JPS59128225A - Manufacture of base material for optical fibre - Google Patents

Manufacture of base material for optical fibre

Info

Publication number
JPS59128225A
JPS59128225A JP23005382A JP23005382A JPS59128225A JP S59128225 A JPS59128225 A JP S59128225A JP 23005382 A JP23005382 A JP 23005382A JP 23005382 A JP23005382 A JP 23005382A JP S59128225 A JPS59128225 A JP S59128225A
Authority
JP
Japan
Prior art keywords
fine particles
base material
glass
starting materials
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23005382A
Other languages
Japanese (ja)
Other versions
JPS6116740B2 (en
Inventor
Shoichi Sudo
昭一 須藤
Hiroyuki Suda
裕之 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23005382A priority Critical patent/JPS59128225A/en
Publication of JPS59128225A publication Critical patent/JPS59128225A/en
Publication of JPS6116740B2 publication Critical patent/JPS6116740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To synthesize a base material for an optical fiber at a high speed by mixing fine particles such as SiO2, GeO2 in gaseous starting materials for glass contg. SiCl4, GeCl4 or the like and synthesizing fine glass particles from the mixed gaseous starting materials to prevent the lowering of reaction efficiency caused by the quantity of starting materials to be supplied. CONSTITUTION:Fine particles such as SiO2 transported by gaseous Ar from a supply apparatus 1 of fine particles are mixed with gaseous starting materials for glass such as SiCl4, GeCl4 transported by the gaseous Ar from a supply apparatus 2 of gaseous starting materials and supplied into a synthetic torch 3. The mixture 4 supplied into the torch 3 is hydrolyzed by flame in a flame stream 6 blown out from the torch 3 and synthesized to glass fine particles 6. In this case, the fine particles 6 play a role to lower the activation energy of the synthetic reaction of glass fine particles. As the result, it makes possible to lower the reaction temp. and to improve the reaction velocity compared with the case of the synthesis of glass fine particles by supplying conventional gaseous starting materials. Then, the fine particles 6 are adhered to the direction of an axis and deposited to form an objective porous base material 7.

Description

【発明の詳細な説明】 火炎内でガラス微粒子を合成し、これを出発材の軸方向
に付着、堆積して多孔質母材を形成した後、高温焼結し
て透明母材を製造するVAD法では、従来、SICe4
T GeCl+等のガラス原料ガスのみを合成トーチに
供給し、火炎反応帯域内でガラス微粒子を合成していた
Detailed Description of the Invention: VAD that synthesizes glass particles in a flame, adheres and deposits them in the axial direction of a starting material to form a porous base material, and then sinters at a high temperature to produce a transparent base material. Conventionally, in the law, SICe4
Only a frit gas such as T GeCl+ was supplied to a synthesis torch, and glass particles were synthesized within a flame reaction zone.

しかし、この従来の方法でガラス微粒子を合成した場合
、母材の製造速度を向上するために、原料ガス供給量を
増加すると、ガラス微粒子を合成する反応効率が低下し
、母材合成速度の向上が困難になるという問題点があっ
た。
However, when glass particles are synthesized using this conventional method, if the raw material gas supply amount is increased to improve the production speed of the base material, the reaction efficiency for synthesizing the glass particles decreases, and the speed of base material synthesis is increased. The problem was that it became difficult.

本発明はこの欠点を除去するため、SICe4 1Ge
 c 13 4等を含むガラス原料ガス中に、Sin2
, Ge02 1Ae O  、 Tie□, B20
8, P2O,の少な(とも1種8 以上の微小な粒子を混合し、該混合原料ガス体より、ガ
ラス微粒子を合成するものであり、その目的は、原料供
給量の増加に伴う反応効率の低下を防止し、VAD法に
よる母材の高速合成を可能にすることにある。
The present invention eliminates this drawback by using SICe4 1Ge
In the frit gas containing c 13 4 etc., Sin2
, Ge02 1Ae O , Tie□, B20
8. Glass particles with a small amount of P2O (both types of 8 or more) are mixed and glass particles are synthesized from the mixed raw material gas.The purpose is to increase the reaction efficiency as the amount of raw material supplied increases. The objective is to prevent the deterioration and enable high-speed synthesis of the base material by the VAD method.

第1図は本発明の一実施例図であって、1は微小粒子供
給装置、2はガラス原料ガスおよび火炎用ガス供給装置
、8は合成トーチ、4はガラス原料ガスと微小粒子の混
合体、5は火炎流、6は合成されたガラス微粒子、?は
多孔質母材である。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 is a microparticle supply device, 2 is a frit gas and flame gas supply device, 8 is a synthesis torch, and 4 is a mixture of frit gas and microparticles. , 5 is a flame stream, 6 is a synthesized glass particle, ? is a porous matrix.

微小粒子供給装置1よりArガスによって輸送された、
たとえば5in2の微小粒子は、原料ガス供給装置2よ
りArガスによって輸送された5iCV4GeCe 4
等のガラス原料ガスと混合され、合成トーチ3の内へ供
給される。4が供給された混合体である。この混合体4
は、合成トーチ8から吹き出す火炎流6内において、火
炎加水分解され、ガラス微粒子6を合成するが、この際
、該微小粒子がガラス微粒子合成反応の活性化エネルギ
ーを低下する役目を果すものである。この結果、従来の
原料ガスのみを供給してガラス微粒子を合成する場合妊
比べて、反応に要する温度が低下し、かつ反応速度が向
上することとなる。このことは、一般に表面反応を利用
した場合、活性化エネルギーが低下する現象に対応する
ものであり、微小粒子表面がガラス微粒子合成反応用の
表面として作用すると考えられる。このように合成した
ガラス微粒子6を軸方向に付着、堆積して多孔質母材7
が形成される。この多孔質母材7を1500〜1600
’GK加熱、焼結して透明母材が得られる。
transported by Ar gas from the microparticle supply device 1,
For example, 5in2 microparticles are 5iCV4GeCe4 transported by Ar gas from the raw material gas supply device 2.
It is mixed with frit gases such as and supplied into the synthesis torch 3. 4 is the supplied mixture. This mixture 4
is flame-hydrolyzed in the flame stream 6 blown out from the synthesis torch 8 to synthesize glass fine particles 6, but at this time, the fine particles serve to lower the activation energy of the glass fine particle synthesis reaction. . As a result, the temperature required for the reaction is lowered and the reaction rate is improved compared to the conventional case where glass particles are synthesized by supplying only the raw material gas. This generally corresponds to the phenomenon that activation energy decreases when a surface reaction is used, and it is thought that the surface of the microparticle acts as a surface for the glass microparticle synthesis reaction. The glass fine particles 6 synthesized in this way are adhered and deposited in the axial direction to form a porous base material 7.
is formed. This porous base material 7
'A transparent base material can be obtained by GK heating and sintering.

今、本発明の前述の実施例において、微小粒子として高
純度5i02粒子(直径約0.1μm)を使用し、供給
装置lから毎分1gの割合でArガスによって輸送する
一方、供給装置2からガラス原料ガ/((5ICe+ 
: 9 Q モAy %、oece4: 10 モ#%
)を毎分50gの割合で輸送し、該SiO□粒子と混合
した後、合成トーチ3に供給して多孔質母材を製造した
場合、12g/分の合成速度で多孔質母材が得られた。
Now, in the above embodiment of the present invention, high-purity 5i02 particles (about 0.1 μm in diameter) are used as the microparticles, and are transported by Ar gas at a rate of 1 g per minute from the supply device 1, while from the supply device 2. Glass raw material moth/((5ICe+
: 9 Q MoAy%, oece4: 10 Mo#%
) is transported at a rate of 50 g/min, mixed with the SiO□ particles, and then supplied to the synthesis torch 3 to produce a porous base material, a porous base material can be obtained at a synthesis rate of 12 g/min. Ta.

この場合の反応効率は70%以上に達した。同一の条件
下で、従来法同様に該5in2微粒子を混合しなかった
場合、反応効率は20%と極めて低下した。
The reaction efficiency in this case reached over 70%. Under the same conditions, when the 5in2 fine particles were not mixed as in the conventional method, the reaction efficiency was extremely low to 20%.

第2図は原料ガス供給量を毎分50gとした場合の相対
混合微粒子量(相対量:微粒子量/原料ガス量)と反応
効率の関係を示したものである。
FIG. 2 shows the relationship between the relative amount of mixed fine particles (relative amount: amount of fine particles/amount of raw material gas) and reaction efficiency when the raw material gas supply rate is 50 g/min.

第2図において拳印は微粒子の混合がない場合を示す。In FIG. 2, the hand stamp indicates the case where there is no mixing of fine particles.

第2図かられかるようにガラス原料ガス供給量の1/1
ooo −”/looの微粒子混合量で、効果が見られ
’/i o以上の量では、80%程度の一定値となる。
As shown in Figure 2, 1/1 of the glass raw material gas supply amount
The effect is seen at a fine particle mixing amount of ooo -''/loo, and a constant value of about 80% at an amount of '/io or more.

、 さらにガラス原料供給量を増加して100V分の割
合で輸送して多孔質母材を製造した場合、信置の混合微
粒子骨で80%、’/l Oの混合量で50%の反応効
率が確保された。この場合、微粒子混合量を零とし、従
来法と同様の条件下で母材を製造したときの反応効率は
10%以下であった。
, When the porous matrix was manufactured by increasing the amount of glass raw material supplied and transporting it at a rate of 100 V, the reaction efficiency was 80% with Nobuoki's mixed particulate bone and 50% with the mixed amount of '/l O. was secured. In this case, the reaction efficiency was 10% or less when the base material was produced under the same conditions as the conventional method with the amount of fine particles mixed at zero.

本願で示した反応効率改善法は、VAD法だけでなく、
外付は法等、火炎によってガラス微粒子を合成すること
を基本とした他の光フアイバ母材の製造方法にも適用で
きるほか、電気炉内での微粒子合成にも応用可能である
The reaction efficiency improvement method shown in this application is not limited to the VAD method.
The external method can be applied to other optical fiber base material manufacturing methods that are based on synthesizing glass fine particles using flame, such as the external method, and can also be applied to fine particle synthesis in an electric furnace.

また原料ガスに混合する微小粒子としては、前記実施例
で示した5102粒子のほか、()eos+ l he
208゜Tie、 、 B2O3,P2O5の1種以上
を含む粒子が使用できる。
In addition to the 5102 particles shown in the above example, the fine particles to be mixed into the raw material gas include ()eos+l he
Particles containing one or more of 208° Tie, B2O3, and P2O5 can be used.

以上説明したように、本発明の光フアイバ母材の製造方
法によれば、原料ガス供給量を増加した場合の反応効率
低下を防止できるので、VAD法によって、l OV分
身上の高速母材合成が可能になるほか、高速合成と効率
向上が同時にtiJ能になるので、光フアイバ母材の製
造価格を大幅に低下できる利点がある。
As explained above, according to the method for producing an optical fiber preform of the present invention, it is possible to prevent a decrease in reaction efficiency when the raw material gas supply amount is increased. In addition, it also enables high-speed synthesis and improved efficiency at the same time, which has the advantage of significantly reducing the manufacturing cost of the optical fiber base material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、第2図は相対混合微粒子
量と反応効率の関係を示す図である。 l・・・微小粒子供給装置、2・・・ガラス原料ガスお
よび火炎用ガス供給装置、8・・・合成トーチ、4・・
・ガラス原料ガスと微小粒子の混合体、5・・・火炎流
、6・・・合成されたガラス微粒子、?・・・多孔質母
材。 特許出願人 日本電信電話公社 第2図 廂ゾ1混唐低刹千1 131
FIG. 1 is a diagram showing an example of the present invention, and FIG. 2 is a diagram showing the relationship between the relative amount of mixed fine particles and reaction efficiency. l... Microparticle supply device, 2... Frit gas and flame gas supply device, 8... Synthesis torch, 4...
・Mixture of frit gas and fine particles, 5...Flame flow, 6...Synthesized glass particles, ? ...Porous base material. Patent Applicant: Nippon Telegraph and Telephone Public Corporation No. 2, 1, 1, 131

Claims (1)

【特許請求の範囲】 L 火炎によって合成したガラス微粒子を出発材の軸方
向に付着、堆積して丸棒状の多孔質母材を形成した後、
高温に加熱、焼結して光ファイバ、母材を得る光フアイ
バ母材の製造方法において・ Sl”4 、 CkeC
e4 e等を含むガラス原料ガス中に5in2t Ge
m2r A4208. Tie、。 B2O3,P2O5の少なくとも1種以上の微小な粒子
を混合し、該混合原料ガス体よりガラス微粒子を合成し
て多孔質母材を形成し、高温焼結によって透明母材を製
造することを特徴とする光フアイバ母材の製造方法。
[Claims] L After adhering and depositing glass particles synthesized by flame in the axial direction of the starting material to form a round rod-shaped porous base material,
In a method for manufacturing an optical fiber base material, which obtains an optical fiber and a base material by heating and sintering at a high temperature, Sl"4, CkeC
5in2t Ge in frit gas containing e4e etc.
m2r A4208. Tie,. It is characterized by mixing fine particles of at least one of B2O3 and P2O5, synthesizing glass fine particles from the mixed raw material gas to form a porous base material, and producing a transparent base material by high-temperature sintering. A method for manufacturing an optical fiber base material.
JP23005382A 1982-12-29 1982-12-29 Manufacture of base material for optical fibre Granted JPS59128225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23005382A JPS59128225A (en) 1982-12-29 1982-12-29 Manufacture of base material for optical fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23005382A JPS59128225A (en) 1982-12-29 1982-12-29 Manufacture of base material for optical fibre

Publications (2)

Publication Number Publication Date
JPS59128225A true JPS59128225A (en) 1984-07-24
JPS6116740B2 JPS6116740B2 (en) 1986-05-01

Family

ID=16901819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23005382A Granted JPS59128225A (en) 1982-12-29 1982-12-29 Manufacture of base material for optical fibre

Country Status (1)

Country Link
JP (1) JPS59128225A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145434B2 (en) 2019-05-08 2021-10-12 Erico International Corporation Low voltage power conductor and system
JP2022106091A (en) 2021-01-06 2022-07-19 日本航空電子工業株式会社 Manufacturing method of cable assembly, horn chip used in manufacturing method, and cable assembly manufactured by manufacturing method

Also Published As

Publication number Publication date
JPS6116740B2 (en) 1986-05-01

Similar Documents

Publication Publication Date Title
JPS63215525A (en) Manufacture of product containing high silica glass body
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JPS59128225A (en) Manufacture of base material for optical fibre
JPS6253452B2 (en)
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JP2938688B2 (en) Manufacturing method of preform for optical fiber
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPS58167442A (en) Production of optical fiber parent material
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPH0383829A (en) Preparation of base material for optical fiber
JPS5913453B2 (en) Method for manufacturing multicomponent glass fiber matrix
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPH0583497B2 (en)
JPS6230144B2 (en)
JPH0832573B2 (en) Method for manufacturing optical fiber preform
JPH0339978B2 (en)
JPS61106433A (en) Production of optical fiber base material
JPH0218334A (en) Production of base material for optical fiber
JPS6259059B2 (en)
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JP4053305B2 (en) Method for producing porous preform for optical fiber
JPS59121128A (en) Preparation of parent material for optical fiber
JPS62143840A (en) Production of optical fiber preform
JPH05330843A (en) Production of optical fiber preform