JPH0551126B2 - - Google Patents

Info

Publication number
JPH0551126B2
JPH0551126B2 JP61232823A JP23282386A JPH0551126B2 JP H0551126 B2 JPH0551126 B2 JP H0551126B2 JP 61232823 A JP61232823 A JP 61232823A JP 23282386 A JP23282386 A JP 23282386A JP H0551126 B2 JPH0551126 B2 JP H0551126B2
Authority
JP
Japan
Prior art keywords
mol
sio
sample
composition
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61232823A
Other languages
Japanese (ja)
Other versions
JPS6386318A (en
Inventor
Koichi Chasono
Shunji Murai
Hiroshi Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP61232823A priority Critical patent/JPS6386318A/en
Publication of JPS6386318A publication Critical patent/JPS6386318A/en
Publication of JPH0551126B2 publication Critical patent/JPH0551126B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ニツケル等の卑金属を内部電極とす
る温度補償用積層磁器コンデンサの誘電体として
好適な誘電体磁器組成物に関する。 [従来の技術] 特開昭59−227769号公報に、{(Sr1-xCaxO}k
TiO2から成る基本成分と、Li2OとSiO2とMO(但
し、MOはBaO、CaO及びSrOの内の少なくとも
1種の金属酸化物)から成る添加成分とを含む誘
電体磁器組成物が開示されている。この磁器組成
物は非酸化性雰囲気中で焼結可能であるので、こ
れを使用してニツケル等の卑金属を内部電極とす
る温度補償用積層磁器コンデンサを提供するもの
が出来る。ところで、温度補償用磁器コンデンサ
を高性能化及び小型化するために、高いQ及び高
い抵抗率σを有する誘電体磁器組成物が要求され
るが、上記公開公報に開示されている誘電体磁器
組成物では、誘電率の温度計数(TC)が+350〜
−1000(ppm/℃)の範囲に於いて、Qが4400以
下であり、必ずしも十分なQが得られない。そこ
で本件出願人は、特願昭60−298004号明細書にお
いて、 {(Sr1-x-yCaxMy)Ok)(Ta1-zZrz)O2 (但しMはMg又はZn)からなる基本成分と、
B2O3とSiO2とMO(BaO、MgO、ZnO、SrO及び
CaOの少なくとも1種)とから成る添加成分とか
ら成る新しい誘電体磁器組成物を開示した。この
新しい誘電体磁器組成物によれば、温度係数
(TC)が+350〜−1000(ppm/℃)の範囲内及び
外において、4500以上のQと20℃で1.0×107M
Ω・cm以上の抵抗率ρを得ることができる。 [発明が解決しようとする問題点] 上記明細書に開示されている誘電体磁器組成物
は、通常の環境条件(例えば−25℃〜+85℃)で
使用されるコンデンサの誘電体基体として十分に
使用可能であるが、過酷な環境条件(例えば125
℃)で使用される可能性のあるコンデンサの誘電
体基体としては十分でないことが分かつた。即
ち、上記明細書に開示されている誘電体磁器組成
物ではQを5000以上に保つようにして高温(例え
ば125℃)で抵抗率ρを1.0×105MΩ・cm以上に
することは不可能又は困難である。従つて、本発
明の目的は非酸化性雰囲気、1200℃以下の焼成で
得ることができるものであり、Qが5000以上、
125℃における抵抗率ρが1.0×105MΩ・cm以上
である誘電体磁器組成物を提供することにある。 [問題点を解決するための手段] 上記問題点を解決し、上記目的を達成するため
の本発明は、100重量部の基本成分と、0.2〜15.0
重量部の添加成分とから成り、前記基本成分が、
{(Ma1-yMby)O}k(Ti1-w-vZrwSiv)O2(但し、
MaはSr(ストロンチウム)とCa(カルシウム)と
の内の少なくとも1種の金属、MbはMg(マグネ
シウム)とZn(亜鉛)との内の少なくとも1種の
金属、y、k、w、vは、0.005≦y≦0.100、
1.00≦k≦1.20、0.005≦w≦0.100、0.001≦v≦
0.100の範囲の数値)であり、前記添加成分が、
B2O3とSiO2とMO(但し、MOはBaO、MgO、
ZnO、SrO、及びCaOの内の少なくとも1種の金
属酸化物)との組成を示す三角図における、前記
B2O3が1モル%、前記SiO2が80モル%、前記
MOが19モル%の点Aと、前記B2O3が1モル%、
前記SiO2が39モル%、前記MOが60モル%の点B
と、前記B2O3が30モル%、前記SiO2が0モル%、
前記MOが70モル%の点Cと、前記B2O3が90モ
ル%、前記SiO2が0モル%、前記MOが10モル%
の点Dと、前記B2O3が90モル%、前記SiO2が10
モル%、前記MOが0モル%の点Eと、前記
B2O3が20モル%、前記SiO2が80モル%、前記
MOが0モル%の点Fとを順に結ぶ6本の直線で
囲まれた領域内のものである誘電体磁器組成物に
係わるものである。 [発明の作用効果] 上記発明の誘電体磁器組成物は、非酸化性雰囲
気、1200℃以下の焼成で得られるので、ニツケル
等の卑金属を内部電極とする温度補償用積層磁器
コンデンサの誘電体として好適なものである。こ
の誘電体磁器組成によれば、比誘電率εsが151〜
323、Qが5000以上、誘電率の温度計数TCが−
690〜−3100ppm/℃、抵抗率ρが20℃で1.0×
107MΩ・cm以上、125℃で1.0×105MΩ・cm以上
の温度補償時用磁器コンデンサを得ることができ
る。前述の特願昭60−289004号明細書に開示され
ている誘電体磁器組成物と本願発明の誘電体磁器
組成物との大きな相違点は5000以上のQを維持し
て125℃の抵抗率σを1.0×105MΩ・cm以上にす
ることができることである。この様に高いQを維
持しながら高温での抵抗率ρの低下を抑制するこ
とができるのは基本成分にSi(ケイ素)を含めた
ためである。基本成分におけるSiの量を増加させ
るに従つて高温での抵抗率ρが高くなるが、多く
なり過ぎると緻密な焼結体を得ることができな
い。本発明の従う高温での抵抗率ρの大きい誘電
体磁器組成物を使用すれば、コンデンサの電極間
距離を短くすることができるので、高温条件下で
使用する温度補償用磁器コンデサを小型化するこ
とができる。また、抵抗率ρが大きいにも拘らわ
ず、高いQを有する磁器コンデンサを提供するこ
とができるので、磁器コンデンサを使用する電子
回路の高性能化が可能になる。 [実施例] 次に、本発明の実施例(比較例も含む)につい
て説明する。第1表の試料No.1のk=1.00、x=
0.28、y=0.01、w=0.05、v=0.01に従つて決
定される組成式 (Ma0.99Mb0.01)O(Ti0.94Zr0.05Si0.01)O2 より具体的には、Ma0.99=Sr0.71Ca0.28、Mb0.01
=Zn0.01であるので (Sr0.71Ca0.28Zn0.01)O)Ti0.94Zr0.05Si0.01)O2 から成る基本成分を得るために、純度99.0%以上
のSrCO3(炭酸ストロンチウム)、CaCO3(炭酸カ
ルシウム)、ZnO(酸化亜鉛)、TiO2(酸化チタン)
nZrO2(酸化ジルコニウム)、SiO2(シリカ)を出
発原料として用意し、不純物を目方に入れない
で、
[Industrial Field of Application] The present invention relates to a dielectric ceramic composition suitable as a dielectric for a temperature-compensating multilayer ceramic capacitor whose internal electrodes are made of a base metal such as nickel. [Prior art] JP-A-59-227769 describes {(Sr 1-x Ca x O} k
A dielectric ceramic composition comprising a basic component consisting of TiO 2 and an additive component consisting of Li 2 O, SiO 2 and MO (where MO is at least one metal oxide of BaO, CaO and SrO). Disclosed. Since this ceramic composition can be sintered in a non-oxidizing atmosphere, it can be used to provide a temperature-compensating multilayer ceramic capacitor having internal electrodes made of a base metal such as nickel. By the way, in order to improve the performance and reduce the size of temperature-compensating ceramic capacitors, a dielectric ceramic composition having a high Q and a high resistivity σ is required, and the dielectric ceramic composition disclosed in the above-mentioned publication is required. For materials, the temperature coefficient (TC) of dielectric constant is +350 ~
In the range of -1000 (ppm/°C), the Q is 4400 or less, and a sufficient Q cannot necessarily be obtained. Therefore , in the specification of Japanese Patent Application No. 60-298004 , the applicant proposed that from The basic ingredients and
B 2 O 3 and SiO 2 and MO (BaO, MgO, ZnO, SrO and
Disclosed is a new dielectric ceramic composition comprising an additive component consisting of at least one type of CaO. This new dielectric porcelain composition has a temperature coefficient (TC) of 1.0×10 7 M at 20°C with a Q of more than 4500 within and outside the range of +350 to -1000 (ppm/°C).
It is possible to obtain a resistivity ρ of Ω·cm or more. [Problems to be Solved by the Invention] The dielectric ceramic composition disclosed in the above specification is sufficient as a dielectric substrate for capacitors used under normal environmental conditions (for example, -25°C to +85°C). Usable, but under harsh environmental conditions (e.g. 125
It was found that this material is not sufficient as a dielectric substrate for capacitors that may be used at temperatures (°C). In other words, with the dielectric ceramic composition disclosed in the above specification, it is impossible to increase the resistivity ρ to 1.0×10 5 MΩ·cm or higher at high temperatures (for example, 125° C.) while maintaining Q at 5000 or higher. or difficult. Therefore, the object of the present invention is to obtain a material that can be obtained by firing in a non-oxidizing atmosphere at a temperature of 1,200°C or less, and has a Q of 5,000 or more.
The object of the present invention is to provide a dielectric ceramic composition having a resistivity ρ of 1.0×10 5 MΩ·cm or more at 125°C. [Means for Solving the Problems] The present invention for solving the above problems and achieving the above objects consists of 100 parts by weight of the basic components and 0.2 to 15.0 parts by weight of the basic components.
parts by weight of additional ingredients, and the basic ingredients are:
{(Ma 1-y Mb y )O} k (Ti 1-wv Zr w Si v )O 2 (However,
Ma is at least one metal of Sr (strontium) and Ca (calcium), Mb is at least one metal of Mg (magnesium) and Zn (zinc), y, k, w, v are , 0.005≦y≦0.100,
1.00≦k≦1.20, 0.005≦w≦0.100, 0.001≦v≦
(a numerical value in the range of 0.100), and the additive component is
B 2 O 3 and SiO 2 and MO (however, MO is BaO, MgO,
At least one metal oxide among ZnO, SrO, and CaO) in the triangular diagram showing the composition of
B 2 O 3 is 1 mol %, the SiO 2 is 80 mol %, the above
Point A where MO is 19 mol%, and the B 2 O 3 is 1 mol%,
Point B where the SiO 2 is 39 mol% and the MO is 60 mol%
and the B 2 O 3 is 30 mol %, the SiO 2 is 0 mol %,
Point C where the MO is 70 mol%, the B 2 O 3 is 90 mol%, the SiO 2 is 0 mol%, and the MO is 10 mol%.
point D, the B 2 O 3 is 90 mol%, the SiO 2 is 10
mol %, point E where the MO is 0 mol %, and the point E where the MO is 0 mol %;
B 2 O 3 is 20 mol %, SiO 2 is 80 mol %,
This relates to a dielectric ceramic composition within a region surrounded by six straight lines sequentially connecting point F with MO content of 0 mol %. [Operations and Effects of the Invention] The dielectric ceramic composition of the invention described above can be obtained by firing in a non-oxidizing atmosphere at 1200°C or lower, so it can be used as a dielectric for temperature-compensating multilayer ceramic capacitors whose internal electrodes are made of base metals such as nickel. It is suitable. According to this dielectric ceramic composition, the relative permittivity ε s is 151~
323, Q is 5000 or more, temperature coefficient TC of permittivity is -
690 to -3100ppm/℃, resistivity ρ is 1.0× at 20℃
It is possible to obtain a ceramic capacitor for temperature compensation of 10 7 MΩ・cm or more and 1.0×10 5 MΩ・cm or more at 125°C. The major difference between the dielectric ceramic composition disclosed in the above-mentioned Japanese Patent Application No. 60-289004 and the dielectric ceramic composition of the present invention is that the resistivity σ at 125°C is maintained while maintaining a Q of 5000 or more. is 1.0×10 5 MΩ・cm or more. The reason why it is possible to suppress the decrease in resistivity ρ at high temperatures while maintaining such a high Q is because Si (silicon) is included as a basic component. As the amount of Si in the basic components increases, the resistivity ρ at high temperatures increases, but if it increases too much, a dense sintered body cannot be obtained. By using the dielectric ceramic composition according to the present invention which has a large resistivity ρ at high temperatures, the distance between the electrodes of the capacitor can be shortened, so that the temperature compensating ceramic capacitor used under high temperature conditions can be miniaturized. be able to. Further, since it is possible to provide a ceramic capacitor having a high Q despite the large resistivity ρ, it is possible to improve the performance of electronic circuits using the ceramic capacitor. [Example] Next, Examples (including comparative examples) of the present invention will be described. k=1.00, x= of sample No. 1 in Table 1
0.28, y = 0.01 , w = 0.05 , v = 0.01 . 0.28 , Mb 0.01
= Zn 0.01 , so in order to obtain the basic component consisting of (Sr 0.71 Ca 0.28 Zn 0.01 ) O) Ti 0.94 Zr 0.05 Si 0.01 ) O 2 , SrCO 3 (strontium carbonate), CaCO 3 (carbonate Calcium), ZnO (zinc oxide), TiO 2 (titanium oxide)
nZrO 2 (zirconium oxide) and SiO 2 (silica) are prepared as starting materials, and without adding impurities,

【表】 をそれぞれ秤量し、これ等の原料に水を2.5加
えて15時間湿式混合した。 次に、この原料混合物を150℃で4時間乾燥し、
しかる後粉砕した。次に、この粉砕物を、1100℃
で、2時間大気中で仮焼し、上記組成式の基本成
分の粉末を得た。一方、第2表の試料No.1の添加
成分を得るために、
[Table] were weighed, 2.5 parts of water was added to these raw materials, and wet-mixed for 15 hours. Next, this raw material mixture was dried at 150°C for 4 hours,
It was then crushed. Next, this pulverized material was heated to 1100°C.
Then, the powder was calcined in the air for 2 hours to obtain a powder having the basic components of the above composition formula. On the other hand, in order to obtain the additive components of sample No. 1 in Table 2,

【表】 を秤量し、これ等にアルコールを300c.c.加え、ポ
リエチレンポツトにアルミナボールを用いて10時
間攪拌した後、大気中1000℃で2時間仮焼成し、
これを300c.c.の水と共にアルミナポツトに入れ、
アルミナボールで15時間粉砕し、しかる後、150
℃で4時間乾燥させてB2O3が1モル%、SiO2
80モル、MOが19モル%、(BaO3.8モル%+
MgO3.8モル%+ZnO3.8モル%+SrO3.8モル%+
CaO3.8モル%)の組成の添加成分の粉末を得た。 次に、基本成分の粉末1000g(100重量部)に
対して上記添加成分の粉末30g(3重量部)を加
え、更に、アクリル酸エステルポリマー、グリセ
リン、縮合リン酸塩の水溶液から成る有機バイン
ダを基本成分と添加成分との合成重量に対して15
重量%添加し、更に、50重量%の水を加え、これ
等をボールミルに入れて粉砕及び混合して磁器原
料のスラリーを作製した。 次に、上記スラリーを真空脱泡機に入れて脱泡
し、このスラリーをリバースロルーコーターに入
れ、これをを使用してポリエステルフイルム上に
スラリーに基づく薄膜を形成し、この薄膜をフイ
ルム上で100℃に加熱して乾燥させ、厚さ約25μ
mのグリーンシート(未焼結磁器シート)を得
た。このシートは、長尺なものであるが、これを
10cm角の正方形に打ち抜いて使用する。 一方、内部電極用の導電ペーストは、粒径平均
1.5μmのニツケル粉末10gと、エチルセルロース
0.9gをブチルカルビトール9.1gに溶解させたも
のと攪拌機に入れ、10時間攪拌することにより得
た。この導電ペーストを長さ14mm、幅7mmのパタ
ーンを50個有するスクリーンを介して上記グリー
ンシートの片面に印刷した後、これを乾燥させて
た。 次に、上記印刷面を上にしてグリーンシートを
2枚積層した。この際、隣接する上下のシートに
おいて、その印刷面がパターンの長手方向に約半
分程ずれるように配置した。更に、この積層物の
上下両面にそれぞれ4枚ずつ厚さ60μmのグリー
ンシートを積層した。次いで、この積層を約50℃
の温度で厚さ方向に約40トンの圧力を加えて圧着
させた。しかる後、この積層物を格子状に裁断
し、約く50個の積層チツプを得た。 次に、この積層体チツプを雰囲気焼成が可能な
炉に入れ、大気雰囲気中で100℃/hの速度で600
℃まで昇温して、有機バインダを燃焼させた。 しかる後、炉の雰囲気を大気からH22体積%+
N298体積%の雰囲気に変えた。そして、炉を上
述の如き還元性雰囲気として状態を保つて、積層
体チツプの加熱温度を600℃から焼結温度の1190
℃まで100℃/hの速度で昇温し1190℃(最高速
度)3時間保持した後、100℃/hの速度で600℃
まで降温し、雰囲気を大気雰囲気(酸化性雰囲
気)におきかえて、600℃を30分間保持して酸化
処理を行い、その後、室温まで冷却して、焼結体
チツプを得た。 次に、電極が露出する焼成体チツプの側面に亜
鉛とガラスフリツトとビヒクルとから成る導電性
ペーストを塗布して乾燥し、これを大気中で550
℃の温度で15分間焼付け、亜鉛電極様を形成し、
更にこの上に銅を無電解メツキで被着させて、更
にこの上に電気メツキ法でPh−Sn半田層を設け
て、一対の外部電極を形成した。 これにより、第1図に示す如く、誘電体磁器層
1,2,3と、内部電極4,5と、外部電極6,
7から成る積層磁器コンデンサ10が得られた。
なお、このコンデンサ10の誘電対磁器層2の厚
さは0.02mm、内部電極4,5の対向面積は、5mm
×5mm=25mm2である。また、焼結後の磁器層1,
2,3の組成は、焼結前の基本成分と添加成分と
の混合組成と実施的に同じであり、複合プロブス
カイト(perovskite)型構造の基本成分 (Sr0.71Ca0.28Zn0.01)O)Ti0.94Zr0.05Si0.01)O2 の結晶粒子間にB2O31モル%とSiO280モル%と
BaO3.8モル%とMgO3.8モル%とZn3.8モル%と
SrO3.8モル%とCaO3.8モル%とから成る添加成
分が均一に塗布したものが得られる。 次に、完成した積層磁器コンデンサの比誘電率
εs、温度計数TC、Q、抵抗率ρを測定したとこ
ろ第3表の試料No.1に示す如く、εsは241、TCは
−1660ppm/℃、Qは11000、ρは20℃で3.1×
107MΩ・cm、125℃で2.2×105MΩ・cmであつ
た。なお、上記電気的特性は次の要領で測定し
た。 (A) 比誘電率εsは、温度20℃、周波数1MHz、交
流電圧(実効値)0.5Vの条件で静電容量を測
定し、この測定値と磁器層2の厚さ0.05mmから
計算で求めた。 (B) 温度係数(TC)は、85℃の静電容量(C85
と20℃の静電容量(C20)とを測定し、 C85−C20/C20×1/65×106(ppm/℃) で算出した。 (C) Qは温度20℃において、周波数1MHz、電圧
[実行値]0.5Vの交流でQメータにより測定し
た。 (D) 抵抗率ρ(MΩ・cm)は、温度20℃及び125℃
においてそれぞれDC50Vを1分間印加した後
に一対の外部電極6,7間の抵抗値を測定し、
この測定値と寸法とに基づいて計算でもとめ
た。 以上、試料No.1の作製方法及びその特性につい
て述べたが、その他の試料No.2〜92についても基
本成分及び添加成分の組成、これ等の割合、及び
還元性雰囲気(非酸化雰囲気)での焼成温度を第
1表、第2表及び第3表に示すように変えた他
は、試料No.1と全く同一の方法で積層磁器コンデ
ンサを作製し、同一方法で電気性特性を測定し
た。 第1表は、それぞれの試料の基本成分の組成式 (Sr1-x-yCaxMby)O}k(Ti1-w-vZrwSiv)O2 を決定するための各数値k、x、y、w、v、即
ち各元素の原子数の割合を示す数値と、Mbの内
容とを示す。第2表は各試料の100重量部の基本
成分に対する添加組成の添加量(重量部)と、添
加生分の組成を示す。その第2表のMOの内容の
欄には、BaO、MgO、ZnO、SrO、Caの割合が
モル%で示されている。第3表はそれぞれの試料
の還元性雰囲気における焼結のための焼成温度
(最高温度)、及び電気的特性を示す。
[Table] was weighed, 300 c.c. of alcohol was added to it, stirred for 10 hours using an alumina ball in a polyethylene pot, and then pre-calcined in the air at 1000℃ for 2 hours.
Put this in an alumina pot with 300 c.c. of water,
Grind with alumina ball for 15 hours, then 150
After drying at ℃ for 4 hours, B 2 O 3 was 1 mol%, SiO 2 was
80 mol, MO 19 mol%, (BaO3.8 mol% +
MgO3.8 mol% + ZnO3.8 mol% + SrO3.8 mol% +
An additive component powder having a composition of CaO (3.8 mol%) was obtained. Next, 30 g (3 parts by weight) of the above additive component powder was added to 1000 g (100 parts by weight) of the basic component powder, and an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added. 15 for the combined weight of basic ingredients and added ingredients
% by weight was added, and further 50% by weight of water was added, and these were placed in a ball mill and ground and mixed to prepare a slurry of porcelain raw materials. Then, the above slurry is put into a vacuum deaerator to degas it, this slurry is put into a reverse roll coater, which is used to form a thin film based on the slurry on a polyester film, and this thin film is then put on a film. Heat it to 100℃ and dry it to a thickness of about 25μ.
A green sheet (unsintered porcelain sheet) of m was obtained. This sheet is long, but
Use by punching out 10cm squares. On the other hand, the conductive paste for internal electrodes has an average particle size of
10g of 1.5μm nickel powder and ethyl cellulose
It was obtained by putting 0.9 g dissolved in 9.1 g of butyl carbitol into a stirrer and stirring for 10 hours. This conductive paste was printed on one side of the green sheet through a screen having 50 patterns of 14 mm in length and 7 mm in width, and then dried. Next, two green sheets were laminated with the printed side facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Further, four green sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of this laminate. This lamination is then heated to approximately 50°C.
40 tons of pressure was applied in the thickness direction at a temperature of . Thereafter, this laminate was cut into a grid shape to obtain approximately 50 laminate chips. Next, this laminate chip was placed in a furnace capable of atmospheric firing, and fired at a rate of 100°C/h for 600°C in an atmospheric atmosphere.
The organic binder was burned by increasing the temperature to ℃. After that, the atmosphere of the furnace is changed from the atmosphere to H 2 2% by volume +
The atmosphere was changed to 98% by volume of N2 . Then, while maintaining the furnace in a reducing atmosphere as described above, the heating temperature of the stacked chips was increased from 600°C to 1190°C, the sintering temperature.
℃ at a rate of 100℃/h, held at 1190℃ (maximum speed) for 3 hours, then raised to 600℃ at a rate of 100℃/h
The temperature was lowered to 100.degree. C., the atmosphere was changed to an air atmosphere (oxidizing atmosphere), and oxidation treatment was carried out by holding the temperature at 600.degree. C. for 30 minutes, followed by cooling to room temperature to obtain sintered chips. Next, a conductive paste consisting of zinc, glass frit, and vehicle is applied to the side surface of the fired chip where the electrodes are exposed, and dried.
Baked for 15 minutes at a temperature of °C to form a zinc electrode-like
Furthermore, copper was deposited on this by electroless plating, and a Ph-Sn solder layer was further provided on this by electroplating to form a pair of external electrodes. As a result, as shown in FIG. 1, the dielectric ceramic layers 1, 2, 3, internal electrodes 4, 5, external electrodes 6,
A multilayer ceramic capacitor 10 consisting of 7 was obtained.
The thickness of the dielectric ceramic layer 2 of this capacitor 10 is 0.02 mm, and the opposing area of the internal electrodes 4 and 5 is 5 mm.
×5mm= 25mm2 . In addition, the porcelain layer 1 after sintering,
The compositions of 2 and 3 are practically the same as the mixed composition of the basic components and additive components before sintering, and the basic components of the composite perovskite type structure (Sr 0.71 Ca 0.28 Zn 0.01 )O)Ti 0.94 Zr 0.05 Si 0.01 ) 1 mol% of B 2 O 3 and 80 mol% of SiO 2 between the crystal grains of O 2
BaO3.8 mol%, MgO3.8 mol% and Zn3.8 mol%
A uniform coating of the additive components consisting of 3.8 mol % SrO and 3.8 mol % CaO is obtained. Next, we measured the dielectric constant ε s , temperature coefficient TC, Q, and resistivity ρ of the completed multilayer ceramic capacitor, and as shown in Sample No. 1 in Table 3, ε s was 241, and TC was -1660 ppm/ ℃, Q is 11000, ρ is 3.1× at 20℃
10 7 MΩ·cm, and 2.2×10 5 MΩ·cm at 125°C. Note that the above electrical characteristics were measured in the following manner. (A) The relative permittivity ε s is calculated by measuring the capacitance at a temperature of 20°C, a frequency of 1 MHz, and an AC voltage (effective value) of 0.5 V, and using this measured value and the thickness of the ceramic layer 2 of 0.05 mm. I asked for it. (B) Temperature coefficient (TC) is the capacitance at 85°C (C 85 )
and the capacitance (C 20 ) at 20° C. were measured and calculated as C 85 −C 20 /C 20 ×1/65×10 6 (ppm/° C.). (C) Q was measured with a Q meter at a temperature of 20° C., a frequency of 1 MHz, and a voltage [actual value] of 0.5 V AC. (D) Resistivity ρ (MΩ・cm) at temperatures of 20℃ and 125℃
After applying DC50V for 1 minute each, the resistance value between the pair of external electrodes 6 and 7 was measured,
Calculations were made based on these measurements and dimensions. The preparation method and characteristics of sample No. 1 have been described above, but the compositions of basic components and additive components, their ratios, and reducing atmosphere (non-oxidizing atmosphere) have also been described for other samples No. 2 to 92. A multilayer ceramic capacitor was manufactured using the same method as Sample No. 1, except that the firing temperature was changed as shown in Tables 1, 2, and 3, and the electrical properties were measured using the same method. . Table 1 shows the numerical values k , x , y, w, v, that is, numerical values indicating the ratio of the number of atoms of each element, and the content of Mb are shown. Table 2 shows the amount (parts by weight) of the additive composition relative to 100 parts by weight of the basic component of each sample and the composition of the additive component. In the MO content column of Table 2, the proportions of BaO, MgO, ZnO, SrO, and Ca are shown in mol%. Table 3 shows the firing temperature (maximum temperature) for sintering in a reducing atmosphere and the electrical properties of each sample.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表〜第3表から明らかな如く、本発明に従
う試料では、非酸化性雰囲気、1200℃以下の焼成
で、非誘電率εsが151〜323、Qが5000以上、誘電
率の温度計数がTCが−690から−3100ppm/℃の
範囲となる。また抵抗率Pは20℃で1.0×107M
Ω・cm以上、125℃で1.0×105MΩ・cm以上とな
る。 一方、試料No.7、8、9、10、29、33、34、
38、43、44、49、53、54、58、59、63、68、69、
75、76、82では本発明の目的を達成することがで
きない。従つて、これ等は本発明の範囲外のもの
である。 次に、組成の限定理由について述べる。 添加成分の添加量が零の場合には試料No.76から
明らかな如く焼成温度が1300℃であつても緻密な
焼結体が得られないが、試料No.776示す如く添加
量が100重量部の基本成分に対して0.2重量部の場
合には1190℃の焼成で所望の電気的特性を有する
焼結体が得られる。従つて、添加成分の下限は
0.2重量部である。一方、試料No.82示す如く、添
加量が18重量部の場合はQが5000未満となり、所
望特性よりも悪くなるが、試料No.81に示す如く添
加量が15重量部の場合には、所望の特性を得るこ
とができる。従つて、添加量の上限は15重量部で
ある。 xの値は、例えば試料No.24、25、26、27、28に
示す如く、0から0.995までのいずれの値であつ
ても、所望の電気的特性を得ることができる。従
つてxの値は0から0.995までの全ての値を含む。
なお試料No.28に示す如くxが0.995の場合には、
x+y=1となり、結局Srが零である。従つて、
本発明に従う一般式のMaの内容は、Sr、Ca、
Sa+Caのいずれか1つである。 yの値が試料No.29、34に示す如く0.002の場合
は、Mb(Mg及び/又はZn)を添加した効果が見
られないが試料No.30、35、39に示す如くyの値が
0.005の場合には、所望の電気的特性が得られる。
従つてyの値の下限は、0.005である。一方yの
値が試料No.33、38、43に示す如く0.12の場合には
緻密な焼結体が得られないが、試料No.32、37、42
示す如く、yの値が0.10の場合には所望の電気的
特性が得られる。従つてyの値の上限は0.10であ
る。 wの値が試料No.44、に示す如く0.02の場合には
125℃でのρが1.0×105MΩ・cmを下回つてしま
いZrO2に添加した効果が見られないが、試料No.
45、に示す如く、wの値が0.005の場合には所望
の電気的効果が得られる。従つてwの値の下限は
0.005である。一方、wの値が、0.12の場合には
試料No.49、に示す如く緻密な焼結体が得られない
が、試料No.48に示す如くwの値が0.10の場合には
所望の電気的特性が得られる。 vの値が試料No.54、59に示す如く0.0005の場合
には125℃でのρが1.0×105MΩ・cmSiO2を添加
した効果が見られないが試料No.55、60、64に示す
如く、vの値が0.001の場合には所望の電気的特
性が得られる。従つてvの値の下限は0.001であ
る。一方試料No.53、58、63、68に示す如くvの値
が0.12の場合には緻密な焼結体が得られないが試
料No.52、57、62、67に示す如くvの値が0.10の場
合いには所望の電気的特性が得られる。従つてv
の値の上限0.10である。尚、例えば、試料No.50、
51、52に示す如く、vの値を、徐々に大きくする
と、125℃におけるρも徐々に大きくなりSiが高
温における抵抗率ρの増大に寄与していることが
分る。 kの値が試料No.69に示す如く0.99の場合には、
ρが20℃、125℃でそれぞれ5.3×104、1.2×101M
Ω・cmとなり更にQも450と大幅に低くなるが、
試料No.70に示す如くkの値が1.00の場合には所望
の電気的特性が得られる。従つてkの値の下限は
1.00である。一方、kの値が試料No.75に示す如く
1.25の場合には緻密な焼結体が得られないが、試
料No.74に示す如くkの値が1.20の場合には所望の
電気的特性が得られる。従つてkの値の上限は
1.20である。 添加成分の好ましい組成は第2図のB2O3
SiO2−MOの組成比を示す三角図に基づいて決定
することができる。三角図の点Aは試料No.1の
B2O31モル%、SiO280モル%、MO19モル%の組
成を示し、点Bは、試料No.2のB2O31モル%、
SiO239モル%、MO60モル%の組成を示し、点C
は試料No.3のB2O330モル%、SiO20モル%、
MO70モル%の組成を示し、点Dは試料No.4の
B2O390モル%、SiO20モル%、MO10モル%の組
成を示し、点Eは試料No.5のB2O390モル%、
SiO210モル%、MO10モル%の組成を示し、点F
は試料No.6のB2O320モル%、SiO80モル%、
MO0モル%の組成を示す。 本発明の範囲に属する試料の添加成分の組成
は、三角図の第1〜第6の点A〜Fを順に結ぶ6
本の直線で囲まれた領域内の組成になつている。
この領域内の組成とすれば、所望の電気的特性を
得ることができる。なお三角図で試料No.86〜92等
から明らかな如く、SiO2とMOとのいずれか一方
を省いても本発明で目標としている特性が得られ
る。 一方、試料No.7、8、9、10のように、添加成
分の組成が本発明で特定した範囲外となれば、緻
密な焼結体を得ることができない。なお、MO成
分は、例えば試料No.11、12、13、14、15に示す如
くBaO、MgO、ZnO、SrO、CaOのいずれか一
であつてもよいし、又は他の試料に示すように適
当な比率としてもよい。 [変形例] 以上本発明の実施例について述べたが、本発明
はこれに限定されるものではなく、例えば次の変
形例が可能なものである。 (a) また基本成分及び添加成分にその他の物質を
必要に応じて適量添加してもよい。 (b) 基本成分を得るための出発原料を、実施例で
示したもの以外の例えば、SrO、CaO等の酸化
物又は水酸化又はその他の化合物としてもよ
い。また、添加成分の出発原料を酸化物、水酸
化等の他の化合物としてもよい。 (c) 酸化温度を600℃以外の焼結温度よりも低い
温度(好ましくは1000℃以下)としてもよい。
即ち、ニツケル等の電極と磁器の酸化とを考慮
して種々変更することが可能である。 (d) 非酸化性雰囲気中の焼成温度を、電極材料を
考慮して種々変えることが出来る。 (e) 焼結を中性雰囲気で行つてもよい。 (f) 積層磁器コンデンサ以外の一般的な磁器コン
デンサにも勿論適用可能である。
[Table] As is clear from Tables 1 to 3, in the samples according to the present invention, when fired in a non-oxidizing atmosphere at 1200°C or lower, the dielectric constant ε s is 151 to 323, the Q is 5000 or more, and the dielectric constant The temperature coefficient of TC is in the range of -690 to -3100ppm/℃. Also, the resistivity P is 1.0×10 7 M at 20℃
Ω・cm or more, and 1.0×10 5 MΩ・cm or more at 125℃. On the other hand, sample Nos. 7, 8, 9, 10, 29, 33, 34,
38, 43, 44, 49, 53, 54, 58, 59, 63, 68, 69,
75, 76, and 82 cannot achieve the object of the present invention. Therefore, these are outside the scope of the present invention. Next, the reasons for limiting the composition will be described. When the amount of additive components added is zero, as shown in sample No. 76, a dense sintered body cannot be obtained even if the firing temperature is 1300℃, but as shown in sample No. 776, when the amount added is 100% If the amount is 0.2 parts by weight based on 1 part of the basic components, a sintered body having desired electrical properties can be obtained by firing at 1190°C. Therefore, the lower limit of added ingredients is
It is 0.2 parts by weight. On the other hand, as shown in sample No. 82, when the amount added is 18 parts by weight, Q is less than 5000, which is worse than the desired properties, but as shown in sample No. 81, when the amount added is 15 parts by weight, Desired characteristics can be obtained. Therefore, the upper limit of the amount added is 15 parts by weight. As shown in Sample Nos. 24, 25, 26, 27, and 28, for example, the value of x can be any value from 0 to 0.995 to obtain desired electrical characteristics. Therefore, the value of x includes all values from 0 to 0.995.
In addition, when x is 0.995 as shown in sample No. 28,
x+y=1, and Sr is zero after all. Therefore,
The content of Ma in the general formula according to the present invention is Sr, Ca,
One of Sa + Ca. When the value of y is 0.002 as shown in sample Nos. 29 and 34, no effect of adding Mb (Mg and/or Zn) is seen, but when the value of y is 0.002 as shown in samples Nos. 30, 35, and 39,
In the case of 0.005, desired electrical characteristics are obtained.
Therefore, the lower limit of the value of y is 0.005. On the other hand, when the value of y is 0.12 as shown in sample Nos. 33, 38, and 43, a dense sintered body cannot be obtained;
As shown, desired electrical characteristics can be obtained when the value of y is 0.10. Therefore, the upper limit of the value of y is 0.10. When the value of w is 0.02 as shown in sample No. 44,
Although ρ at 125°C fell below 1.0×10 5 MΩ・cm and no effect of adding ZrO 2 was observed, sample No.
45, the desired electrical effect can be obtained when the value of w is 0.005. Therefore, the lower limit of the value of w is
It is 0.005. On the other hand, when the value of w is 0.12, a dense sintered body cannot be obtained as shown in sample No. 49, but when the value of w is 0.10 as shown in sample No. 48, the desired electrical characteristics can be obtained. When the value of v is 0.0005 as shown in sample Nos. 54 and 59, the effect of adding SiO 2 is 1.0×10 5 MΩ・cm at 125°C, but in samples Nos. 55, 60, and 64, As shown, desired electrical characteristics can be obtained when the value of v is 0.001. Therefore, the lower limit of the value of v is 0.001. On the other hand, when the value of v is 0.12 as shown in sample Nos. 53, 58, 63, and 68, a dense sintered body cannot be obtained; In the case of 0.10, desired electrical characteristics can be obtained. Therefore v
The upper limit of the value of is 0.10. For example, sample No. 50,
As shown in Figures 51 and 52, when the value of v is gradually increased, ρ at 125°C also gradually increases, indicating that Si contributes to the increase in resistivity ρ at high temperatures. When the value of k is 0.99 as shown in sample No. 69,
ρ is 5.3×10 4 and 1.2×10 1 M at 20℃ and 125℃, respectively.
Ω・cm, and Q is also significantly lower at 450,
As shown in sample No. 70, when the value of k is 1.00, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of k is
It is 1.00. On the other hand, the value of k is as shown in sample No. 75.
When the value of k is 1.25, a dense sintered body cannot be obtained, but when the value of k is 1.20, as shown in sample No. 74, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of k is
It is 1.20. The preferred composition of the additive components is B 2 O 3 − in Figure 2.
It can be determined based on a triangular diagram showing the composition ratio of SiO 2 -MO. Point A on the triangular diagram is sample No. 1.
It shows the composition of B 2 O 3 1 mol %, SiO 2 80 mol %, MO 19 mol %, and point B is B 2 O 3 1 mol % of sample No. 2,
It shows a composition of 39 mol% SiO 2 and 60 mol% MO, and the point C
are 30 mol% of B 2 O 3 and 0 mol% of SiO 2 of sample No. 3,
It shows the composition of MO70 mol%, and point D is sample No. 4.
The composition is 90 mol% B 2 O 3 , 0 mol % SiO 2 , and 10 mol % MO, and point E is 90 mol % B 2 O 3 of sample No. 5,
Shows a composition of 10 mol% SiO 2 and 10 mol% MO, point F
are 20 mol% of B 2 O 3 and 80 mol% of SiO of sample No. 6,
Shows the composition of MO0 mol%. The composition of the additive components of the sample belonging to the scope of the present invention is determined by 6 points connecting the first to sixth points A to F of the triangular diagram in order.
The composition is within the area surrounded by straight lines in the book.
If the composition is within this range, desired electrical characteristics can be obtained. As is clear from samples Nos. 86 to 92 in the triangular diagram, the characteristics targeted by the present invention can be obtained even if either SiO 2 or MO is omitted. On the other hand, if the composition of the additive components falls outside the range specified in the present invention, as in Samples Nos. 7, 8, 9, and 10, a dense sintered body cannot be obtained. Note that the MO component may be any one of BaO, MgO, ZnO, SrO, and CaO as shown in Sample Nos. 11, 12, 13, 14, and 15, or as shown in other samples. It may be an appropriate ratio. [Modifications] Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible. (a) In addition, appropriate amounts of other substances may be added to the basic ingredients and additive ingredients as necessary. (b) The starting materials for obtaining the basic components may be oxides or hydroxides such as SrO, CaO, etc. or other compounds other than those shown in the examples. Further, the starting materials for the additive components may be other compounds such as oxides and hydroxides. (c) The oxidation temperature may be set to a temperature other than 600°C lower than the sintering temperature (preferably 1000°C or less).
That is, various changes can be made in consideration of the electrodes made of nickel or the like and the oxidation of the porcelain. (d) The firing temperature in a non-oxidizing atmosphere can be varied depending on the electrode material. (e) Sintering may be performed in a neutral atmosphere. (f) It is of course applicable to general ceramic capacitors other than multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

1図は第は本発明の実施例に係わる積層型磁器
コンデンサを示す断面図、第2図は添加成分の組
成範囲を示す三角図である。 1,2,3……誘電体磁器層、4,5……内部
電極、6,7……外部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a triangular diagram showing the composition range of additive components. 1, 2, 3... dielectric ceramic layer, 4, 5... internal electrode, 6, 7... external electrode.

Claims (1)

【特許請求の範囲】 1 100重量部の基本成分と、0.2〜15.0重量部の
添加成分とから成り、前記基本成分が、 {(Ma1-yMby)O}k(Ti1-w-vZrwSiV)O2 (但し、MaはSrとCaとの内の少なくとも1種の
金属、MbはMgとZnとの内の少なくとも1種の
金属、y、k、w、vは、0.005≦y≦0.100、
1.00≦k≦1.20、0.005≦w≦0.100、0.001≦v≦
0.100の範囲の数値)であり、 前記添加成分が、B2O3とSiO2とMO (但し、MOはBaO、MgO、ZnO、SrO、及び
CaOの内の少なくとも1種の金属酸化物) との組成を示す三角図における、 前記B2O3が1モル%、前記SiO2が80モル%、
前記MOが19モル%の点Aと、 前記B2O3が1モル%、前記SiO2が39モル%、
前記MOが60モル%の点Bと、 前記B2O3が30モル%、前記SiO2が0モル%、
前記MOが70モル%の点Cと、 前記B2O3が90モル%、前記SiO2が0モル%、
前記MOが10モル%の点Dと、 前記B2O3が90モル%、前記SiO2が10モル%、
前記MOが0モル%の点Eと、 前記B2O3が20モル%、前記SiO2が80モル%、
前記MOが0モル%の点Fと を順に結ぶ6本の直線で囲まれた領域内のもので
ある誘電体磁器組成物。
[Scope of Claims] 1 Consists of 100 parts by weight of a basic component and 0.2 to 15.0 parts by weight of additional components, wherein the basic component is {(Ma 1-y Mb y )O} k (Ti 1-wv Zr w Si V ) O 2 (However, Ma is at least one metal among Sr and Ca, Mb is at least one metal among Mg and Zn, and y, k, w, and v are 0.005≦ y≦0.100,
1.00≦k≦1.20, 0.005≦w≦0.100, 0.001≦v≦
0.100), and the additive components are B 2 O 3 , SiO 2 and MO (however, MO is BaO, MgO, ZnO, SrO, and
At least one metal oxide among CaO) In the triangular diagram showing the composition, the B 2 O 3 is 1 mol %, the SiO 2 is 80 mol %,
Point A where the MO is 19 mol %, the B 2 O 3 is 1 mol %, the SiO 2 is 39 mol %,
Point B where the MO is 60 mol %, the B 2 O 3 is 30 mol %, the SiO 2 is 0 mol %,
Point C where the MO is 70 mol %, the B 2 O 3 is 90 mol %, the SiO 2 is 0 mol %,
Point D where the MO is 10 mol%, the B 2 O 3 is 90 mol%, the SiO 2 is 10 mol%,
Point E where the MO is 0 mol%, the B 2 O 3 is 20 mol%, the SiO 2 is 80 mol%,
A dielectric ceramic composition that is within a region surrounded by six straight lines sequentially connecting point F where MO is 0 mol %.
JP61232823A 1986-09-30 1986-09-30 Dielectric ceramic composition Granted JPS6386318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232823A JPS6386318A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232823A JPS6386318A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS6386318A JPS6386318A (en) 1988-04-16
JPH0551126B2 true JPH0551126B2 (en) 1993-07-30

Family

ID=16945337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232823A Granted JPS6386318A (en) 1986-09-30 1986-09-30 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS6386318A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067541B2 (en) * 2007-03-30 2012-11-07 Tdk株式会社 Dielectric ceramic composition, composite electronic component and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPS6386318A (en) 1988-04-16

Similar Documents

Publication Publication Date Title
JPS621595B2 (en)
JPH0552604B2 (en)
JPH0518201B2 (en)
JPH0552602B2 (en)
JPH0559523B2 (en)
JPH0518204B2 (en)
JPH0524655B2 (en)
JPH0559522B2 (en)
KR930004746B1 (en) Solid dielectric capacitor and method of manufacture
JPH0544764B2 (en)
JPH0524654B2 (en)
JPH0551127B2 (en)
JPS621596B2 (en)
JPH0552603B2 (en)
JPH0518202B2 (en)
JPH0551126B2 (en)
JPH0518203B2 (en)
JPH0524651B2 (en)
JPH0551125B2 (en)
JPH0551122B2 (en)
JPH0551124B2 (en)
JPH0551123B2 (en)
JP2954298B2 (en) Dielectric porcelain composition
JPH0532892B2 (en)
JPS6114608B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees