JPH0532892B2 - - Google Patents

Info

Publication number
JPH0532892B2
JPH0532892B2 JP2016345A JP1634590A JPH0532892B2 JP H0532892 B2 JPH0532892 B2 JP H0532892B2 JP 2016345 A JP2016345 A JP 2016345A JP 1634590 A JP1634590 A JP 1634590A JP H0532892 B2 JPH0532892 B2 JP H0532892B2
Authority
JP
Japan
Prior art keywords
mol
sio
point
parts
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2016345A
Other languages
Japanese (ja)
Other versions
JPH03222311A (en
Inventor
Hiroshi Saito
Mutsumi Pponda
Hiroshi Kishi
Hisamitsu Shizuno
Koichi Chasono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2016345A priority Critical patent/JPH03222311A/en
Priority to EP90122664A priority patent/EP0430178B1/en
Priority to DE69009693T priority patent/DE69009693T2/en
Priority to US07/618,710 priority patent/US5077636A/en
Priority to KR1019900019735A priority patent/KR930004744B1/en
Publication of JPH03222311A publication Critical patent/JPH03222311A/en
Publication of JPH0532892B2 publication Critical patent/JPH0532892B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、誘電体磁器と少なくとも2つの電極
とから成る単層又は積層構造の磁器コンデンサ及
びその製造方法に関する。 [従来の技術] 従来、積層磁器コンデンサを製造する際には、
誘電体磁器原料粉末から成るグリーンシート(未
焼結磁器シート)に白金又はパラジウム等の貴金
属の導電性ペーストを所望パターンに印刷し、こ
れを複数枚積み重ねて圧着し、1300℃〜1600℃の
酸化性雰囲気中で焼結させた。これにより、誘電
体磁器と内部電極とが同時に得られる。上述の如
く、貴金属を使用すれば、酸化性雰囲気中で高温
で焼結させても目的とする内部電極を得ることが
できる。しかし、白金、パラジウム等の貴金属は
高価であるため、必然的に積層磁器コンデンサが
コスト高になつた。 上述の問題を解決することができるものとし
て、本件出願人に係わる特公昭61−14607号公報
には、 (Bak-xMx)OkTiO2(但し、MはMg及びZnの
内の少なくとも1種)から成る基本成分と、
Li2OとSiO2とから成る添加成分とを含む誘電体
磁器組成物が開示されている。 また、特公昭61−14608号公報には、上記の特
公昭61−14607号公報のLi2OとSiO2の代りに、
Li2OとSiO2とMO(但し、MOはBaO、CaO及び
SrOの内の少なくとも1種)とから成る添加成分
とを含む誘電体磁器組成物が開示されている。 また、特公昭61−14609号公報には、(Bak-x-y
MxLy)OkTiO2(但し、MはMg及びZnの少なく
とも1種、LはSr及びCaの内の少なくとも1種)
から成る基本成分とLi2OとSiO2とから成る添加
成分とを含む誘電体磁器組成物が開示されてい
る。 また、特公昭61−14610号公報には、上記の特
公昭61−14609号公報におけるLi2OとSiO2の代り
に、Li2OとSiO2とMO(但し、MOはBaO、CaO
及びSrOの内の少なくとも1種)とから成る添加
成分を含む誘電体磁器組成物が開示されている。 また、特公昭61−14611号公報には、(Bak-x
Mx)OkTiO2(但し、MはMg、Zn、Sr及びCaの
少なくとも1種)から成る基本成分と、B2O3
SiO2とから成る添加成分とを含む誘電体磁器組
成物が開示されている。 また、特公昭62−1595号公報には、(Bak-xMx
OkTiO2(但し、MはMg、Zn、Sr及びCaの内の少
なくとも1種)から成る基本成分と、B2O3
MO(但しMOはBaO、MgO、ZnO、SrO及び
CaOの少なくとも1種)とから成る添加成分とを
含む誘電体磁器組成物が開示されている。 また、特公昭62−1596号公報には、上記の特公
昭62−1595号公報のB2O3とMOの代りに、B2O3
とSiO2とMO(但しMOはBaO、MgO、ZnO、
SrO及びCaOの内の少なくとも1種)とから成る
添加成分とを含む誘電体磁器組成物が開示されて
いる。 これらに開示されている誘電体磁器組成物は、
還元性雰囲気1200℃以下の条件の焼成で得ること
ができ、比誘電率が2000以上、静電容量の温度変
化率が−25℃〜+85℃で±10%の範囲にすること
ができるものである。 [発明が解決しようとする課題] ところで、近年の電子回路の高密度化に伴い、
積層コンデンサの小型化の要求が非常に強く、こ
れに対応する為に、温度変化率を悪化させること
なく誘電体の比誘電率を、上記各公報に開示され
ている誘電体磁器組成物の比誘電率よりも更に増
大させることが望まれている。 そこで、本発明の目的は、非酸化性雰囲気、
1200℃以下の温度での焼成で得るものであるにも
拘らず、高い誘電率を有し、且つ広い温度範囲に
わたつて誘電率の温度変化率が小さい誘電体磁器
を備えている磁器コンデンサ及びその製造方法を
提供することにある。 [課題を解決するための手段] 上記目的を達成するための本発明は、誘電体磁
器と、前記磁器に接触している少なくとも2つの
電極とから成る磁器コンデンサにおいて、前記磁
器が100.0重量部の基本成分と、0.2〜5.0重量部の
添加成分とから成り、前記基本成分が、(1−α)
{(Bak-x-zMxLz)Ok(Ti1-yRy)O2-y/2}+
αCaZrO3(ただし、MはMg、Znの内の少なくと
も1種の金属、LはCa、Srの内の少なくとも1
種の金属、RはSc、Y、Gd、Dy、Ho、Er、
Yb、Tb、Tm、Luの内の少なくとも1種の金
属、α、k、x、z、yは、0.005≦α≦0.04、
1.00≦k≦1.05、0<x<0.10、0<z≦0.05、
0.01≦x+z≦0.10、0<y≦0.04を満足する数
値)であり、前記添加成分がLi2OとSiO2とMO
(但し、MOはBaO、SrO、CaO、MgO及びZnO
の内の少なくとも1種の金属酸化物)から成り、
且つ前記Li2Oと前記SiO2と前記MOとの組成範囲
がこれ等の組成をモル%で示す三角図における前
記Li2Oが1モル%、前記SiO2が80モル%、前記
MOが19モル%の点Aと、前記Li2Oが1モル%、
前記SiO2が39モル%、前記MOが60モル%の点B
と、前記Li2Oが30モル%、前記SiO2が30モル%、
前記MOが40モル%の点Cと、前記Li2Oが50モル
%、前記SiO2が50モル%、前記MOが0モル%の
点Dと、前記Li2Oが20モル%、前記SiO2が80モ
ル%、前記MOが0モル%の点Eとを順に結ぶ5
本の直線で囲まれた領域内のものであるコンデン
サに係わるものである。なお、基本成分を示す組
成式において、k−x−z、x、z、k、1−
y、y、2−y/2は勿論それぞれの元素の原子
数を示し、(1−α)とαは組成式の第1項の
(Bak-x-zMxLz)Ok(Ti1-yRy)O2-y/2と第2項の
CaZrO3との割合をモルで示すものであり、Baは
バリウム、Oは酸素、Tiはチタン、Mgはマグネ
シウム、Znは亜鉛、Caはカルシウム、Srはスト
ロンチウムである。また、Scはスカンジウム、
Yはイツトリウム、Gdはガドリニウム、Dyはジ
スプロシウム、Hoはホロニウム、Erはエルビウ
ム、Ybはイツテルビウム、Tbはテルビウム、
Tmはツリウム、Luはルテチウムである。添加成
分におけるLi2Oは酸化リチウム、SiO2は酸化け
い素、BaOは酸化バリウム、SrOは酸化ストロン
チウム、CaOは酸化カルシウム、MgOは酸化マ
グネシウム、ZnOは酸化亜鉛である。 製造方法に係わる発明は、上記の基本成分と添
加成分との混合物を用意する工程と、少なくとも
2つの電極部分を有する前記混合物の成形物を作
る工程と、前記電極部分を有する前記成形物を非
酸化性雰囲気で焼成する工程と、前記焼成で得ら
れた成形物を酸化性雰囲気で熱処理する工程とを
含む磁器コンデンサの製造方法に係わるものであ
る。 [作用効果] 上記発明の磁器コンデンサにおける誘電体磁器
を非酸化性雰囲気、1200℃以下の焼成で得ること
ができる。従つて、ニツケル等の卑金属の導電性
ペーストをグリーンシートに塗布し、グリーンシ
ートと導電性ペーストとを同時に焼成する方法に
よつて磁器コンデンサを製造することが可能にな
る。誘電体磁器の組成を本発明で特定された範囲
にすることによつて、比誘電率が3000以上、誘電
体損失tanδが2.5%以下、抵抗率ρが1×
106MΩ・cm以上であり、且つ比誘電率の温度変
化率が−55℃〜125℃で−15%〜+15%(25℃を
基準)、−25℃〜85℃で−10%〜+10%(20℃を基
準)の範囲に収まる誘電体磁器を備えたコンデン
サを提供することができる。 [実施例] 次に、本発明に従う実施例及び比較例について
説明する。 まず、本発明に従う基本成分の組成式(1−
α){(Bak-x-zMxLz)Ok(Ti1-yRy)O2-y/2}+
αCaZrO3における第1項の(Bak-x-zMxLz)Ok
(Ti1-yRy)O2-y/2(以下第1基本成分と呼ぶ)を
第1表及び第2表の試料No.1のk−x−z、x、
z、x+z、y、kの欄に示す割合で得るため、
換言すれば、(Ba0.96M0.05L0.01)O1.02(Ti0.99
R0.01)O0.995、更に詳細には、M0.05=Mg0.05
L0.01=Sr0.01及びR0.01=Yb0.01であるので、 (Ba0.96Mg0.05Sr0.01)O1.02(Ti0.99Yb0.01
O1.995を得るために、純度99.0%以上のBaCO3(炭
酸バリウム)、MgO(酸化マグネシウム)、SrO
(酸化ストロンチウム)、及びTiO2(酸化チタン)、
Yb2O3(酸化イツテルビウム)を用意し、不純物
を目方に入れないで BaCO3:1044.06g(0.96モル部相当) MgO:11.11g(0.05モル部相当) SrO:5.71
g(0.01モル部相当) TiO2:435.94g(0.99モ
ル部相当) Yb2O3:10.84g(0.005モル部相当)を秤量し
た。 次に、秤量されたこれ等の原料をポツトミル
(pot mill)に入れ、更にアルミナボールと水2.5
とを入れ、15時間湿式撹拌した後、撹拌物をス
テンレスポツトに入れて熱風式乾燥器で150℃、
4時間乾燥した。次にこの乾燥物を粗粉砕し、こ
の粗粉砕物をトンネル炉にて大気中で1200℃、22
時間仮焼し、上記組成式の第1基本成分を得た。 また、基本成分の組成式の第2項のCaZrO3(以
下、第2基本成分と呼ぶ)を得るために、
CaCO3(炭酸カルシウム)とZrO2(酸化ジルコニ
ウム)とが等モルとなる様に前者を448.96g、後
者を551.04gをそれぞれ秤量し、これ等を混合
し、乾燥し、粉砕した後に、約1250℃で2時間大
気中で仮焼した。 つぎに、第1表の試料No.1に示すように1−α
が0.98モル、αが0.02モルとなるように、98モル
部(984.34g)の第1基本成分(Ba0.96Mg0.05
Sr0.01)O1.02(Ti0.99Yb0.01)O1.995の粉末と、2モ
ル部(15.66g)の第2基本成分(CaZrO3)の粉
末とを混合して1000gの基本成分を得た。 一方、第3表の試料No.1の添加成分を得るため
に、Li2Oを0.44g(1モル部)と、SiO2を70.99
g(80モル部)と、BaCO3を11.10g(3.8モル
部)と、CaCO3を14.70g(9.5モル部)と、MgO
を3.40g(5.7モル部)とをそれぞれ秤量し、こ
の混合物にアルコールを300c.c.加え、ポリエチレ
ンポツトにてアルミナボールを用いて10時間撹拌
した後、大気中1000℃で2時間仮焼成し、これを
300c.c.の水と共にアルミナポツトに入れ、アルミ
ナボールで15時間粉砕し、しかる後、150℃で4
時間乾燥させてLi2Oが1モル%、SiO2が80モル
%、MOが19モル%(BaO3.8モル%+CaO9.5モ
ル%+MgO5.7モル%)の組成の添加成分の粉末
を得た。なお、MOの内容であるBaOとCaOと
MgOとの割合は第3表に示すように20モル%、
50モル%、30モル%となる。 次に、100重量部(1000g)の基本成分に2重
量部(20g)の添加成分を添加し、更に、アクリ
ル酸エステルポリマー、グリセリン、縮合リン酸
塩の水溶液から成る有機バインダを基本成分と添
加成分との合計重量に対して15重量%添加し、更
に、50重量%の水を加え、これ等をボールミルに
入れて粉砕及び混合して磁器原料のスラリーを作
製した。 次に、上記スラリーを真空脱泡機に入れて脱泡
し、このスラリーをリバースロールコータに入
れ、ここから得られる薄膜成形物を長尺なポリエ
ステルフイルム上に連続して受け取ると共に、同
フイルム上でこれを100℃に加熱して乾燥させ、
厚さ約25μmの未焼結磁器シートを得た。このシ
ートは長尺なものであるが、これを10cm角の正方
形に裁断して使用する。 一方、内部電極用の導電ペーストは、粒径平均
1.5μmのニツケル粉末10gと、エチルセルロース
0.9gをブチルカルビトール9.1gに溶解させたも
のとを撹拌機に入れ、10時間撹拌することにより
得た。この導電ペーストを長さ14mm、幅7mmのパ
ターンを50個有するスクリーンを介して上記未焼
結磁器シートの片側に印刷した後、これを乾燥さ
せた。 次に、上記印刷面を上にして未焼結磁器シート
を2枚積層した。この際、隣接する上下のシート
において、その印刷面がパターンの長手方向に約
半分程ずれるように配置した。更に、この積層物
の上下両面にそれぞれ4枚ずつ厚さ60μmの未焼
結磁器シートを積層した。次いで、この積層物を
約50℃の温度で厚さ方向に約40トンの荷重を加え
て圧着させた。しかる後、この積層物を格子状に
裁断し、50個の積層チツプを得た。 次に、この積層体を雰囲気焼成が可能な炉に入
れ、大気雰囲気中で100℃/hの速度で600℃まで
昇温して、有機バインダを燃焼させた。しかる
後、炉の雰囲気を大気からH2(2体積%)+N2
(98体積%)の雰囲気に変えた。そして、炉を上
述の如き還元性雰囲気とした状態を保つて、積層
体加熱温度を600℃から焼結温度の1150℃まで、
100℃/hの速度で昇温して1150℃(最高温度)
を3時間保持した後、100℃/hの速度で600℃ま
で降温し、雰囲気を大気雰囲気(酸化性雰囲気)
におきかえて、600℃を30分間保持して酸化処理
を行い、その後、室温まで冷却して積層焼結体チ
ツプを作製した。 次に、第1図に示す積層磁器コンデンサ10を
得るために、3つの誘電体磁器層12と2つの内
部電極14とから成る積層焼結体チツプ15に一
対の外部電極16を形成した。なお、外部電極1
6は、電極が露出する焼結体チツプ15の側面に
亜鉛とガラスフリツト(glass frit)とビヒクル
(vehicle)とから成る導電性ペーストを塗布して
乾燥し、これを大気中で550℃の温度で15分間焼
付け、亜鉛電極層18を形成し、更にこの上に無
電解メツキで法で銅層20を形成し、更にこの上
に電気メツキ法でPb−Sn半田層22を設けたも
のから成る。 このコンデンサ10の誘電体磁器層12の厚さ
は0.02mm、一対の内部電極14の対向面積は5mm
×5mm=25mm2である。なお、焼結後の磁器層12
の組成は、焼結前の基本成分と添加成分との混合
組成と実質的に同じである。 次に、コンデンサ10の電気的特性を測定し、
その平均値を求めたところ、第3表に示す如く、
比誘電率εsが3920、tanδが1.1%、抵抗率ρが5.6
×106MΩ・cm、25℃の静電容量を基準にした−
55℃及び+125℃の静電容量の変化率ΔC-55
ΔC125が−10.2%、+3.0%、20℃の静電容量を基
準にした−25℃、+85℃の静電容量の変化率
ΔC-25、ΔC85は−5.3%、−6.0%であつた。 なお、電気的特性は次の要領で測定した。 (A) 比誘電率εsは、温度20℃、周波数1kHz、電圧
(実効値)1.0Vの条件で静電容量を測定し、こ
の測定値一対の内部電極14の対向面積25mm2
一対の内部電極14間の磁器層12の厚さ0.02
mmから計算で求めた。 (B) 誘電体損失tanδ(%)は比誘電率と同一条件
で測定した。 (C) 抵抗率ρ(MΩ・cm)は、温度20℃において
DC100Vを1分間印加した後に一対の外部電極
16間の抵抗値を測定し、この測定値と寸法と
に基づいて計算で求めた。 (D) 静電容量の温度特性は、恒温槽の中に試料を
入れ、−55℃、−25℃、0℃、+20℃、25℃、+40
℃、+60℃、+85℃、+105℃、+125℃の各温度に
おいて、周波数1kHz、電圧(実効値)1.0Vの
条件で静電容量を測定し、20℃及び25℃の時の
静電容量に対する各温度における変化率を求め
ることによつて得た。 以上、試料No.1の作製方法及びその特性につい
て述べたが、試料No.2〜139についても、基本成
分及び添加成分の組成、これ等の割合、及び還元
性雰囲気での焼成温度を第1表〜第4表に示すよ
うに変えた他は、試料No.1と全く同一の方法で積
層磁器コンデンサを作製し、同一方法で電気的特
性を測定した。 第1表には、基本成分を示す組成式における
(1−α)とαとk−x−zとxとzとx+zが
示され、xの欄のMg、Znは一般式のMの内容を
示し、Mg、Znの欄にはこれ等の原子数が示さ
れ、合計の欄にはこれ等の合計値(x値)が示さ
れている。またzの欄のCa、Srは一般式のLの
内容を示し、Ca、Srの欄にはこれ等の原子数が
示され、合計の欄にはこれ等の合計値(z値)が
示されている。 第2表には基本成分を示す組成式におけるRの
内容と量及びkの値が示されている。即ち、yの
欄のSe、Y、Gd、Dy、Ho、Er、Ybは一般式の
Rの内容を示し、これ等の欄にはこれ等の原子数
が示され、合計の欄にはこれ等の合計値(y値)
が示されている。 第3表にはそれぞれの試料の添加成分の添加量
及び組成が示されている。添加成分の添加量は基
本成分100重量部に対する重量部で示されている。
第3表の添加成分のMOの内容の欄には、BaO、
MgO、ZnO、SrO、CaOの割合がモル%で示さ
れている。 第4表は各試料の焼成温度及び電気的特性を示
す。この第4表において、静電容量の温度特性
は、25℃の静電容量を基準にした−55℃及び+
125℃の静電容量変化率ΔC-55(%)及びΔC125
(%)と、20℃の静電容量を基準にした−25℃及
び+85℃の静電容量変化率ΔC-25(%)及びΔC85
(%)とで示されている。
[Industrial Field of Application] The present invention relates to a ceramic capacitor having a single-layer or laminated structure consisting of dielectric ceramic and at least two electrodes, and a method for manufacturing the same. [Conventional technology] Conventionally, when manufacturing multilayer ceramic capacitors,
A conductive paste of noble metals such as platinum or palladium is printed in a desired pattern on a green sheet (unsintered porcelain sheet) made of dielectric porcelain raw material powder, multiple sheets are stacked and pressed together, and oxidized at 1300°C to 1600°C. sintered in a neutral atmosphere. Thereby, the dielectric ceramic and the internal electrode can be obtained at the same time. As mentioned above, if a noble metal is used, the intended internal electrode can be obtained even if it is sintered at high temperature in an oxidizing atmosphere. However, since precious metals such as platinum and palladium are expensive, the cost of multilayer ceramic capacitors has inevitably increased. As a solution to the above-mentioned problem, Japanese Patent Publication No. 14607/1987, filed by the applicant , states that ( Bakx Mx ) OkTiO2 (where M is at least one of Mg and Zn). basic ingredients consisting of seeds);
A dielectric ceramic composition is disclosed that includes additive components consisting of Li 2 O and SiO 2 . In addition, in Japanese Patent Publication No. 61-14608, instead of Li 2 O and SiO 2 in the above-mentioned Japanese Patent Publication No. 61-14607,
Li 2 O, SiO 2 and MO (however, MO is BaO, CaO and
A dielectric ceramic composition containing an additive component consisting of at least one type of SrO is disclosed. In addition, in Special Publication No. 61-14609, (Ba kxy
M x L y ) O k TiO 2 (M is at least one of Mg and Zn, L is at least one of Sr and Ca)
A dielectric ceramic composition is disclosed that includes a basic component consisting of Li 2 O and an additive component consisting of Li 2 O and SiO 2 . In addition, in Japanese Patent Publication No. 14610/1986, instead of Li 2 O and SiO 2 in the above-mentioned Japanese Patent Publication No. 61-14609, Li 2 O, SiO 2 and MO (MO is BaO, CaO
and at least one of SrO) is disclosed. In addition, in Special Publication No. 61-14611, (Ba kx
M x )O k TiO 2 (where M is at least one of Mg, Zn, Sr, and Ca) and B 2 O
A dielectric ceramic composition is disclosed that includes an additive component consisting of SiO 2 . In addition, in Special Publication No. 1595/1983, (Ba kx M x )
A basic component consisting of O k TiO 2 (where M is at least one of Mg, Zn, Sr, and Ca), and B 2 O 3 .
MO (However, MO is BaO, MgO, ZnO, SrO and
A dielectric ceramic composition containing an additive component consisting of at least one type of CaO is disclosed. In addition, in Japanese Patent Publication No. 62-1596, instead of B 2 O 3 and MO in the above-mentioned Japanese Patent Publication No. 62-1595, B 2 O 3
and SiO 2 and MO (however, MO is BaO, MgO, ZnO,
A dielectric ceramic composition containing an additive component consisting of at least one of SrO and CaO is disclosed. The dielectric ceramic compositions disclosed in these are:
It can be obtained by firing in a reducing atmosphere of 1200℃ or less, has a dielectric constant of 2000 or more, and can have a temperature change rate of capacitance of ±10% from -25℃ to +85℃. be. [Problem to be solved by the invention] By the way, with the recent increase in the density of electronic circuits,
There is a very strong demand for miniaturization of multilayer capacitors, and in order to meet this demand, we have improved the dielectric constant of the dielectric material to the ratio of the dielectric ceramic composition disclosed in the above publications without deteriorating the temperature change rate. It is desired to further increase the dielectric constant. Therefore, the purpose of the present invention is to provide a non-oxidizing atmosphere,
Porcelain capacitors equipped with dielectric porcelain that has a high dielectric constant and a small rate of change in dielectric constant over a wide temperature range, even though it is obtained by firing at a temperature of 1200°C or less. The object of the present invention is to provide a manufacturing method thereof. [Means for Solving the Problems] To achieve the above object, the present invention provides a ceramic capacitor comprising a dielectric ceramic and at least two electrodes in contact with the ceramic, in which the ceramic is 100.0 parts by weight. It consists of a basic component and 0.2 to 5.0 parts by weight of additional components, and the basic component is (1-α)
{(Ba kxz M x L z )O k (Ti 1-y R y )O 2-y/2 }+
αCaZrO 3 (M is at least one metal among Mg and Zn, L is at least one metal among Ca and Sr)
Seed metal, R is Sc, Y, Gd, Dy, Ho, Er,
At least one metal among Yb, Tb, Tm, and Lu, α, k, x, z, and y are 0.005≦α≦0.04,
1.00≦k≦1.05, 0<x<0.10, 0<z≦0.05,
0.01≦x+z≦0.10, 0<y≦0.04), and the additive components are Li 2 O, SiO 2 and MO
(However, MO is BaO, SrO, CaO, MgO and ZnO
at least one metal oxide);
The composition range of the Li 2 O, the SiO 2 and the MO is 1 mol % for the Li 2 O, 80 mol % for the SiO 2 , and 80 mol % for the SiO 2 in the triangular diagram showing these compositions in mol %.
Point A where MO is 19 mol% and Li 2 O is 1 mol%,
Point B where the SiO 2 is 39 mol% and the MO is 60 mol%
and the Li 2 O is 30 mol %, the SiO 2 is 30 mol %,
A point C where the MO is 40 mol%, a point D where the Li 2 O is 50 mol%, the SiO 2 is 50 mol%, and the MO is 0 mol%, and the Li 2 O is 20 mol% and the SiO Connect point E where 2 is 80 mol% and MO is 0 mol% in order 5
This relates to a capacitor, which is within the area surrounded by straight lines in the book. In addition, in the composition formula showing the basic components, k-x-z, x, z, k, 1-
y, y, 2-y/2 of course indicate the number of atoms of each element, and (1-α) and α are (Ba kxz M x L z )O k (Ti 1-y R y ) O 2-y/2 and the second term
It shows the ratio with CaZrO 3 in moles, where Ba is barium, O is oxygen, Ti is titanium, Mg is magnesium, Zn is zinc, Ca is calcium, and Sr is strontium. Also, Sc is scandium,
Y is yttrium, Gd is gadolinium, Dy is dysprosium, Ho is holonium, Er is erbium, Yb is ytterbium, Tb is terbium,
Tm is thulium and Lu is lutetium. Among the additive components, Li 2 O is lithium oxide, SiO 2 is silicon oxide, BaO is barium oxide, SrO is strontium oxide, CaO is calcium oxide, MgO is magnesium oxide, and ZnO is zinc oxide. The invention related to the manufacturing method includes the steps of: preparing a mixture of the above-mentioned basic components and additive components; making a molded product of the mixture having at least two electrode parts; and non-containing the molded product having the electrode parts. The present invention relates to a method for manufacturing a ceramic capacitor, which includes a step of firing in an oxidizing atmosphere and a step of heat-treating a molded product obtained by the firing in an oxidizing atmosphere. [Operation and Effect] The dielectric ceramic in the ceramic capacitor of the above invention can be obtained by firing in a non-oxidizing atmosphere at 1200°C or lower. Therefore, it becomes possible to manufacture a ceramic capacitor by applying a conductive paste of a base metal such as nickel to a green sheet and firing the green sheet and the conductive paste simultaneously. By setting the composition of the dielectric ceramic within the range specified in the present invention, the relative dielectric constant is 3000 or more, the dielectric loss tan δ is 2.5% or less, and the resistivity ρ is 1×
10 6 MΩ・cm or more, and the temperature change rate of relative permittivity is -15% to +15% (based on 25°C) from -55°C to 125°C, and -10% to +10 from -25°C to 85°C. % (based on 20°C), we can provide capacitors with dielectric ceramics that fall within the range of 20℃. [Examples] Next, Examples and Comparative Examples according to the present invention will be described. First, the composition formula (1-
α) {(Ba kxz M x L z )O k (Ti 1-y R y )O 2-y/2 }+
(Ba kxz M x L z )O k of the first term in αCaZrO 3
(Ti 1-y R y )O 2-y/2 (hereinafter referred to as the first basic component) is k-x-z, x, of sample No. 1 in Tables 1 and 2.
To obtain the ratio shown in the columns of z, x + z, y, k,
In other words, (Ba 0.96 M 0.05 L 0.01 ) O 1.02 (Ti 0.99
R 0.01 ) O 0.995 , more specifically, M 0.05 = Mg 0.05 ,
Since L 0.01 = Sr 0.01 and R 0.01 = Yb 0.01 , (Ba 0.96 Mg 0.05 Sr 0.01 ) O 1.02 (Ti 0.99 Yb 0.01 )
BaCO3 (barium carbonate), MgO (magnesium oxide), SrO with a purity of 99.0% or more to obtain O 1.995
(strontium oxide), and TiO 2 (titanium oxide),
Prepare Yb 2 O 3 (ytterbium oxide) without adding impurities to the mass. BaCO 3 : 1044.06 g (equivalent to 0.96 mol part) MgO: 11.11 g (equivalent to 0.05 mol part) SrO: 5.71
g (equivalent to 0.01 mole part) TiO 2 : 435.94 g (equivalent to 0.99 mole part) Yb 2 O 3 : 10.84 g (equivalent to 0.005 mole part) were weighed. Next, put these weighed raw materials into a pot mill, add an alumina ball and 2.5 ml of water.
After wet stirring for 15 hours, the stirred material was placed in a stainless steel pot and heated to 150℃ in a hot air dryer.
It was dried for 4 hours. Next, this dried material is roughly pulverized, and the coarsely pulverized material is heated in the atmosphere at 1200°C and 22°C in a tunnel furnace.
The product was calcined for a period of time to obtain the first basic component having the above compositional formula. In addition, in order to obtain CaZrO 3 (hereinafter referred to as the second basic component) in the second term of the composition formula of the basic component,
Weighed 448.96 g of the former and 551.04 g of the latter so that CaCO 3 (calcium carbonate) and ZrO 2 (zirconium oxide) were equimolar, mixed them, dried them, and crushed them, resulting in approximately 1250 g of ZrO 2 (zirconium oxide). It was calcined in air at ℃ for 2 hours. Next, as shown in sample No. 1 in Table 1, 1−α
98 mol parts (984.34 g) of the first basic component (Ba 0 . 96 Mg 0.05
Powder of Sr 0.01 )O 1.02 (Ti 0.99 Yb 0.01 )O 1.995 and 2 mole parts (15.66 g) of powder of the second basic component (CaZrO 3 ) were mixed to obtain 1000 g of the basic component. On the other hand, in order to obtain the additive components of sample No. 1 in Table 3, 0.44 g (1 mole part) of Li 2 O and 70.99 g of SiO 2 were added.
g (80 mol parts), 11.10 g (3.8 mol parts) of BaCO 3 , 14.70 g (9.5 mol parts) of CaCO 3 , and MgO
3.40 g (5.7 mole parts) of each were weighed, 300 c.c. of alcohol was added to this mixture, and the mixture was stirred for 10 hours using an alumina ball in a polyethylene pot, and then pre-calcined in the air at 1000℃ for 2 hours. ,this
Place it in an alumina pot with 300c.c. of water, grind it with an alumina ball for 15 hours, and then heat it at 150℃ for 4 hours.
After drying for hours, a powder of additive components with a composition of 1 mol% Li 2 O, 80 mol% SiO 2 , and 19 mol% MO (3.8 mol% BaO + 9.5 mol% CaO + 5.7 mol% MgO) was obtained. Ta. In addition, the contents of MO, BaO and CaO,
The ratio with MgO is 20 mol% as shown in Table 3.
50 mol%, 30 mol%. Next, 2 parts by weight (20 g) of additive components are added to 100 parts by weight (1000 g) of the basic component, and an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate is added to the basic component. A slurry of porcelain raw material was prepared by adding 15% by weight based on the total weight of the ingredients, and further adding 50% by weight of water, and placing them in a ball mill to grind and mix. Next, the above slurry is degassed by putting it into a vacuum defoaming machine, and this slurry is put into a reverse roll coater, and the thin film molding obtained from this is continuously received on a long polyester film, and the film is coated on the same film. Then heat this to 100℃ and dry it.
A green porcelain sheet with a thickness of about 25 μm was obtained. This sheet is long, but it is cut into 10cm squares. On the other hand, the conductive paste for internal electrodes has an average particle size of
10g of 1.5μm nickel powder and ethyl cellulose
A solution of 0.9 g dissolved in 9.1 g of butyl carbitol was placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the unsintered porcelain sheet through a screen having 50 patterns of 14 mm in length and 7 mm in width, and then dried. Next, two unsintered porcelain sheets were laminated with the printed surfaces facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Furthermore, four unsintered porcelain sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of this laminate. Next, this laminate was compressed at a temperature of about 50° C. by applying a load of about 40 tons in the thickness direction. Thereafter, this laminate was cut into a grid shape to obtain 50 laminate chips. Next, this laminate was placed in a furnace capable of firing in an atmosphere, and the temperature was raised to 600° C. at a rate of 100° C./h in an air atmosphere to burn the organic binder. After that, the atmosphere of the furnace is changed from the atmosphere to H 2 (2% by volume) + N 2
(98% by volume). Then, while maintaining the reducing atmosphere in the furnace as described above, the laminate heating temperature was increased from 600°C to the sintering temperature of 1150°C.
Raise the temperature at a rate of 100℃/h to 1150℃ (maximum temperature)
After holding for 3 hours, the temperature was lowered to 600°C at a rate of 100°C/h, and the atmosphere was changed to air (oxidizing atmosphere).
Instead, oxidation treatment was performed by holding the temperature at 600°C for 30 minutes, and then cooling to room temperature to produce a laminated sintered chip. Next, in order to obtain the multilayer ceramic capacitor 10 shown in FIG. 1, a pair of external electrodes 16 were formed on a multilayer sintered chip 15 consisting of three dielectric ceramic layers 12 and two internal electrodes 14. In addition, external electrode 1
In step 6, a conductive paste consisting of zinc, glass frit, and vehicle is applied to the side surface of the sintered chip 15 where the electrodes are exposed, dried, and then heated in the atmosphere at a temperature of 550°C. A zinc electrode layer 18 is formed by baking for 15 minutes, a copper layer 20 is formed thereon by electroless plating, and a Pb-Sn solder layer 22 is further formed on this by electroplating. The thickness of the dielectric ceramic layer 12 of this capacitor 10 is 0.02 mm, and the opposing area of a pair of internal electrodes 14 is 5 mm.
×5mm= 25mm2 . Note that the porcelain layer 12 after sintering
The composition of is substantially the same as the mixed composition of the basic components and additive components before sintering. Next, measure the electrical characteristics of the capacitor 10,
When the average value was calculated, as shown in Table 3,
Specific dielectric constant ε s is 3920, tan δ is 1.1%, resistivity ρ is 5.6
×10 6 MΩ・cm, − based on capacitance at 25℃
Capacitance change rate ΔC -55 at 55℃ and +125℃,
ΔC 125 is -10.2%, +3.0%, capacitance change rate ΔC -25 at -25℃ and +85℃ based on capacitance at 20℃, ΔC 85 is -5.3%, -6.0%. It was hot. Note that the electrical characteristics were measured in the following manner. (A) The relative permittivity ε s is determined by measuring the capacitance under the conditions of temperature 20°C, frequency 1kHz, and voltage (effective value) 1.0V, and the measured value is calculated using the opposing area of 25 mm 2 of the pair of internal electrodes 14 and the pair of Thickness of porcelain layer 12 between internal electrodes 14: 0.02
Calculated from mm. (B) Dielectric loss tanδ (%) was measured under the same conditions as the relative dielectric constant. (C) Resistivity ρ (MΩ・cm) at a temperature of 20℃
After applying DC 100V for 1 minute, the resistance value between the pair of external electrodes 16 was measured, and calculated based on this measured value and the dimensions. (D) Temperature characteristics of capacitance are measured by placing the sample in a thermostatic chamber at -55°C, -25°C, 0°C, +20°C, 25°C, and +40°C.
℃, +60℃, +85℃, +105℃, +125℃ under the conditions of frequency 1kHz and voltage (effective value) 1.0V, and the capacitance at 20℃ and 25℃ is measured. It was obtained by determining the rate of change at each temperature. The preparation method and characteristics of sample No. 1 have been described above, but for samples No. 2 to 139, the composition of the basic components and additive components, their ratios, and the firing temperature in a reducing atmosphere were A multilayer ceramic capacitor was produced in exactly the same manner as Sample No. 1, except for the changes shown in Tables 4 to 4, and its electrical characteristics were measured in the same manner. Table 1 shows (1-α), α, k-x-z, x, z, and x+z in the compositional formula showing the basic components, and Mg and Zn in the x column are the contents of M in the general formula. The numbers of these atoms are shown in the columns of Mg and Zn, and the total value (x value) of these is shown in the column of total. In addition, Ca and Sr in the z column indicate the contents of L in the general formula, the numbers of these atoms are shown in the Ca and Sr columns, and their total value (z value) is shown in the total column. has been done. Table 2 shows the content and amount of R and the value of k in the compositional formula showing the basic components. In other words, Se, Y, Gd, Dy, Ho, Er, and Yb in the y column indicate the contents of R in the general formula, the numbers of these atoms are shown in these columns, and these are shown in the total column. etc. total value (y value)
It is shown. Table 3 shows the amounts and compositions of the additive components for each sample. The amount of the additive component added is shown in parts by weight based on 100 parts by weight of the basic component.
In Table 3, the MO content column for additive components includes BaO,
The proportions of MgO, ZnO, SrO, and CaO are shown in mol%. Table 4 shows the firing temperature and electrical properties of each sample. In this Table 4, the temperature characteristics of capacitance are -55℃ and +
Capacitance change rate ΔC -55 (%) and ΔC 125 at 125℃
(%) and the capacitance change rate ΔC -25 (%) and ΔC 85 at -25℃ and +85℃ based on the capacitance at 20℃
(%).

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表〜第4表から明らかな如く、本発明に従
う試料では、非酸化性雰囲気、1200℃以下の焼成
で、比誘電率εsが3000以上、誘電体損失tanδが
2.5%以下、抵抗率ρが1×106MΩ・cm以上、静
電容量の温度変化率ΔC-55及びΔC125が−15%〜
+15%、ΔC-25及びΔC85は−10%〜+10%の範囲
となり、所望特性のコンデンサを得ることが出来
る。一方、試料No.11〜16、42、47、48、53、59、
62、65、68、71、74、77、78、82、83、87、88、
98、104〜106、112、113、117、118、122、127、
139では本発明の目的を達成することができない。
従つて、これ等は本発明の範囲外のものである。 第4表にはΔC-55、ΔC125、ΔC-25、ΔC85のみ
が示されているが、本発明の範囲に属する試料の
−25℃〜+85℃の範囲の種々の静電容量の変化率
ΔCは、−10%〜+10%の範囲に収まり、また、−
55℃〜+125℃の範囲の種々の静電容量の変化率
ΔCは、−15%〜+15%の範囲に収まつている。 次に、組成の限定理由について述べる。 x+zの値が、試料No.88に示す如く、零の場合
には、ΔC-25が−10%〜+10%の範囲外、ΔC-55
が−15%〜+15%の範囲外となるが、試料No.89〜
92に示す如く、x+zの値が0.01の場合には、所
望の電気的特性を得ることができる。従つて、x
+zの値の下限は0.01である。一方、試料No.98、
104、105、106、112に示す如く、x+zの値が
0.12の場合には、ΔC85又はΔC-25又はΔC-55が範
囲外となるが、試料No.102、107、108、111に示す
如く、x+zの値が0.10の場合には、所望の電気
的特性を得ることができる。但し、x+zの値が
試料No.106に示す如く、0.06であつてもzの値が
0.05を越えてしまう場合には所望の電気的特性が
得られない。従つて、x+zの上限値は0.10であ
るが、同時にzの上限値は0.05にしなければなら
ない。なお、M成分のMgとZn及びL成分のCaと
Srはほぼ同様に働き、0<x<0.10を満足する範
囲でMgとZnの内の一方又は両方を使用するこ
と、また0<z≦0.05を満足する範囲でCaとSr
の内の一方又は両方を使用することができる。そ
して、M成分及びL成分の1種又は複数種の何れ
の場合においてもx+zの値を0.01〜0.10の範囲
にすることが望ましい。 yの値が、試料No.59、62、65、68、71、74、77
に示す如く、0.06の場合には緻密な焼結体が得ら
れなが、試料No.58、61、64、67、70、73、76に示
す如く、yの値が0.04の場合には所望の電気的特
性を得ることができる。従つて、yの値の上限は
0.04である。なお、R成分のSc、Y、Dy、Ho、
Er、Ybはほぼ同様に働き、これ等から選択され
た1つを使用しても、又は複数を使用しても同様
な結果が得られる。そして、R成分が1種又は複
数種のいずれの場合に於いてもyの値を0.04以下
の範囲にすることが望ましい。また、yは0.04以
下であれば、0に近い微量であつてもそれなりの
効果がある。なお、組成式Rで示す成分は、静電
容量の温度特性の改善に寄与する。即ち、R成分
の添加によつて−55℃〜125℃の範囲での静電容
量の温度変化率ΔC-55〜ΔC125を−15%〜+15%
の範囲に容易に収めることが可能になると共に、
−25℃〜85℃の範囲での静電容量の温度変化率
ΔC-25〜ΔC85を−10%〜+10%の範囲に容易に収
めることが可能になり、且つ各温度範囲における
静電容量の温度変化率の変動幅を小さくすること
ができる。また、R成分は抵抗率ρを大きくする
作用及び焼結性を高める作用を有する。 αの値が試料No.78、83に示す如く、零の場合に
は、ΔC-25が−10%〜+10%の範囲外、ΔC-55
−15%〜+15%の範囲外となるが、試料No.79、84
に示す如く、αの値が0.005の場合には、所望の
電気的特性を得ることができる。従つて、αの値
の下限は0.005である。一方、試料No.82、87に示
す如く、αの値が0.05の場合には、ΔC85が−10%
〜+10%の範囲外となるが、試料No.81、86に示す
如く、αの値が0.04の場合には所望の電気的特性
を得ることができる。従つて、αの値の上限は
0.04である。 kの値が、試料No.113、118に示す如く、1.0よ
りりも小さい場合には、ρが1×106MΩ・cm未
満となり、大幅に低くなるが、試料No.114、119に
示す如く、kの値が1.00の場合には、所望の電気
的特性が得られる。従つて、kの値の下限は1.00
である。一方、kの値が、試料No.117、122に示す
如く、1.05より大きい場合には緻密な焼結体が得
られないが、試料No.116、121に示す如く、kの値
が1.05の場合には所望の電気的特性が得られる。
従つて、kの値の上限は1.05である。 添加成分の添加量が零の場合には、試料No.42、
48から明らかな如く、焼成温度が1250℃であつて
も緻密な焼結体が得られないが、試料No.43、49に
示す如く、添加量が100重量部の基本成分に対し
て0.2重量部の場合には、1180〜1190℃の焼成で
所望の電気的特性を有する焼結体が得られる。従
つて、添加成分の下限は0.2重量部である。一方、
試料No.47、53に示す如く、添加成分の添加量が
7.0重量部の場合には、εsが3000未満となり、更
にΔC-55が−15%〜+15%のの範囲外となるが、
試料No.46、52に示す如く、添加量が5.0重量部の
場合には所望特性を得ることができる。従つて、
添加量の上限は5.0重量部である。 添加成分の好ましい組成は、第2図のLi2O−
SiO2−MOの組成比を示す三角図に基づいて決定
することができる。三角図の第1の点Aは、試料
No.1のLi2Oが1モル%、SiO2が80モル%、MOが
19モル%の組成を示し、第2の点Bは、試料No.2
のLi2Oが1モル%、SiO2が39モル%、MOが60モ
ル%の組成を示し、第3の点Cは、試料No.3の
Li2Oが30モル%、SiO2が30モル%、MOが40モル
%の組成を示し、第4の点Dは、試料No.4の
Li2Oが50モル%、SiO2が50モル%、MOが0モル
%の組成を示し、第5の点Eは、試料No.5の
Li2Oが20モル%、SiO2が80モル%、MOが0モル
%の組成を示す。 本発明の範囲に属する試料の添加成分の組成は
三角図の第1〜5の点A〜Eを順に結ぶ5本の直
線で囲まれた領域内の組成になつている。この領
域内の組成とすれば、所望の電気的特性を得るこ
とができる。一方、試料No.11〜16のように、添加
成分の組成が本発明で特定した範囲外となれば、
緻密な焼結体を得ることができない。なお、MO
成分は例えば試料No.17〜21に示す如くBaO、
MgO、ZnO、SrO、CaOのいずれか1つであつ
てもよいし、又は他の試料で示すように適当な比
率としてもよい。 [変形例] 以上、本発明の実施例について述べたが、本発
明はこれに限定されるものではなく、例えば次の
変形例が可能なものである。 (a) 基本成分の中に、本発明の目的を阻害しない
範囲で微量のMnO2(好ましくは0.05〜0.1重量
%)等の鉱化剤を添加し、焼結性を向上させて
もよい。また、その他の物質を必要に応じて添
加してもよい。 (b) 出発原料を、実施例で示したもの以外の酸化
物又は水酸化物又はその他の化合物としてもよ
い。 (c) 焼成時の非酸化性雰囲気での処理の後の酸化
性雰囲気での処理の温度を600℃以外の焼結温
度よりも低い温度(好ましくは500℃〜1000℃
の範囲)としてもよい。即ち、ニツケル等の電
極材料と磁器の酸化とを考慮して種々変更する
ことが可能である。 (d) 非酸化性雰囲気中の焼成温度を、電極材料を
考慮して種々変えることができる。ニツケルを
内部電極とする場合には、1050℃〜1200℃の範
囲でニツケル粒子の凝集がほとんど生じない。 (e) 焼結を中性雰囲気で行つてもよい。 (f) 積層磁器コンデンサ以外の一般的な単層の磁
器コンデンサにも勿論適用可能である。 (g) 組成式におけるR成分の中のTb、Tm、Lu
については特に第1表〜第4表に掲載されてい
ないが、R成分の他のものと同様に使用するこ
とができることが確認されている。
[Table] As is clear from Tables 1 to 4, the samples according to the present invention have a relative dielectric constant ε s of 3000 or more and a dielectric loss tan δ when fired in a non-oxidizing atmosphere at 1200°C or lower.
2.5% or less, resistivity ρ is 1×10 6 MΩ・cm or more, temperature change rate of capacitance ΔC -55 and ΔC 125 is -15% ~
+15%, ΔC -25 and ΔC 85 are in the range of -10% to +10%, making it possible to obtain a capacitor with desired characteristics. On the other hand, sample Nos. 11 to 16, 42, 47, 48, 53, 59,
62, 65, 68, 71, 74, 77, 78, 82, 83, 87, 88,
98, 104-106, 112, 113, 117, 118, 122, 127,
139 cannot achieve the purpose of the present invention.
Therefore, these are outside the scope of the present invention. Although only ΔC -55 , ΔC 125 , ΔC -25 and ΔC 85 are shown in Table 4, various capacitance changes in the range of -25°C to +85°C of samples belonging to the scope of the present invention The rate ΔC falls within the range of −10% to +10%, and −
The various capacitance change rates ΔC in the range of 55° C. to +125° C. are in the range of −15% to +15%. Next, the reasons for limiting the composition will be described. If the value of x+z is zero as shown in sample No. 88, ΔC -25 is outside the range of -10% to +10%, ΔC -55
is outside the range of -15% to +15%, but sample No. 89 to
As shown in 92, when the value of x+z is 0.01, desired electrical characteristics can be obtained. Therefore, x
The lower limit of the value of +z is 0.01. On the other hand, sample No. 98,
As shown in 104, 105, 106, 112, the value of x+z is
In the case of 0.12, ΔC 85 or ΔC -25 or ΔC -55 is out of range, but as shown in sample Nos. 102, 107, 108, and 111, when the value of x+z is 0.10, the desired electrical characteristics can be obtained. However, as shown in sample No. 106, even if the value of x+z is 0.06, the value of z is
If it exceeds 0.05, desired electrical characteristics cannot be obtained. Therefore, the upper limit of x+z is 0.10, but at the same time the upper limit of z must be 0.05. In addition, Mg and Zn of M component and Ca and L component
Sr works in almost the same way, and one or both of Mg and Zn should be used within the range that satisfies 0<x<0.10, and Ca and Sr should be used within the range that satisfies 0<z≦0.05.
One or both of these can be used. It is desirable that the value of x+z be in the range of 0.01 to 0.10 in either case of one or more of the M component and the L component. The value of y is sample No. 59, 62, 65, 68, 71, 74, 77
As shown in the figure, when the value of y is 0.06, a dense sintered body cannot be obtained, but when the value of y is 0.04, as shown in sample Nos. 58, 61, 64, 67, 70, 73, and 76, the desired sintered body is obtained. electrical characteristics can be obtained. Therefore, the upper limit of the value of y is
It is 0.04. In addition, the R component Sc, Y, Dy, Ho,
Er and Yb work in almost the same way, and the same result can be obtained even if one selected from them is used or a plurality of them are used. In any case where the number of R components is one or more, it is desirable that the value of y be within the range of 0.04 or less. Further, if y is 0.04 or less, even a small amount close to 0 will have a certain effect. Note that the components represented by the composition formula R contribute to improving the temperature characteristics of capacitance. That is, by adding the R component, the temperature change rate of capacitance ΔC -55 to ΔC 125 in the range of -55 °C to 125°C can be changed by -15% to +15%.
It becomes possible to easily fit within the range of
It is now possible to easily keep the temperature change rate of capacitance ΔC -25 to ΔC 85 in the range of -10% to +10% in the range of -25℃ to 85℃, and the capacitance in each temperature range It is possible to reduce the fluctuation range of the temperature change rate. Further, the R component has the effect of increasing the resistivity ρ and the effect of increasing the sinterability. If the value of α is zero as shown in sample Nos. 78 and 83, ΔC -25 will be outside the range of -10% to +10%, and ΔC -55 will be outside the range of -15% to +15%. , Sample No. 79, 84
As shown in the figure, when the value of α is 0.005, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of α is 0.005. On the other hand, as shown in samples No. 82 and 87, when the value of α is 0.05, ΔC 85 is -10%
Although it is outside the range of ~+10%, as shown in Samples Nos. 81 and 86, when the value of α is 0.04, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of α is
It is 0.04. When the value of k is smaller than 1.0, as shown in Sample Nos. 113 and 118, ρ becomes less than 1×10 6 MΩ・cm, which is significantly lower, but as shown in Samples No. 114 and 119. Thus, when the value of k is 1.00, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of k is 1.00
It is. On the other hand, when the value of k is larger than 1.05, as shown in sample Nos. 117 and 122, a dense sintered body cannot be obtained. In some cases, desired electrical characteristics can be obtained.
Therefore, the upper limit of the value of k is 1.05. When the amount of additive components is zero, sample No. 42,
As is clear from No. 48, a dense sintered body cannot be obtained even when the firing temperature is 1250°C, but as shown in Samples No. 43 and 49, the addition amount is 0.2 parts by weight per 100 parts by weight of the basic component. In this case, a sintered body having desired electrical properties can be obtained by firing at 1180 to 1190°C. Therefore, the lower limit of the added components is 0.2 parts by weight. on the other hand,
As shown in sample Nos. 47 and 53, the amount of additive components added was
In the case of 7.0 parts by weight, ε s is less than 3000 and ΔC -55 is outside the range of -15% to +15%, but
As shown in Samples Nos. 46 and 52, desired characteristics can be obtained when the amount added is 5.0 parts by weight. Therefore,
The upper limit of the amount added is 5.0 parts by weight. The preferred composition of the additive components is Li 2 O− in FIG.
It can be determined based on a triangular diagram showing the composition ratio of SiO 2 -MO. The first point A in the triangular diagram is the sample
No.1 Li 2 O is 1 mol%, SiO 2 is 80 mol%, MO is
It shows a composition of 19 mol%, and the second point B is sample No. 2.
The composition of sample No. 3 is 1 mol% Li 2 O, 39 mol% SiO 2 and 60 mol% MO.
It shows a composition of 30 mol% Li 2 O, 30 mol% SiO 2 , and 40 mol% MO, and the fourth point D is the same as that of sample No. 4.
It shows a composition of 50 mol% Li 2 O, 50 mol% SiO 2 and 0 mol% MO, and the fifth point E is the same as that of sample No. 5.
The composition is 20 mol % Li 2 O, 80 mol % SiO 2 , and 0 mol % MO. The composition of the additive components of the sample that falls within the scope of the present invention is within the region surrounded by five straight lines connecting points A to E of the first to fifth points in the triangular diagram in order. If the composition is within this range, desired electrical characteristics can be obtained. On the other hand, if the composition of the additive components falls outside the range specified in the present invention, as in Samples No. 11 to 16,
A dense sintered body cannot be obtained. In addition, M.O.
For example, the components are BaO, as shown in sample Nos. 17 to 21.
It may be any one of MgO, ZnO, SrO, CaO, or an appropriate ratio as shown in other samples. [Modifications] Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible. (a) A trace amount of a mineralizing agent such as MnO 2 (preferably 0.05 to 0.1% by weight) may be added to the basic components to improve the sinterability, within a range that does not impede the object of the present invention. Further, other substances may be added as necessary. (b) The starting materials may be oxides or hydroxides or other compounds other than those shown in the examples. (c) The temperature of the treatment in the oxidizing atmosphere after the treatment in the non-oxidizing atmosphere during firing is lower than the sintering temperature other than 600℃ (preferably 500℃ to 1000℃).
range). That is, various changes can be made in consideration of the electrode material such as nickel and the oxidation of porcelain. (d) The firing temperature in a non-oxidizing atmosphere can be varied depending on the electrode material. When nickel is used as the internal electrode, almost no aggregation of nickel particles occurs in the range of 1050°C to 1200°C. (e) Sintering may be performed in a neutral atmosphere. (f) It is of course applicable to general single-layer ceramic capacitors other than multilayer ceramic capacitors. (g) Tb, Tm, Lu in the R component in the composition formula
Although these are not particularly listed in Tables 1 to 4, it has been confirmed that they can be used in the same way as the other R components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる積層型磁器コ
ンデンサを示す断面図、第2図は添加成分の組成
範囲を示す三角図である。 12……磁器層、14……内部電極、16……
外部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a triangular diagram showing the composition range of additive components. 12...Porcelain layer, 14...Internal electrode, 16...
external electrode.

Claims (1)

【特許請求の範囲】 1 誘電体磁器と、前記磁器に接触している少な
くとも2つの電極とから成る磁器コンデンサにお
いて、 前記磁器が100.0重量部の基本成分と、 0.2〜5.0重量部の添加成分とから成り、 前記基本成分が、 (1−α){Bak-x-zMxLz)Ok(Ti1-yRy)O2-y/2}+α
CaZrO3 (但し、MはMg、Znの内の少なくとも1種の
金属、LはCa、Srの内の少なくとも1種の金属、
RはSc、Y、Gd、Dy、Ho、Er、Yb、Tb、
Tm、Luの内の少なくとも1種の金属、α、k、
x、z、yは、 0.005≦α≦0.04 1.00≦k≦1.05 0<x<0.10 0<z≦0.05 0.01≦x+z≦0.10 0<y≦0.04 を満足する数値)であり、 前記添加成分がLi2OとSiO2とMO(但し、MO
はBaO、SrO、CaO、MgO及びZnOの内の少な
くとも1種の金属酸化物)から成り、且つ前記
Li2Oと前記SiO2と前記MOとの組成範囲がこれ等
の組成をモル%で示す三角図における 前記Li2Oが1モル%、前記SiO2が80モル%、
前記MOが19モル%の点Aと、 前記Li2Oが1モル%、前記SiO2が39モル%、
前記MOが60モル%の点Bと、 前記Li2Oが30モル%、前記SiO2が30モル%、
前記MOが40モル%の点Cと、 前記Li2Oが50モル%、前記SiO2が50モル%、
前記MOが0モル%の点Dと、 前記Li2Oが20モル%、前記SiO2が80モル%、
前記MOが0モル%の点Eと、 を順に結ぶ5本の直線で囲まれた領域内のもので
あることを特徴とするコンデンサ。 2 100.0重量部の基本成分と、0.2〜5.0重量部の
添加成分とから成り、前記基本成分が、 (1−α){Bak-x-zMxLz)Ok(Ti1-yRy)O2-y/2}+α
CaZrO3 (但し、MはMg、Znの内の少なくとも1種の
金属、LはCa、Srの内の少なくとも1種の金属、
RはSc、Y、Gd、Dy、Ho、Er、Yb、Tb、
Tm、Luの内の少なくとも1種の金属、α、k、
x、z、yは、0.005≦α≦0.04、1.00≦k≦
1.05、0<x<0.10、0<z≦0.05、0.01≦x+
z≦0.10、0<y≦0.04を満足する数値)であ
り、前記添加成分がLi2OとSiO2とMO(但し、
MOはBaO、SrO、CaO、MgO及びZnOの内の少
なくとも1種の金属酸化物)から成り、且つ前記
Li2Oと前記SiO2と前記MOとの組成範囲がこれ等
の組成をモル%で示す三角図における前記Li2O
が1モル%、前記SiO2が80モル%、前記MOが19
モル%の点Aと、前記Li2Oが1モル%、前記
SiO2が39モル%、前記MOが60モル%の点Bと、
前記Li2Oが30モル%、前記SiO2が30モル%、前
記MOが40モル%の点Cと、前記Li2Oが50モル
%、前記SiO2が50モル%、前記MOが0モル%の
点Dと、前記Li2Oが20モル%、前記SiO2が80モ
ル%、前記MOが0モル%の点Eとを順に結ぶ5
本の直線で囲まれた領域内のものであることを特
徴とする混合物を用意する工程と、 少なくとも2つの電極部分を有する前記混合物
の組成物を作る工程と、 前記電極部分を有する前記成形物を非酸化性雰
囲気で焼成する工程と、 前記焼成で得られた成形物を酸化性雰囲気で熱
処理する工程と を含む磁器コンデンサの製造方法。
[Scope of Claims] 1. A ceramic capacitor comprising a dielectric ceramic and at least two electrodes in contact with the ceramic, wherein the ceramic contains a basic component of 100.0 parts by weight and an additive component of 0.2 to 5.0 parts by weight. The basic component is (1-α) {Ba kxz M x L z )O k (Ti 1-y R y )O 2-y/2 }+α
CaZrO 3 (However, M is at least one metal among Mg and Zn, L is at least one metal among Ca and Sr,
R is Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
Tm, at least one metal among Lu, α, k,
x, z, and y are numerical values satisfying 0.005≦α≦0.04 1.00≦k≦1.05 0<x<0.10 0<z≦0.05 0.01≦x+z≦0.10 0<y≦0.04, and the additive component is Li 2 O and SiO 2 and MO (however, MO
consists of at least one metal oxide of BaO, SrO, CaO, MgO and ZnO), and
The composition range of Li 2 O, the SiO 2 and the MO is 1 mol % of the Li 2 O, 80 mol % of the SiO 2 in a triangular diagram showing these compositions in mol %,
Point A where the MO is 19 mol %, the Li 2 O is 1 mol %, the SiO 2 is 39 mol %,
Point B where the MO is 60 mol%, the Li 2 O is 30 mol%, the SiO 2 is 30 mol%,
Point C where the MO is 40 mol%, the Li 2 O is 50 mol%, the SiO 2 is 50 mol%,
Point D where the MO is 0 mol%, the Li 2 O is 20 mol%, the SiO 2 is 80 mol%,
A capacitor characterized in that the MO is within a region surrounded by five straight lines sequentially connecting a point E where MO is 0 mol % and 2 Consists of 100.0 parts by weight of the basic component and 0.2 to 5.0 parts by weight of additional components, and the basic component is (1-α) {Ba kxz M x L z )O k (Ti 1-y R y )O 2-y/2 }+α
CaZrO 3 (However, M is at least one metal among Mg and Zn, L is at least one metal among Ca and Sr,
R is Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
Tm, at least one metal among Lu, α, k,
x, z, y are 0.005≦α≦0.04, 1.00≦k≦
1.05, 0<x<0.10, 0<z≦0.05, 0.01≦x+
z≦0.10, 0<y≦0.04), and the additive components are Li 2 O, SiO 2 and MO (however,
MO consists of at least one metal oxide of BaO, SrO, CaO, MgO, and ZnO, and
The composition range of Li 2 O, the SiO 2 and the MO is the Li 2 O in the triangular diagram showing these compositions in mol%.
is 1 mol%, the SiO 2 is 80 mol%, and the MO is 19
Point A of mol% and Li 2 O of 1 mol%,
Point B where SiO 2 is 39 mol % and the MO is 60 mol %;
A point C where the Li 2 O is 30 mol %, the SiO 2 is 30 mol %, and the MO is 40 mol %, and the Li 2 O is 50 mol %, the SiO 2 is 50 mol %, and the MO is 0 mol. % and point E where the Li 2 O is 20 mol %, the SiO 2 is 80 mol %, and the MO is 0 mol %.
a step of providing a mixture characterized in that it is within the area bounded by a straight line of a book; a step of making a composition of said mixture having at least two electrode parts; and a step of said molding having said electrode parts. A method for manufacturing a ceramic capacitor, comprising: firing the molded product in a non-oxidizing atmosphere; and heat-treating the molded product obtained by the firing in an oxidizing atmosphere.
JP2016345A 1989-11-30 1990-01-26 Ceramic capacitor and manufacture thereof Granted JPH03222311A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016345A JPH03222311A (en) 1990-01-26 1990-01-26 Ceramic capacitor and manufacture thereof
EP90122664A EP0430178B1 (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and method of manufacture
DE69009693T DE69009693T2 (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and manufacturing method.
US07/618,710 US5077636A (en) 1989-11-30 1990-11-27 Solid dielectric capacitor and method of manufacture
KR1019900019735A KR930004744B1 (en) 1989-11-30 1990-11-30 Solid dielectric capacitor and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016345A JPH03222311A (en) 1990-01-26 1990-01-26 Ceramic capacitor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH03222311A JPH03222311A (en) 1991-10-01
JPH0532892B2 true JPH0532892B2 (en) 1993-05-18

Family

ID=11913798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016345A Granted JPH03222311A (en) 1989-11-30 1990-01-26 Ceramic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03222311A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779004B2 (en) * 1990-10-31 1995-08-23 株式会社村田製作所 Dielectric porcelain composition
JP2938673B2 (en) * 1992-03-25 1999-08-23 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH03222311A (en) 1991-10-01

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
JPS621595B2 (en)
JPH0355003B2 (en)
JPH0361963B2 (en)
JPH0552604B2 (en)
JPH0524656B2 (en)
KR930004747B1 (en) Solid dielectric capacitor and method of manufacture
JPH0552602B2 (en)
JPH0524655B2 (en)
KR930004744B1 (en) Solid dielectric capacitor and method of manufacture
KR930004746B1 (en) Solid dielectric capacitor and method of manufacture
KR930004742B1 (en) Solid dielectric capacitor and mehtod of manufacture
JPH0524653B2 (en)
KR930004743B1 (en) Solid dielectric capacitor and method of manufacture
JPH0524654B2 (en)
JPH0524652B2 (en)
KR930004745B1 (en) Solid dielectric capacitor and method of manufacture
JPS621596B2 (en)
JPS6114610B2 (en)
JPH0524651B2 (en)
JPH0532892B2 (en)
JPH0552603B2 (en)
JPH0525378B2 (en)
JPH0526323B2 (en)
JPH0525379B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 17