点は5000以上のQを維持して125°Cの
抵抗率ρを1.0 ×105MΩ・C1以上にすること
ができることである。この様に高いQを維持しながら高
温での抵抗率ρの低下を抑制することができるのは基本
成分にMn(マンガン)を含めたためである。基本成分
におけるマンガンの量を増加させるに従って高温での抵
抗率ρが高くなるが、多くなり過ぎるとQが低下し、所
望の特性を得ることができない。本発明に従う高温での
抵抗率ρの大きい誘電体磁器組成物を使用すれば、コン
デサの電極間互層を短くすることができるので、高温条
件下で使用する温度補償用磁器コンデサを小型化するこ
とができる。まな、抵抗率ρが大きいのにも拘らず、高
いQを有する磁器コンデンサを提供することができるの
で、磁器コンデンサを使用する電子回路の高性能化が可
能になる。
[Operations and Effects of the Invention] The dielectric ceramic composition of the above invention is prepared in a non-oxidizing atmosphere, 12
Since it can be obtained by firing at temperatures below 00°C, it is suitable as a dielectric for temperature repair laminated ceramic capacitors whose internal electrodes are made of base metals such as nickel. According to this dielectric ceramic composition, the relative dielectric constant ε is 160 to 325, and the Q is 5000.
Above, the temperature coefficient TC of dielectric constant is -630 to -3400E
IE) Im/'C1 resistivity ρ is 1x10MΩ at 20℃
・1 or more, 1 at 125℃. A temperature-compensating ceramic capacitor with a temperature of OX10" Ma・C1 or more can be obtained. By combining the dielectric ceramic composition disclosed in the above-mentioned Japanese Patent Application No. 60-298003 and the dielectric ceramic composition of the present invention. The major difference is that it is possible to maintain a Q of 5000 or more and increase the resistivity ρ at 125°C to 1.0 × 105 MΩ・C1 or more.While maintaining a high Q, the resistivity at high temperatures can be increased. The reason why the decrease in ρ can be suppressed is because Mn (manganese) is included in the basic component.As the amount of manganese in the basic component increases, the resistivity ρ at high temperatures increases, but if it increases too much, the Q If the dielectric ceramic composition according to the present invention has a large resistivity ρ at high temperatures is used, the alternating layers between the electrodes of the capacitor can be shortened, making it impossible to obtain the desired characteristics under high temperature conditions. It is possible to miniaturize the temperature compensation ceramic capacitor used in the electronic circuit using the ceramic capacitor. It becomes possible to improve the performance of

[実施例コ 次に、本発明の実施例(比較例も含む)について説明す
る。第1表の試料Nα1のk = 1.00、X=0.
28、y=0.01、z=0.02、w=0.05に従
って決定される組成式 %式% より具体的には、Ma   =Sr   Ca0.97
   0.69  0.28−Mb   =Zn   
であるので 0.01   0.01 (Sr   Ca   Zn   MnO,690,2
80,010,02)0(Ti   Zr O,950,05)02 から成る基本成分を得るなめに、純度99.0%以上の
5rC03(炭酸ストロンチウム)、cac。
[Examples] Next, examples (including comparative examples) of the present invention will be described. k of sample Nα1 in Table 1 = 1.00, X = 0.
28, composition formula % determined according to y=0.01, z=0.02, w=0.05 More specifically, Ma = Sr Ca0.97
0.69 0.28-Mb = Zn
Therefore, 0.01 0.01 (Sr Ca Zn MnO,690,2
In order to obtain the basic component consisting of 80,010,02)0(TiZrO,950,05)02, 5rC03 (strontium carbonate) with a purity of 99.0% or more, cac.

3 (炭酸カルシウム)、Zn0(酸化亜鉛)、Mno
(酸化マンガン) 、T i 02  (酸化チタン)
nZrO2(酸化ジルコニウム)を出発原料として用意
し、不純物を目方に入れないで、Sr Co    4
75.62+1  (0,139モル部相当)Ca C
o    130.75g  (0,28モル部相当)
Zn O3,80G  (0,01%ル部相当)Mn 
O6,62g(0,02モル部相当)T i O235
4,44Q  (0,95モル部相当)Zr 0228
.77(]  (0,05モル部相当)をそれぞれ秤量
し、これ笠の原料に水を2.54!加えて15時時間式
混合しな。
3 (calcium carbonate), Zn0 (zinc oxide), Mno
(manganese oxide), T i 02 (titanium oxide)
nZrO2 (zirconium oxide) is prepared as a starting material, and without adding impurities, SrCo4
75.62+1 (equivalent to 0,139 mole parts) Ca C
o 130.75g (equivalent to 0.28 mole part)
Zn O3,80G (equivalent to 0.01%) Mn
O6.62g (equivalent to 0.02 mole part) T i O235
4,44Q (equivalent to 0.95 mole part) Zr 0228
.. 77 (equivalent to 0.05 mole part), add 2.54! of water to the raw materials for this hat, and mix for 15 hours.

次に、この原料混合物を150℃で4時間乾燥し、しか
る後粉砕した0次に、この粉砕物を、1100℃で、2
時間大気中で仮焼し、上記組成式の基本成分の粉末を得
た。一方、第2表の試料Nα1の添加成分を得るために
、 L i  O10,12g(25モk %)S i O
28,48!11  (35モル%)Ba Co   
21.38(1(8モル%)MgO4,37g(8モル
%) ZnO8,82g(8モル%) Sr C01G、OOg  (8モル%)Ca Co 
  10.84(J  (8モル%)を秤量し、これ等
にアルコールを300cc加え、ポリエチレンポットに
てアルミナボールを用いて10時間撹拌した後、大気中
1000°Cで2時間仮焼成し、これを300ccの水
と共にアルミナポットに入れ、アルミナボールで15時
間粉砕し、しかる後、150℃で4時間乾燥させてL 
I 20が25モル%、S i O2が35モル%、M
Oが40モル%(Ba 08モル%+M908モル%+
ZnO3モル%+5rosモル%+CaO3モル%)の
組成の添加成分の粉末を得た。
Next, this raw material mixture was dried at 150°C for 4 hours, and then ground. Next, this ground material was dried at 1100°C for 2 hours.
The powder was calcined in the atmosphere for a period of time to obtain a powder having the basic components of the above composition formula. On the other hand, in order to obtain the additive components of sample Nα1 in Table 2, 10.12 g (25 mok%) of S i O
28,48!11 (35 mol%) BaCo
21.38 (1 (8 mol%) MgO4, 37g (8 mol%) ZnO8, 82g (8 mol%) Sr C01G, OOg (8 mol%) Ca Co
10.84 (J (8 mol%)) was weighed, 300 cc of alcohol was added thereto, and the mixture was stirred for 10 hours using an alumina ball in a polyethylene pot. was placed in an alumina pot with 300cc of water, crushed with an alumina ball for 15 hours, and then dried at 150°C for 4 hours to form L.
I20 is 25 mol%, S i O2 is 35 mol%, M
O is 40 mol% (Ba 08 mol% + M908 mol% +
A powder of additive components having a composition of 3 mol % ZnO + 5 mol % CaO + 3 mol % CaO was obtained.

次に、基本成分の粉末1000(](1100重量部に
対して上記添加成分の粉末30!7(3重量部)を加え
、更に、アクリル酸エステルポリマー、グリセリン、縮
合リン酸塩の水溶液から成る有機バインダを基本成分と
添加成分との合計重量に対して15重置火添加し、更に
、50重量%の水を加え、これ等をボールミルに入れて
粉砕及び混合して磁器原料のスラリーを作製しな。
Next, 30!7 (3 parts by weight) of the above-mentioned additive component powder was added to 1000 (] (1100 parts by weight) of the basic component powder, and an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added. Organic binder was added 15 times over the total weight of basic components and additive components, and 50% by weight of water was added, and these were crushed and mixed in a ball mill to create a slurry of porcelain raw materials. Shina.

次に、上記スラリーを真空説泡機に入れて脱泡し、この
スラリーをリバースロールコータ−に入れ、これをを使
用してポリエステルフィルム上にスラリーに基づく薄膜
を形成し、この薄膜をフィルム上で100℃に加熱して
乾燥させ、厚さ約25μmのグリーンシート(未焼結磁
器シート)を得た。このシートは、長尺なものであるが
、これを10CI角の正方形に打ち抜いて使用する。
Next, the above slurry is placed in a vacuum foaming machine to degas it, and this slurry is placed in a reverse roll coater, which is used to form a thin film based on the slurry on a polyester film, and this thin film is coated on the film. The mixture was heated to 100° C. and dried to obtain a green sheet (unsintered porcelain sheet) with a thickness of about 25 μm. This sheet is a long sheet, and is used by punching out a 10 CI square.

一方、内部電極用の導電ペーストは、粒径平均1.5μ
mのニッケル粉末10gと、エチルセルローズ0,9g
をブチルカルピトール9.1gに溶解させたものとを撹
拌機に入れ、10時間撹拌することにより得た。この導
電ペーストを長さ14111、幅71111  のパタ
ーンを50個有するスクリーンを介して上記グリーンシ
ートの片面に印刷した後、これを乾燥させた。
On the other hand, the conductive paste for internal electrodes has an average particle size of 1.5 μm.
10g of nickel powder and 0.9g of ethyl cellulose
was dissolved in 9.1 g of butylcarpitol and placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the green sheet through a screen having 50 patterns each having a length of 14111 mm and a width of 71111 mm, and then dried.

次に、上記印刷面を上にしてグリーンシートを2枚積層
した。この際、隣接する上下のシートにおいて、その印
刷面がパターンの長手方向に約半分程ずれるように配置
した。更に、この積層物の上下両面にそれぞれ4枚ずつ
厚さ60μlのグリーンシートを積層した。次いで、こ
の積層物を約50°Cの温度で厚さ方向に約40トンの
圧力を加えて圧着させた。しかる後、この積層物を格子
状に裁断し、約50個の積層チップを得た。
Next, two green sheets were laminated with the printed side facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Furthermore, four green sheets each having a thickness of 60 μl were laminated on the upper and lower surfaces of this laminate. Next, this laminate was compressed at a temperature of about 50° C. by applying a pressure of about 40 tons in the thickness direction. Thereafter, this laminate was cut into a grid shape to obtain about 50 laminate chips.

次に、この積層体チップを雰囲気焼成が可能な炉に入れ
、大気雰囲気中で100°C/hの速度で600℃まで
昇温して、有機バインダを燃焼させた。
Next, this laminate chip was placed in a furnace capable of firing in an atmosphere, and the temperature was raised to 600° C. at a rate of 100° C./h in an air atmosphere to burn the organic binder.

しか4後、炉の雰囲気を大気からH22体積%+N29
8体積%の雰囲気に変えた。そして、炉を上述の如き還
元性雰囲気とした状態を保って、積層体チップの加熱温
度を600°Cから焼結温度の1150°Cまで100
℃/hの速度で昇温して1150°C(A高温度)3時
間保持した後、100°C/hの速度で600℃まで降
温し、雰囲気を大気雰囲気(酸化性雰囲気)におきかえ
て、600°Cを30分間保持して酸化処理を行い、そ
の後、室温まで冷却して、焼結体チップを得た。
However, after 4 hours, the atmosphere in the furnace was changed from the atmosphere to H22 volume % + N29.
The atmosphere was changed to 8% by volume. Then, while keeping the furnace in a reducing atmosphere as described above, the heating temperature of the stacked chips was increased from 600°C to the sintering temperature of 1150°C.
After raising the temperature at a rate of 1150°C (A high temperature) for 3 hours, the temperature was lowered to 600°C at a rate of 100°C/h, and the atmosphere was changed to air (oxidizing atmosphere). , 600°C was maintained for 30 minutes for oxidation treatment, and then cooled to room temperature to obtain sintered chips.

次に、電極が露出する焼結体チップの側面に亜鉛とガラ
スフリットとビヒクルとから成る導電性ペーストを塗布
して乾燥し、これを大気中で550℃の温度で15分間
焼付け、亜鉛電[J層を形成し、更にこの上に銅を無電
解メッキで被着させて、更にこの上に電気メツキ法でp
b−9n半田層を設けて、一対の外部電極を形成した。
Next, a conductive paste consisting of zinc, glass frit, and vehicle is applied to the side surface of the sintered chip where the electrodes are exposed, dried, and baked in the air at a temperature of 550°C for 15 minutes. A J layer is formed, copper is deposited on top of this by electroless plating, and p is further deposited on top of this by electroplating.
A b-9n solder layer was provided to form a pair of external electrodes.

これにより、第1図に示す如く、誘電体磁器層(1) 
、(2) 、(3)と、内部電極(4) 、(5)と、
外部電極(6) 、(7)から成る積層磁器コンデンサ
(10)が得られた。なお、このコンデンサ(10)の
誘電体磁器N(2)の厚さは0.02 nn 、内部電
極(4)(5)の対向面積は、5nmx 5ni=25
II112テアル。
As a result, as shown in Fig. 1, the dielectric ceramic layer (1)
, (2), (3), and internal electrodes (4), (5),
A multilayer ceramic capacitor (10) consisting of external electrodes (6) and (7) was obtained. The thickness of the dielectric ceramic N (2) of this capacitor (10) is 0.02 nn, and the opposing area of the internal electrodes (4) and (5) is 5 nm x 5 ni = 25
II112 Theal.

また、焼結後の磁器7! (1)(2)(3)の組成は
、焼結前の基本成分と添加成分との混合組成と実質的に
同じであり、複合プロブスカイト(perovskit
e)型構造の基本成分 (Sr   Ca   Zn   MnO,690,2
80,010,02)0(Ti   Zr O,950,05)02 の結晶粒子間にL i 20 25モル%とS i O
235モル%とBaO3モル%とM2O8モル%とZn
O3モル%と5r08モル%とCa08モル%とから成
る添加成分が均一に分布したちのが得られる。
Also, porcelain 7 after sintering! The compositions of (1), (2), and (3) are substantially the same as the mixed composition of the basic components and additive components before sintering, and are composed of composite perovskite (perovskite).
e) Basic components of type structure (Sr Ca Zn MnO, 690, 2
80,010,02)0(TiZrO,950,05)02 25 mol% of Li 20 and S i O
235 mol%, BaO 3 mol%, M2O 8 mol%, and Zn
A uniform distribution of the additive components consisting of O3 mol%, 5r08 mol% and Ca08 mol% is obtained.

次に、完成した積層磁器コンデンサの比誘電率ε3、温
度係数TC,Q、抵抗率ρを測定したとこる第3表の試
料量、1に示す如く、ε は281、TCは−1400
1)1111/”C2Qは10300 、ρは20℃で
3、OX10MΩ−CI、125℃で1.4 X105
MΩ・C11であった。なお、上記電気的特性は次の要
領で測定した。
Next, we measured the relative dielectric constant ε3, temperature coefficient TC, Q, and resistivity ρ of the completed multilayer ceramic capacitor. As shown in Table 3, ε is 281 and TC is -1400.
1) 1111/”C2Q is 10300, ρ is 3 at 20℃, OX10MΩ-CI, 1.4 at 125℃ X105
It was MΩ・C11. Note that the above electrical characteristics were measured in the following manner.

(A)  比誘電率ε、は、温度20℃、周波数1MH
z 、交流電圧(実効値) 0.5 Vの条件で静電容
量を測定し、この測定値と磁器N(2)の厚さ0.05
11から計算で求めた。
(A) The relative permittivity ε is at a temperature of 20°C and a frequency of 1MH.
z, the capacitance was measured under the condition of AC voltage (effective value) 0.5 V, and this measured value and the thickness of porcelain N (2) 0.05
It was calculated from 11.

(B)  温度係数(TC)は、85℃の静電容量(C
)と20℃の静電容量(C2o)とを測定し、(C) 
 Qは温度20°Cにおいて、周波数IHH2、電圧[
実行値] 0.5 Vの交流でQメータにより測定した
(B) The temperature coefficient (TC) is the capacitance (C
) and the capacitance (C2o) at 20°C, and (C)
Q is the frequency IHH2 and the voltage [
Actual Value] Measured with a Q meter at 0.5 V AC.

(D)  抵抗率ρ(MΩ・cn+)は、温度20°C
及び125℃においてそれぞれDC50Vを1分間印加
した後に一対の外部電極(6)(7)間の抵抗値を測定
し、この測定値と寸法とに基づいて計算でもとめた。
(D) Resistivity ρ (MΩ・cn+) is measured at a temperature of 20°C.
After applying DC 50V for 1 minute at 125° C. and 125° C., the resistance value between the pair of external electrodes (6) and (7) was measured and calculated based on this measured value and the dimensions.

以上、試料量1の作製方法及びその特性について述べた
が、その他の試料N002〜82についても、基本成分
及び添加成分の組成、これ等の割合、及び還元性雰囲気
(非酸化性雰囲気)での焼成温度を第1表、第2表及び
第3表に示すように変えた他は、−試料NQ 1と全く
同一の方法で積層磁器コンデンサを作製し、同一方法で
電気的特性を測定した。
Above, we have described the preparation method for sample amount 1 and its characteristics, but for other samples No. 002 to No. 82, we also discussed the composition of basic components and additive components, their ratios, and the characteristics in a reducing atmosphere (non-oxidizing atmosphere). Except for changing the firing temperature as shown in Tables 1, 2, and 3, multilayer ceramic capacitors were produced in exactly the same manner as Sample NQ 1, and the electrical characteristics were measured in the same manner.

第1表は、それぞれの試料の基本成分の組成式。Table 1 shows the compositional formulas of the basic components of each sample.

Ca  Mb  Mn  )O)。Ca Mb Mn   O).

((Sri−x−y−z   x   y   z(T
i    Zr  )02 1−w     w を決定するための各数値に、x、y、z、w、即ち各元
素の原子数の割合を示す数値と、Mbの内容とを示す、
第2表は各試料の100重量部の基本成分に対する添加
成分の添加量(重量部)と、添加成分の組成を示す、こ
の第2表のMOの内容の欄には、Ba O,MQ O,
Zn O,Sr O,CaOの割合がモル%で示されて
いる。第3表はそれぞれの試料の還元性雰囲気における
焼結のための焼成温度(最高温度)、及び電気的特性を
示す。
((Sri-x-y-z x y z(T
In each numerical value for determining iZr)021-ww, x, y, z, w, that is, a numerical value indicating the ratio of the number of atoms of each element, and the content of Mb are shown.
Table 2 shows the amount (parts by weight) of additive components added to 100 parts by weight of the basic component of each sample and the composition of the additive components. ,
The proportions of Zn 2 O, Sr 2 O, and CaO are shown in mol%. Table 3 shows the firing temperature (maximum temperature) for sintering in a reducing atmosphere and the electrical properties of each sample.

第1表〜第3表から明らかな如く、本発明に従う試料で
は、非酸化性雰囲気、1200℃以下の焼成で、比誘電
率ε、が160〜325 、 Qが5000以上、誘電
率の温度係数TCが−630から−3400ppn/゛
Cの範囲となる。また抵抗率ρは20°Cで1.0×1
07MΩ・C1以上、125℃で1.OXl05Ma・
C1以上となる。
As is clear from Tables 1 to 3, in the samples according to the present invention, when fired in a non-oxidizing atmosphere at 1200°C or lower, the relative dielectric constant ε is 160 to 325, the Q is 5000 or more, and the temperature coefficient of the dielectric constant is TC ranges from -630 to -3400 ppn/°C. Also, the resistivity ρ is 1.0×1 at 20°C
07MΩ・C1 or more, 1 at 125℃. OXl05Ma・
It becomes C1 or higher.

一方、試料Nα6.7.8.9.10.11.29.3
3.34.38.43.48.49.53.54.58
.63.64.69.70.76.77.82では本発
明の目的を達成することができない、従って、これ等は
本発明の範囲外のものである。
On the other hand, sample Nα6.7.8.9.10.11.29.3
3.34.38.43.48.49.53.54.58
.. 63, 64, 69, 70, 76, 77, 82 cannot achieve the purpose of the present invention, and therefore they are outside the scope of the present invention.

次に、組成の限定理由について述べる。Next, the reasons for limiting the composition will be described.

添加成分の添加量が零の場合には試料Nα77から明ら
かな如く焼成温度が1300℃であっても緻密な焼結体
が得られないが、試料Nα78に示す如く添加量が10
0重量部の基本成分に対して0.2重量部の場合には1
190℃の焼成で所望の電気的特性を有する焼結体が得
られる。従って、添加成分の下限は0.2重量部である
。一方、試料NQ82に示す如く添加量が12重量部の
場合にはQが5000未満となり、所望特性よりも悪く
なるが、試料Nα81に示す如く添加量が10重量部の
場合には、所望の特性を得ることができる。従って、添
加量の上限は10重量部である。
When the amount of additive components added is zero, a dense sintered body cannot be obtained even if the firing temperature is 1300°C, as is clear from sample Nα77, but when the amount added is 10 as shown in sample Nα78, a dense sintered body cannot be obtained.
1 in the case of 0.2 parts by weight for 0 parts by weight of the basic component
A sintered body having desired electrical properties can be obtained by firing at 190°C. Therefore, the lower limit of the additive component is 0.2 part by weight. On the other hand, when the amount added is 12 parts by weight as shown in sample NQ82, Q becomes less than 5000, which is worse than the desired characteristics, but when the amount added is 10 parts by weight as shown in sample Nα81, the desired characteristics are obtained. can be obtained. Therefore, the upper limit of the amount added is 10 parts by weight.

Xの値は、例えば試料No、24.25.26.27.
28に示す如く、0から0.994までのいずれの値で
あっても、所望の電気的特性を得ることができる。従っ
てXの値は0から0.994までの全ての値を含む。
The value of X is, for example, sample No. 24.25.26.27.
As shown in 28, desired electrical characteristics can be obtained with any value from 0 to 0.994. Therefore, the value of X includes all values from 0 to 0.994.

なお試料No、28に示す如くxが0.994の場合に
は、x+y+z=1となり、結局S「が零である。従っ
て、本発明に従う一般式のMaの内容は、S「、Ca 
、Sr +Caのいずれか1つである。
Note that when x is 0.994 as shown in sample No. 28, x+y+z=1, and S'' is zero after all. Therefore, the content of Ma in the general formula according to the present invention is S'', Ca
, Sr +Ca.

yの値が試料量29.34に示す如< 0.002の場
合は、Mb(Mb及び/スはZn)を添加した効果が見
られないが試料Nα30.35.3gに示す如くyの値
が0、005の場合には、所望の電気的特性が得られる
When the value of y is < 0.002 as shown in the sample amount 29.34, no effect of adding Mb (Mb and/or Zn) is observed, but the value of y as shown in the sample Nα30.35.3g When is 0,005, desired electrical characteristics can be obtained.

従ってyの値の下限は、o、 oosである。一方yの
値が試料Na33.38.43に示す如(0,12の場
合には緻密な焼結体が得られないが、試料N(132,
37,42に示す如く、yの値が0.10の場合には所
望の電気的特性が得られる。従ってyの値の上限は0.
10である。
Therefore, the lower limit of the value of y is o, oos. On the other hand, as shown in sample Na33.38.43 (0,12), a dense sintered body cannot be obtained, but sample N (132,
As shown in Figs. 37 and 42, desired electrical characteristics can be obtained when the value of y is 0.10. Therefore, the upper limit of the value of y is 0.
It is 10.

2の値が試料Nα49.54に示す如< 0.0005
の場合は125℃でのρが1.OX105Ma・Cra
を下回ってしまいMnOを添加した効果が見られないが
、試料Na44.50.55.59に示す如く、2の値
がo、ooiの場合には所望の電気的特性が得られる。
As shown in sample Nα49.54, the value of 2 is < 0.0005
In the case of , ρ at 125°C is 1. OX105Ma・Cra
However, as shown in sample Na44.50.55.59, when the value of 2 is o or ooi, desired electrical characteristics can be obtained.

従って2の下限は0.001である。一方、2の値が0
.12の場合には試料11Q48.53.58.63に
示す如くなとえρが満足な値であってもQが5000未
満となってしまうが、試料量47.52.57.62に
示す如くzの値が0.10の場合には所望の電気的特性
が得られる。
Therefore, the lower limit of 2 is 0.001. On the other hand, the value of 2 is 0
.. In the case of 12, as shown in sample 11Q48.53.58.63, even if ρ is a satisfactory value, Q will be less than 5000, but as shown in sample amount 47.52.57.62. When the value of z is 0.10, desired electrical characteristics can be obtained.

従って2の値の上限は0610である。なお、例えば、
試料量、55.56.57、に示す如く、2の値を、徐
々に大きくすると、125℃におけるρも徐々大きくな
り、Mnが高温における抵抗率ρの増大寄与しているこ
とが分かる。
Therefore, the upper limit of the value of 2 is 0610. In addition, for example,
As shown in the sample amount, 55, 56, 57, when the value of 2 is gradually increased, ρ at 125° C. also gradually increases, indicating that Mn contributes to increasing the resistivity ρ at high temperatures.

Wの値が試料Nα64に示す如(0,002の場合には
125℃でのρが1.OXl05Ma・CIを下回って
しまいZ「02を添加した効果が見られないが、試料ヌ
65に示す如くWの値が0.005の場合には所望の電
気的特性が得られる。従ってWの値の下限は0、005
である。一方、試料Nα69に示す如くwの値が0.1
2の場合には緻密な焼結体が得られないが、試flN1
168に示す如くWの値が0.10の場合には所望の電
気的特性が得られる。従ってWの値の上限は0.10で
ある。
As shown in sample Nα64 (0,002), when the value of W is 0,002, ρ at 125°C is less than 1.OXl05Ma CI, and the effect of adding Z'02 is not seen, but as shown in sample N65. If the value of W is 0.005, the desired electrical characteristics can be obtained. Therefore, the lower limit of the value of W is 0.005.
It is. On the other hand, as shown in sample Nα69, the value of w is 0.1
In the case of 2, a dense sintered body cannot be obtained, but in the case of sample flN1
As shown in 168, when the value of W is 0.10, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of W is 0.10.

kの値が試FINα70に示す如く0゜99の場合には
、ρが20℃、125℃でそれぞれ3.8 X103.
1.Ox101MΩ・C1となり更にQも60と大幅に
低くなるが、試料愁71に示す如くkの値が1.00の
場合には所望の電気的特性が得られる。従ってkの値の
下限は1.00である。一方、kの値が試料N076に
示す如<: 1.25の場合には緻密な焼結体が得られ
ないが、試料No、75に示す如くkの値が1.20の
場合には所望の電気的特性が得られる。従ってkの値の
上限は1.20である。
When the value of k is 0°99 as shown in test FINα70, ρ is 3.8×103. at 20°C and 125°C, respectively.
1. Ox101MΩ·C1, and Q is also significantly lowered to 60, but as shown in sample No. 71, when the value of k is 1.00, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of k is 1.00. On the other hand, when the value of k is <: 1.25 as shown in sample No. 76, a dense sintered body cannot be obtained, but when the value of k is 1.20 as shown in sample No. 75, the desired sintered body cannot be obtained. The electrical characteristics of Therefore, the upper limit of the value of k is 1.20.

添加成分の好ましい組成は第2図のLi20−3i 0
2−Moの組成比を示す三角図に基づいて決定すること
ができる。三角図の点(A)は試料No、3のLi  
01モル%、S i 0280モル%、MO19モル%
の組成を示し、点(B)は、試料Nα2のLi  01
モル%、510249モル%、MO50モル%の組成を
示し、点(C)は試flN0.1のLi   025モ
ル%、Si 0235モル%、M O40モル%の組成
を示し、点(D)は試料Nα4のLi2o50モル%、
SiO500モル%、M○0モル%の組成を示し、点(
E)は試料愁5のLi2020モル%、SiO280モ
ル%、MOOモル%の組成を示し。
The preferred composition of the additive components is Li20-3i 0 in Figure 2.
It can be determined based on a triangular diagram showing the composition ratio of 2-Mo. Point (A) in the triangular diagram is Li of sample No. 3.
01 mol%, S i 0280 mol%, MO 19 mol%
The point (B) shows the composition of Li 01 of sample Nα2.
Point (C) shows the composition of Li 025 mol%, Si 0235 mol%, MO 40 mol% of sample flN0.1, and point (D) shows the composition of sample flN0.1. Li2o 50 mol% of Nα4,
It shows the composition of 500 mol% SiO, 0 mol% M○, and the point (
E) shows the composition of sample No. 5 of 20 mol% Li, 80 mol% SiO2, and mol% MOO.

本発明の範囲に属する試料の添加成分の組成は、三角図
の第1〜第5の点(A)〜(E)を順に結ぶ5本の直線
で囲まれた領域内の組成になっている。この領域内の組
成とすれば、所望の電気的特性を得ることができる。な
お三角図で試料懇4及び5から明らかな如く、Mo省い
ても本発明で目標としている特性が得られる。
The composition of the additive components of the sample that falls within the scope of the present invention is within the area surrounded by five straight lines connecting the first to fifth points (A) to (E) of the triangular diagram in order. . If the composition is within this range, desired electrical characteristics can be obtained. As is clear from Samples 4 and 5 in the triangular diagram, the characteristics targeted by the present invention can be obtained even if Mo is omitted.

一方、試料NQ6.7.8.9.10.11、のように
添加成分の組成が本発明で特定した範囲外となれ、ば緻
密な焼結体を得ることができない、なお、MO酸成分、
例えば試料NQ12.13.14.15.16に示す如
(Ba 05Mg 01ZnO1Sr O,Ca Oの
いずれか一つであってもよいし、又は他の試料に示すよ
うに適当な比率としてもよい。
On the other hand, if the composition of the additive components falls outside the range specified in the present invention, as in sample NQ6.7.8.9.10.11, a dense sintered body cannot be obtained. ,
For example, as shown in sample NQ12.13.14.15.16 (it may be any one of Ba 05 Mg 01 ZnO 1 Sr O, Ca 2 O), or it may be in an appropriate ratio as shown in other samples.

[変形例コ 以上本発明の実施例について述べたが、本発明はこれに
限定されるものではなく、例えば次の変形例が可能なも
のである。
[Modifications] Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible.

(a)基本成分を得るための出発原料であるMnOを本
発明の目的を阻害しない範囲ででその一部をMnOある
いはMn3O4等のもので置き換えることもできる、ま
た基本成分及び添加成分にその他の物質を必要に応じて
適量添加してもよい。
(a) MnO, which is the starting material for obtaining the basic component, can be partially replaced with MnO or Mn3O4, etc., within a range that does not impede the purpose of the present invention. Appropriate amounts of substances may be added as needed.

(b)基本成分を得るための出発原料を、実施例で示し
たちの以外の例えば、5rO1CaO等の酸化物又は水
酸化物又はその他の化合物としてもよい。また、添加成
分の出発原料を酸化物、水酸化物等の他の化合物として
もよい。
(b) The starting materials for obtaining the basic components may be oxides or hydroxides other than those shown in the examples, such as 5rO1CaO, or other compounds. Further, the starting materials for the additive components may be other compounds such as oxides and hydroxides.

(c)酸化温度を600℃以外の焼結温度よりも低い温
度(好ましくは1000℃以下)としてもよい。
(c) The oxidation temperature may be set to a temperature other than 600°C lower than the sintering temperature (preferably 1000°C or less).

即ち、ニッケル等の電極と磁器の酸化とを考慮して種々
変更することが可能である。
That is, various changes can be made in consideration of the electrode made of nickel or the like and the oxidation of the ceramic.

(d)非酸化性雰囲気中の焼成温度を、電極材料を考慮
して種々変えることが出来る。
(d) The firing temperature in a non-oxidizing atmosphere can be varied depending on the electrode material.

(e)焼結を中性雰囲気で行ってもよい。(e) Sintering may be performed in a neutral atmosphere.

(f)積層磁器コンデンサ以外の一般的な磁器コンデン
サにも勿論適用可能である。
(f) It is of course applicable to general ceramic capacitors other than laminated ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

1図は第は本発明の実施例に係わる積層型磁器コンデン
サを示す断面図である。第2図は添加成分の組成範囲を
示す三角図である。 (1)(2)(3)・・・誘電体磁器層、(4)(5)
・・・内部電極、(6)(7)・・・外部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention. FIG. 2 is a triangular diagram showing the composition range of additive components. (1)(2)(3)...Dielectric ceramic layer, (4)(5)
...Internal electrode, (6) (7)...External electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)100重量部の基本成分と、0.2〜10.0重
量部の添加成分とから成り、前記基本成分が、{(Ma
_1_−_y_−_zMb_yMn_z)O}_k(T
i_1_−_wZr_w)O_2 (但し、MaはSrとCaとの内の少なくとも1種の金
属、MbはMgとZnとの内の少なくとも1種の金属、
y、z、k、wは、0.005≦y≦0.100、0.
001≦z≦0.100、1.00≦k≦1.20、0
.005≦w≦0.100の範囲の数値)であり、前記
添加成分が、Li_2とOSiO_2とMO(但し、M
OはBaO、MgO、ZnO、SrO、及びCaOの内
の少なくとも1種の金属酸化物)との組成を示す三角図
における、 前記Li_2Oが1モル%、前記SiO_2が80モル
%、前記MOが19モル%の点(A)と、前記Li_2
Oが1モル%、前記SiO_2が49モル%、前記MO
が5モル%の点(B)と、前記Li_2Oが25モル%
、前記SiO_2が35モル%、前記MOが40モル%
の点(C)と、前記Li_2Oが50モル%、前記Si
O_2が50モル%、前記MOが0モル%の点(D)と
、前記Li_2Oが20モル%、前記SiO_2が80
モル%、前記MOが0モル%の点(E)と を順に結ぶ5本の直線で囲まれた領域内のものである誘
電体磁器組成物。
(1) Consists of 100 parts by weight of the basic component and 0.2 to 10.0 parts by weight of additional components, and the basic component is {(Ma
_1_-_y_-_zMb_yMn_z)O}_k(T
i_1_-_wZr_w)O_2 (However, Ma is at least one metal among Sr and Ca, Mb is at least one metal among Mg and Zn,
y, z, k, w are 0.005≦y≦0.100, 0.
001≦z≦0.100, 1.00≦k≦1.20, 0
.. 005≦w≦0.100), and the additive components are Li_2, OSiO_2, and MO (however, M
O is a metal oxide of at least one of BaO, MgO, ZnO, SrO, and CaO. Point (A) of mol% and the Li_2
O is 1 mol%, the SiO_2 is 49 mol%, the MO
is 5 mol% point (B), and the Li_2O is 25 mol%
, the SiO_2 is 35 mol%, the MO is 40 mol%
point (C), the Li_2O is 50 mol%, the Si
Point (D) where O_2 is 50 mol% and the MO is 0 mol%, and the Li_2O is 20 mol% and the SiO_2 is 80 mol%.
The dielectric ceramic composition is within a region surrounded by five straight lines sequentially connecting points (E) with 0 mol % of MO.
JP61232822A 1986-09-30 1986-09-30 Dielectric ceramic composition Granted JPS6386316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232822A JPS6386316A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232822A JPS6386316A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS6386316A true JPS6386316A (en) 1988-04-16
JPH0551124B2 JPH0551124B2 (en) 1993-07-30

Family

ID=16945320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232822A Granted JPS6386316A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS6386316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094917C (en) 1998-09-30 2002-11-27 Tdk株式会社 Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor

Also Published As

Publication number Publication date
JPH0551124B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
US4700266A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
US4723193A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
KR930004744B1 (en) Solid dielectric capacitor and method of manufacture
KR930004740B1 (en) Solid dielectirc capacitor and method of manufacture
JPH0524653B2 (en)
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
US4700268A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
US4700267A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JPH0551127B2 (en)
JPS621596B2 (en)
JPS6386316A (en) Dielectric ceramic composition
JPH04359811A (en) Ceramic capacitor and its manufacture
JPH03278415A (en) Porcelain capacitor and manufacture thereof
JP3269989B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0532892B2 (en)
JPH0234551A (en) Dielectric porcelain composition
JPH0551122B2 (en)
JPS6386317A (en) Dielectric ceramic composition
JPH03278423A (en) Porcelain capacitor and manufacture thereof
JPH0551126B2 (en)
JPS6386315A (en) Dielectric ceramic composition
JPH03278414A (en) Porcelain capacitor and manufacture thereof
JPH0234550A (en) Dielectric porcelain composition
JPH0532895B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees