JPS6230147B2 - - Google Patents

Info

Publication number
JPS6230147B2
JPS6230147B2 JP13924880A JP13924880A JPS6230147B2 JP S6230147 B2 JPS6230147 B2 JP S6230147B2 JP 13924880 A JP13924880 A JP 13924880A JP 13924880 A JP13924880 A JP 13924880A JP S6230147 B2 JPS6230147 B2 JP S6230147B2
Authority
JP
Japan
Prior art keywords
glass
particles
optical fiber
fine particles
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13924880A
Other languages
Japanese (ja)
Other versions
JPS5767038A (en
Inventor
Masao Kawachi
Mitsuho Yasu
Noryoshi Shibata
Takao Edahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13924880A priority Critical patent/JPS5767038A/en
Publication of JPS5767038A publication Critical patent/JPS5767038A/en
Publication of JPS6230147B2 publication Critical patent/JPS6230147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/34Liquid, e.g. mist or aerosol
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光通信に用いる光フアイバ用母材の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber base material used in optical communications.

光フアイバ用母材の製造方法としてVAD法が
知られている。VAD法においては、第1図に示
すような装置設定により、丸棒状の多孔質ガラス
体を製造する。
The VAD method is known as a method for manufacturing optical fiber base materials. In the VAD method, a round bar-shaped porous glass body is manufactured using the equipment settings shown in FIG.

第1図において、1はガラス原料および火炎用
ガスの供給装置であり、ガラス微粒子合成トーチ
2に導かれる。ガラス微粒子合成トーチ2によつ
て、加水分解反応または熱酸化反応により合成さ
れたガラス微粒子が支持棒3の一端に付着、堆積
して多孔質ガラス体4を形成する。5は付着しな
かつたガラス微粒子を含む排気ガスの処理装置で
ある。形成された多孔質ガラス体は、その後、上
部に設けた高温発熱体6によつて1500〜1700℃に
加熱、脱泡されて透明ガラス母材となる。7は回
転引き上げ装置、8は保護容器である。
In FIG. 1, reference numeral 1 denotes a supply device for glass raw materials and flame gas, which are guided to a glass fine particle synthesis torch 2. Glass particles synthesized by the glass particle synthesis torch 2 through a hydrolysis reaction or a thermal oxidation reaction are attached and deposited on one end of the support rod 3 to form a porous glass body 4 . 5 is a treatment device for exhaust gas containing glass fine particles that have not adhered to the exhaust gas. The formed porous glass body is then heated to 1,500 to 1,700°C by a high-temperature heating element 6 provided at the top, and is degassed to become a transparent glass base material. 7 is a rotating lifting device, and 8 is a protective container.

従来、VAD法では、ガラス微粒子の多孔質ガ
ラス体成長面への付着効率がたかだか50〜70%程
度であり、時にガラス原料の供給量を増加した場
合には、効率が30〜40%程度に低下してしまう欠
点があつた。このような現象は、経済性の面で望
ましくなく、また付着しなかつたガラス微粒子が
保護容器8の内壁面に多量に付着するという欠点
にもなつた。
Conventionally, in the VAD method, the adhesion efficiency of glass fine particles to the growth surface of a porous glass body is only about 50 to 70%, and sometimes when the amount of glass raw material supplied is increased, the efficiency increases to about 30 to 40%. There was a drawback that it deteriorated. Such a phenomenon is not desirable from an economic point of view, and also has the disadvantage that a large amount of unattached glass particles adheres to the inner wall surface of the protective container 8.

本発明は、これらの欠点を解決するためになさ
れたもので、ガラス微粒子合成トーチに帯電した
液相微粒子を供給し、火炎中で合成されるガラス
微粒子を帯電されることにより、電気集塵作用
で、多孔質ガラス体成長面への付着効率をあげ、
光フアイバの低価格化に貢献することを目的とし
ている。
The present invention has been made to solve these drawbacks, and by supplying charged liquid phase particles to a glass particle synthesis torch and charging the glass particles synthesized in a flame, an electrostatic precipitating effect can be achieved. This increases the adhesion efficiency to the growth surface of the porous glass body,
The aim is to contribute to lowering the cost of optical fiber.

第2図は本発明の一実施例の構成図であつて、
従来法に比べて液相微粒子発生装置9、高電圧印
加装置11を備えている点を特徴としている。ま
た支持棒3′は導電体を用いている。これを動作
させるには、ガラス原料および火炎用ガスの供給
装置1より、ガラス微粒子合成トーチ2にガラス
原料および火炎用ガスを導き、反応させて、ガラ
ス微粒子を生成させる。
FIG. 2 is a configuration diagram of an embodiment of the present invention,
Compared to the conventional method, this method is characterized by being equipped with a liquid phase fine particle generator 9 and a high voltage application device 11. Further, the support rod 3' is made of a conductor. To operate this, the glass raw material and flame gas are introduced from the glass raw material and flame gas supply device 1 to the glass fine particle synthesis torch 2 and reacted to produce glass fine particles.

これと同時に、超音波振動子10を内蔵した液
相微粒子発生装置9により、たとえば水の霧状微
粒子を発生させ、供給装置1から火炎用ガス、た
とえばO2ガスの一部または全部を液相微粒子発
生装置9にパイプ9aを経て導入させ、霧状微粒
子をパイプ9bを経て、ガラス微粒子合成トーチ
2へと輸送する。支持棒3′としては、導電性
で、しかも耐塩素性の棒、たとえばカーボン棒を
使用し、支持棒3′と液相微粒子発生器9の液面
との間には、リード線12を介して高電圧印加装
置11から、5000ボルト程度の直流電圧を印加す
る。この直流電圧により帯電した霧状微粒子は、
ガラス微粒子合成トーチ2へと導かれ、やがて火
炎内で気化する。この際、霧状微粒子上の電荷は
火炎内で生成するガラス微粒子へと移動し、ガラ
ス微粒子を帯電させる。ガラス微粒子は導電性支
持棒3′へ付着、堆積し、電荷を放出する。
At the same time, a liquid phase particle generator 9 incorporating an ultrasonic vibrator 10 generates atomized particles of water, for example, and part or all of a flame gas, for example, O 2 gas, is supplied from the supply device 1 into a liquid phase. The particles are introduced into the particle generator 9 via a pipe 9a, and the atomized particles are transported to the glass particle synthesis torch 2 via a pipe 9b. As the support rod 3', a conductive and chlorine-resistant rod such as a carbon rod is used, and a lead wire 12 is connected between the support rod 3' and the liquid surface of the liquid phase particulate generator 9. Then, a DC voltage of about 5000 volts is applied from the high voltage application device 11. The atomized fine particles charged by this DC voltage are
The particles are guided to the glass particle synthesis torch 2, and are eventually vaporized within the flame. At this time, the charge on the atomized particles moves to the glass particles generated within the flame, and the glass particles are charged. The glass particles adhere to and accumulate on the conductive support rod 3', and release charges.

この際、帯電したガラス微粒子は、電気集塵作
用を受け、効率よく支持棒3′へ付着する。支持
棒3′の端面に成長する多孔質ガラス体4には、
酸水素炎に起因する水分が多量に含まれているも
ので、導電性は維持され多孔質ガラス体4が成長
しても、電気集塵作用は保持される。
At this time, the charged glass particles are subjected to an electrostatic precipitating action and efficiently adhere to the support rod 3'. The porous glass body 4 grown on the end face of the support rod 3' has
Since it contains a large amount of water caused by oxyhydrogen flame, the conductivity is maintained and even when the porous glass body 4 grows, the electrostatic precipitating effect is maintained.

ガラス微粒子合成トーチ2にSiCl4とGeCl4
10:1(モル比)の混合ガスを200c.c./minの速
度で、300c.c./minのキヤリア用Heガスとともに
供給し、O2:5/min、H2:3/min、Ar:
1/minの火炎用ガスで構成される火炎内で反
応させ、また同時に5000Vの直流電圧で帯電させ
た蒸留水の液相微粒子を5g/minの速度で供給
したところ、約75%の付着効率が得られた。ちな
みに直流電圧の印加を中止したところ付着効率は
約55%に低下し、本発明の効果が大きいことが実
証された。
Glass particle synthesis torch 2 contains SiCl 4 and GeCl 4 .
A mixed gas of 10:1 (molar ratio) was supplied at a rate of 200 c.c./min along with carrier He gas of 300 c.c./min, O 2 : 5/min, H 2 : 3/min, Ar:
When reacting in a flame composed of flame gas of 1/min and simultaneously supplying liquid phase fine particles of distilled water charged with a DC voltage of 5000 V at a rate of 5 g/min, the adhesion efficiency was approximately 75%. was gotten. Incidentally, when the application of the DC voltage was stopped, the adhesion efficiency decreased to about 55%, demonstrating that the present invention is highly effective.

第3図は本発明の他の実施例の構成図であり、
第2図の装置構成に加えて、成長しつつある多孔
質ガラス焼結体4の側面に、導電性ガラス膜を付
着させる補助トーチ31および導電性ガラス原料
供給装置32を備えている。
FIG. 3 is a configuration diagram of another embodiment of the present invention,
In addition to the apparatus configuration shown in FIG. 2, an auxiliary torch 31 and a conductive glass raw material supply device 32 are provided for attaching a conductive glass film to the side surface of the growing porous glass sintered body 4.

導電性ガラス原料としては、たとえば四塩化す
ず(SnCl4)を用いることができる。多孔質ガラ
ス体4を成長させると同時に導電性ガラス原料供
給装置32からSnCl4ガスを20c.c./minの速度
で、キヤリア用Heガス100c.c./minとともに、補
助トーチ31へ導入し、供給装置1から供給され
るO2:3/min、H2:1/min、Ar:1/
minにより構成され酸水素炎で反応させ生成した
酸化すずの蒸気を、多孔質ガラス体4の側面に付
着させたところ、ガラス微粒子の付着効率はさら
に85%程度に増加した。これは多孔質ガラス体4
の導電性が導電性酸化すず膜の付着により増加
し、電気集塵作用がより有効に行なわれるためと
考えられる。なお、酸化すず膜は、多孔質ガラス
体を高温発熱体6で高温1600℃程度で透明ガラス
化する際に、すべて気化してしまい、透明ガラス
母材中に残存することはなく、得られる光フアイ
バの損失特性には何ら影響を及ぼさなかつた。
As the conductive glass raw material, for example, tin tetrachloride (SnCl 4 ) can be used. At the same time as growing the porous glass body 4, SnCl 4 gas is introduced from the conductive glass raw material supply device 32 into the auxiliary torch 31 at a rate of 20 c.c./min together with carrier He gas 100 c.c./min. , O 2 supplied from supply device 1: 3/min, H 2 : 1/min, Ar: 1/min.
When the vapor of tin oxide produced by reaction in an oxyhydrogen flame was applied to the side surface of the porous glass body 4, the adhesion efficiency of glass particles was further increased to about 85%. This is porous glass body 4
It is thought that this is because the conductivity of the conductive tin oxide film increases due to the adhesion of the conductive tin oxide film, making the electrostatic precipitating action more effective. Note that the tin oxide film is completely vaporized when the porous glass body is turned into transparent glass at a high temperature of about 1600°C using the high-temperature heating element 6, and does not remain in the transparent glass base material. It had no effect on the loss characteristics of the fiber.

なお液相微粒子を形成する原料として、蒸留水
の代わりに液状ガラス原料を直接用いてもよいこ
とはもち論である。
It goes without saying that a liquid glass raw material may be used directly instead of distilled water as a raw material for forming liquid-phase fine particles.

以上、説明したように、本発明の光フアイバ用
母材の製造方法では帯電した液相微粒子を介して
ガラス微粒子を帯電させ、電気集塵作用により、
ガラス微粒子の付着効率を大幅に増大させるもの
であり、光フアイバ用原料を有効に利用でき、光
フアイバ用母材の低価格化に寄与するところが大
である。
As explained above, in the method for manufacturing an optical fiber base material of the present invention, glass fine particles are charged via charged liquid phase fine particles, and by electrostatic precipitating action,
This greatly increases the adhesion efficiency of glass particles, allows the effective use of optical fiber raw materials, and greatly contributes to lowering the cost of optical fiber base materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のVAD法を実施する装置の構成
図、第2図は本発明の一実施例の構成図、第3図
は本発明の他の実施例の構成図である。 1……ガラス原料および火炎用ガス供給装置、
2……ガラス微粒子合成トーチ、3,3′……支
持棒、4……多孔質ガラス体、5……排ガス処理
装置、6……高温発熱体、7……回転引き上げ装
置、8……保護容器、9……液相微粒子発生装
置、9a,9b……パイプ、10……超音波振動
子、11……高電圧印加装置、12……リード
線、31……補助トーチ、32……導電性ガラス
原料供給装置。
FIG. 1 is a block diagram of an apparatus for carrying out a conventional VAD method, FIG. 2 is a block diagram of one embodiment of the present invention, and FIG. 3 is a block diagram of another embodiment of the present invention. 1... Glass raw material and flame gas supply device,
2...Glass particle synthesis torch, 3,3'...Support rod, 4...Porous glass body, 5...Exhaust gas treatment device, 6...High temperature heating element, 7...Rotary pulling device, 8...Protection Container, 9...Liquid phase fine particle generator, 9a, 9b...Pipe, 10...Ultrasonic vibrator, 11...High voltage application device, 12...Lead wire, 31...Auxiliary torch, 32...Conductor Glass raw material supply equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス微粒子合成トーチにより合成したガラ
ス微粒子を、支持棒の一端に付着、堆積させて形
成した多孔質ガラス体を軸方向に成長させた後、
高温に加熱して透明ガラス化する光フアイバ用母
材の製造方法において、該ガラス微粒子合成トー
チに、帯電した液相微粒子を供給することによ
り、該ガラス微粒子を帯電させ、該多孔質ガラス
体成長面上への付着効率を電気集塵作用により増
加させることを特徴とする光フアイバ用母材の製
造方法。
1 After growing in the axial direction a porous glass body formed by adhering and depositing glass particles synthesized with a glass particle synthesis torch on one end of a support rod,
In a method for producing an optical fiber base material that is heated to a high temperature to make it transparent, glass fine particles are charged by supplying charged liquid phase fine particles to the glass fine particle synthesis torch, and the porous glass body is grown. A method for producing a base material for optical fiber, characterized in that the adhesion efficiency on a surface is increased by electrostatic precipitant action.
JP13924880A 1980-10-07 1980-10-07 Manufacture of base material for optical fiber Granted JPS5767038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13924880A JPS5767038A (en) 1980-10-07 1980-10-07 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13924880A JPS5767038A (en) 1980-10-07 1980-10-07 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS5767038A JPS5767038A (en) 1982-04-23
JPS6230147B2 true JPS6230147B2 (en) 1987-06-30

Family

ID=15240892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13924880A Granted JPS5767038A (en) 1980-10-07 1980-10-07 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS5767038A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003342A (en) * 1991-10-25 1999-12-21 The Furukawa Electric Co., Ltd. Apparatus for production of optical fiber preform
GB9725878D0 (en) 1997-12-05 1998-02-04 Imperial College Vapour deposition

Also Published As

Publication number Publication date
JPS5767038A (en) 1982-04-23

Similar Documents

Publication Publication Date Title
JP4089922B2 (en) Method and apparatus for making fused silica by combustion of a liquid reactant
JP3314306B2 (en) Method of making conductive sintered compacts based on silicon carbide
JP2001517597A (en) Method for producing molten SiO2-TiO2 glass
JPS6230147B2 (en)
JPS59152239A (en) Manufacture of light conductive body
JPS6036341A (en) Manufacture of light conductive body
JP2002528379A (en) Method for manufacturing soot for optical fiber preform and preform manufactured by the method
JPH06226085A (en) Device for producing oxide fine particles and its production
JPS605030A (en) High purity glass powder and apparatus and method for manufacturing glass products thereby
JP3026099B2 (en) Method and apparatus for producing amorphous spherical silica fine powder
JP4089019B2 (en) Multi-tube burner for synthesis of porous quartz glass base material
JPS6119573B2 (en)
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
WO2001025148A1 (en) Method for the production of single isotope silicon si-28
JPH0617238B2 (en) Method for manufacturing glass particulate deposit
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH0832573B2 (en) Method for manufacturing optical fiber preform
JPH02184514A (en) Cylindrical quartz glass powder and production thereof
JPS59128225A (en) Manufacture of base material for optical fibre
JPH07206418A (en) Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound
JPS5945637B2 (en) Method for manufacturing silicon carbide whiskers
JPH0343205B2 (en)
JPH061632A (en) Method and device for synthesizing porous base material for optical fiber
JPS6036320A (en) Preparation of fine powder of silicic acid
JPH07100614B2 (en) Method for producing porous quartz glass base material