JPS6259059B2 - - Google Patents
Info
- Publication number
- JPS6259059B2 JPS6259059B2 JP13866780A JP13866780A JPS6259059B2 JP S6259059 B2 JPS6259059 B2 JP S6259059B2 JP 13866780 A JP13866780 A JP 13866780A JP 13866780 A JP13866780 A JP 13866780A JP S6259059 B2 JPS6259059 B2 JP S6259059B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- base material
- glass base
- laser
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 31
- 239000011521 glass Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 20
- 239000005373 porous glass Substances 0.000 claims description 14
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 150000002798 neodymium compounds Chemical class 0.000 claims 1
- 238000010298 pulverizing process Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000087 laser glass Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- -1 alkoxy compound Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000005331 crown glasses (windows) Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/17—Solid materials amorphous, e.g. glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/10—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/28—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/30—For glass precursor of non-standard type, e.g. solid SiH3F
- C03B2207/34—Liquid, e.g. mist or aerosol
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
本発明は不要の不純物の混入の少ない高性能の
レーザ用ガラス母材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-performance glass base material for a laser with less contamination of unnecessary impurities.
レーザ用ガラスの組成として代表的なものは、
バリウム・クラウン・ガラス(SiO2:59%,
BaO:26%,K2O:15%)中にNd2O3を3%程度
添加したものであり、従来、この種のガラス母材
はSiO2,BaO,K2O,Nd2O3等の粉末を、石英・
白金・アルミナ等から成るるつぼ中に入れ、高温
(1000〜1500℃)に加熱して溶融し製造してい
た。この方法でレーザ用ガラス母材を製造する場
合、るつぼ材等からの汚染を避けるのが難しく、
ガラス母材中に遷移金属(Fe,Cr,Cuなど)や
白金、さらには水酸基等が混入して、ガラス母材
の光吸収損失の増加をきたし、大出力動作時にレ
ーザが破壊し易い等の欠点があつた。また前述の
るつぼ法で得ることのできるガラス母材の融点は
700℃程度と比較的低く、レーザ発振時の昇温に
よる母材の劣化を助長していた。 Typical compositions of glass for lasers are:
Barium crown glass (SiO 2 : 59%,
(BaO: 26%, K 2 O: 15%) with approximately 3% Nd 2 O 3 added, and conventionally, this type of glass base material has been made of SiO 2 , BaO, K 2 O, Nd 2 O 3 Powders such as quartz and
It was manufactured by placing it in a crucible made of platinum, alumina, etc., and heating it to a high temperature (1000-1500°C) to melt it. When manufacturing laser glass base material using this method, it is difficult to avoid contamination from crucible materials, etc.
Contamination of transition metals (Fe, Cr, Cu, etc.), platinum, and even hydroxyl groups into the glass base material increases light absorption loss in the glass base material, making the laser more likely to break down during high-output operation. There were flaws. Also, the melting point of the glass base material that can be obtained by the crucible method mentioned above is
The temperature was relatively low at around 700°C, which accelerated the deterioration of the base material due to the temperature rise during laser oscillation.
さらにるつぼ法では、ガラス母材に屈折率分布
を持たせた、いわゆる集束型ガラス母材を作るの
が難しく、このために得られるレーザガラスロツ
ドは光の閉じ込め効果が少なく、励起光電力の増
加や、レーザ発振の不安定さを増すといつた欠点
もあつた。 Furthermore, with the crucible method, it is difficult to create a so-called focusing glass base material that has a refractive index distribution, and the resulting laser glass rod has little light confinement effect and has a low excitation light power. There were also drawbacks such as increase in laser oscillation and instability of laser oscillation.
本発明は前述の欠点のないレーザ用ガラス母材
の製造方法を提供しようとするものであり、近
年、石英ガラス系光フアイバ用ガラス母材の製造
方法として発展した、いわゆるスート・プロセス
に注目し、気相化学反応により、屈折率分布制御
用ドーパント(GGeO2,P2O5,B2O3等)および
レーザ作用を持つNd2O3を含む高純度の石英ガラ
ス系微粒子を堆積させて、多孔質ガラス体を形成
した後、高温に加熱し、Ndイオンを含んだ所望
の屈折率分布を有する高純度のレーザ用ガラス体
の製造を可能とするものである。以下図面によ
り、本発明を詳細に説明する。 The present invention aims to provide a method for manufacturing a glass base material for lasers without the above-mentioned drawbacks, and focuses on the so-called soot process, which has been developed in recent years as a method for manufacturing glass base materials for silica glass optical fibers. , by depositing high-purity silica glass-based fine particles containing dopants for controlling the refractive index distribution (GGeO 2 , P 2 O 5 , B 2 O 3, etc.) and Nd 2 O 3 , which has a laser effect, through a gas-phase chemical reaction. After forming a porous glass body, it is heated to a high temperature, thereby making it possible to manufacture a high-purity laser glass body containing Nd ions and having a desired refractive index distribution. The present invention will be explained in detail below with reference to the drawings.
本発明はガラス微粒子を焼結、堆積させて多孔
質ガラス母材を得る。このような多孔質母材は
SiO2のほか、1種以上の屈折率分布制御用ドー
パント(たとえばGeO2,P2O5,B2O3など)およ
びレーザ作用を持つNd2O3を含むものである。 In the present invention, a porous glass base material is obtained by sintering and depositing glass fine particles. Such a porous matrix
In addition to SiO 2 , it contains one or more types of dopants for controlling the refractive index distribution (eg, GeO 2 , P 2 O 5 , B 2 O 3 , etc.) and Nd 2 O 3 that has a laser effect.
このような多孔質母材を製造するにあたつて、
たとえば図に示す装置を用いることができる。図
において、1は回転引上げ装置、2は出発基板、
3は保護容器、4は多孔質母材、5は排気装置、
6a,6bはガラス微粒子合成トーチ(以下トー
チという)、7a,7bは気相原料供給管、8
a,8bは火炎およびガラス微粒子流、9は液相
原料溜め、10は液相原料(Nd化合物溶液)、1
1は超音波発振器である。 In manufacturing such a porous base material,
For example, the apparatus shown in the figure can be used. In the figure, 1 is a rotary pulling device, 2 is a starting substrate,
3 is a protective container, 4 is a porous base material, 5 is an exhaust device,
6a and 6b are glass particle synthesis torches (hereinafter referred to as torches); 7a and 7b are gas phase raw material supply pipes; 8
a, 8b are flame and glass particle flows, 9 is a liquid phase raw material reservoir, 10 is a liquid phase raw material (Nd compound solution), 1
1 is an ultrasonic oscillator.
気相原料供給管7aにより、主原料SiCl4とと
もに屈折率制御用にGeCl4,POCl3,BBr3等の1
種以上を混合した気相原料は、H2,O2,He,Ar
などとともに、トーチ7aに送り込まれる。また
液相原料溜め9に入れたNd化合物溶液10は、
超音波発振器11により霧状の加振粒子とされ、
Ar等の不活性ガスによつてトーチ7aへと輸送
される。Nd化合物溶液としては、たとえばNd
(OCH3)3やNdCl3をエタノール等の溶媒中に溶か
した溶液、またはNd(NO3)3・XH2Oを水に溶か
した溶液を用いることができる。トーチ7aの火
炎8aによつて、気相原料および霧状のNd化合
物溶液は加水分解され、酸化物ガラス微粒子とし
て出発基板2の上に堆積させる。これと同時に、
原料供給管7bにより気相原料SiCl4をトーチ6
bに送り、火炎8bにより加水分解してガラス微
粒子(SiO2)とし、出発基板2の上に堆積させ
る。 Through the gas phase raw material supply pipe 7a, one of GeCl 4 , POCl 3 , BBr 3 , etc. is supplied for refractive index control along with the main raw material SiCl 4 .
Gas-phase raw materials mixed with more than one species include H 2 , O 2 , He, Ar
It is sent to the torch 7a along with the following. In addition, the Nd compound solution 10 placed in the liquid phase raw material reservoir 9 is
The ultrasonic oscillator 11 converts the particles into atomized vibrating particles,
It is transported to the torch 7a by an inert gas such as Ar. As the Nd compound solution, for example, Nd
A solution of (OCH 3 ) 3 or NdCl 3 dissolved in a solvent such as ethanol, or a solution of Nd(NO 3 ) 3 ·XH 2 O dissolved in water can be used. The gas phase raw material and the atomized Nd compound solution are hydrolyzed by the flame 8a of the torch 7a, and deposited on the starting substrate 2 as oxide glass particles. At the same time,
The gas phase raw material SiCl 4 is supplied to the torch 6 through the raw material supply pipe 7b.
b, and is hydrolyzed by flame 8b to form glass fine particles (SiO 2 ), which are deposited on the starting substrate 2.
出発基板2は回転引上げ装置1によりガラス微
粒子の堆積に同期して回転しつつ引き上げられ
る。これにより半径方向に屈折率分布を有し、か
つNd2O3を含む円柱状の多孔質ガラス母材4を形
成させるのである。 The starting substrate 2 is rotated and pulled up by the rotary lifting device 1 in synchronization with the deposition of glass particles. As a result, a cylindrical porous glass base material 4 having a refractive index distribution in the radial direction and containing Nd 2 O 3 is formed.
次いで前記のように形成された多孔質ガラス母
材は、電気炉中で脱水ガスにさらして母材中の残
留水分や水酸基を除去しつつ、1400〜1500℃程度
の高温に加熱し、脱泡して透明ガラス化させる。
脱水ガスとしては、たとえばHeガスとClガスの
混合物を用いることができる。 Next, the porous glass base material formed as described above is exposed to dehydration gas in an electric furnace to remove residual moisture and hydroxyl groups in the base material, and heated to a high temperature of about 1,400 to 1,500°C to defoam. to make it transparent vitrified.
As the dehydration gas, for example, a mixture of He gas and Cl gas can be used.
実施例
図における装置において、気相原料としてトー
チ6aにはSiCl4およびGeCl4を、トーチ6bには
SiCl4を、Nd化合物溶液としてはNdCl3を0.5重量
%含むエタノール溶液を、原料溜め9に入れ、超
音波発振器において5MHzの超音波をかけて霧状
粒子化したものを、Arガス0.3/minとともに
トーチ6aへ送り込んだところ、酸水素炎中でガ
ラス微粒子が合成され、出発基板2に太さ50mm
φ、長さ400mmの多孔質ガラス母材4が形成され
た。Example In the apparatus shown in the figure, SiCl 4 and GeCl 4 are used as gas phase raw materials in the torch 6a, and in the torch 6b.
An ethanol solution containing 0.5% by weight of NdCl 3 as a Nd compound solution was put into the raw material reservoir 9, and the resulting mixture was made into atomized particles by applying ultrasonic waves at 5MHz using an ultrasonic oscillator. When the glass particles were fed into the torch 6a, fine glass particles were synthesized in the oxyhydrogen flame, and the starting substrate 2 was coated with a thickness of 50 mm.
A porous glass base material 4 having a diameter of 400 mm and a length of 400 mm was formed.
次いで前記多孔質ガラス母材を電気炉中に保持
し、Cl2ガス、Heガスを1:50(体積化)の割合
で混合したガスを流しながら、1500℃まで200
℃/時間の速度で昇温した。1500℃で2時間保持
した後、透明ガラス化された母材を取り出した。 Next, the porous glass base material was held in an electric furnace and heated at 200°C to 1500°C while flowing a gas mixture of Cl 2 gas and He gas at a ratio of 1:50 (by volume).
The temperature was increased at a rate of °C/hour. After holding at 1500°C for 2 hours, the transparent vitrified base material was taken out.
干渉顕微鏡で母材断面の屈折率分布を観察した
ところ、グレーデツド型であり、またX線マイク
ロアナライザによる測定の結果、Nd2O3は約1.5
重量%含まれていた。製造されたガラス母材は
Fe2+,Cu2+等の遷移金属の混入は極めて微量
(1PPb以下)で、かつ混入するOH基の量も
0.1ppm以下と少なかつた。また軟化温度は1300
℃程度と高かつた。 When the refractive index distribution of the cross section of the base material was observed using an interference microscope, it was found to be graded, and as a result of measurement using an X-ray microanalyzer, Nd 2 O 3 was approximately 1.5
It contained % by weight. The manufactured glass base material is
The amount of transition metals such as Fe 2+ and Cu 2+ is extremely small (less than 1PPb), and the amount of OH groups mixed in is also small.
It was low at less than 0.1ppm. Also, the softening temperature is 1300
It was as high as ℃.
なおこの方法の高純度性を示すために、前記実
施例において、液相原料溜め9にNdCl3を添加し
ないエタノールを入れて、Nd2O3を含まない多孔
質ガラス母材を作製し、同様の操作で透明ガラス
化し、肉厚石英ガラス管をかぶせて光フアイバと
して線引きした。 In order to demonstrate the high purity of this method, in the above example, ethanol without added NdCl 3 was added to the liquid phase raw material reservoir 9 to produce a porous glass base material free of Nd 2 O 3 , and the same procedure was carried out. It was made into transparent glass by the following procedure, covered with a thick quartz glass tube, and drawn as an optical fiber.
この光フアイバの光吸収は0.8〜1.6μmで
3dB/Km以下と極めて少なく、この方法の高純度
性が実証された。したがつてこの方法では、
NdCl3として99.99%程度の高純度のものを用いれ
ば、得られるレーザ用ガラス母材の純度は実用上
全く問題がない。 The light absorption of this optical fiber is 0.8 to 1.6 μm.
It was extremely low, less than 3 dB/Km, demonstrating the high purity of this method. Therefore, in this method,
If NdCl 3 with a high purity of about 99.99% is used, the purity of the resulting glass base material for a laser will pose no practical problem.
なおNd2O3の添加量を増す場合には、多孔質ガ
ラス母材中にP2O5を添加しておくことは、Nd元
素間の相互作用をおさえ、機能の低減化を防ぐた
めに有効である。 When increasing the amount of Nd 2 O 3 added, adding P 2 O 5 to the porous glass matrix is effective in suppressing interactions between Nd elements and preventing functional deterioration. It is.
前記の実施例においては主成分SiO2、屈折率
制御用ドーパントGeO2,P2O5,B2O3用のガラス
形成原料としてハロゲン化物を用いたが、このほ
かにSi(OCH3)4,Ge(OC4H9)4,PO
(OC2H5)3,B(OC2H5)3等の液相アルコキシ化
合物を用い、Nd化合物溶液と同様に超音波振動
子により霧状の加振粒子化してトーチ6a,6b
に輸送することによつても、実施例と同様の多孔
質ガラス母材が得られる。 In the above examples, halides were used as glass forming raw materials for the main component SiO 2 and the refractive index control dopants GeO 2 , P 2 O 5 , and B 2 O 3 , but in addition to these, Si(OCH 3 ) 4 ,Ge ( OC4H9 ) 4 ,PO
Using a liquid phase alkoxy compound such as (OC 2 H 5 ) 3 or B(OC 2 H 5 ) 3 , it is turned into atomized vibrating particles using an ultrasonic vibrator in the same way as the Nd compound solution, and then applied to the torches 6a and 6b.
A porous glass base material similar to that of the example can also be obtained by transporting the glass base material.
本発明の実施例において説明した方法は、いわ
ゆる気相軸付法(VAD法)として知られた方法
であるが、このほか出発棒の側面に多孔質ガラス
体を積層してもよく、また平板上に積層して光
IC用基板にも適用できることは言うまでもな
い。 The method explained in the embodiments of the present invention is a method known as the so-called vapor phase attachment method (VAD method), but in addition, a porous glass body may be laminated on the side surface of the starting rod, or a flat glass body may be laminated on the side surface of the starting rod. Layered on top of the light
Needless to say, it can also be applied to IC substrates.
また本発明の方法は、レーザ作用を持つ他の希
土類イオンGd3+,HO3+,Yb3+,Er3+,Tm3+,
Eu3+等を含むレーザ用ガラス母材の作製に適用
できることは言うまでもない。 Furthermore, the method of the present invention can be applied to other rare earth ions having a laser action such as Gd 3+ , HO 3+ , Yb 3+ , Er 3+ , Tm 3+ ,
Needless to say, it can be applied to the production of glass base materials for lasers containing Eu 3+ and the like.
本発明の方法で得られるレーザ用ガラス母材
は、屈折率分布を持つているから光の閉じ込め作
用があるので、通常の石英ガラス系光フアイバと
同様の手段で長尺フアイバ化することが可能であ
り、ガラスレーザ素子の応用範囲を拡げたり、光
増幅素子、ラマンレーザ素子等の機能性素子の分
野に応用しても長所が大きい。また不純物が少な
く、ガラス軟化温度も1300℃程度と高いので、大
出力動作時にも昇温による劣化が少ないという利
点がある。 The glass base material for lasers obtained by the method of the present invention has a refractive index distribution and has a light confinement effect, so it can be made into a long fiber by the same method as a normal silica glass optical fiber. Therefore, it has great advantages in expanding the scope of application of glass laser devices and applying it to the field of functional devices such as optical amplification devices and Raman laser devices. Furthermore, since it contains few impurities and has a high glass softening temperature of around 1300°C, it has the advantage of less deterioration due to temperature rise even during high output operation.
図は本発明において用いる多孔質ガラス母材を
製造するための装置の一例の構成を示す図であ
る。
1……回転引上げ装置、2……出発基板、3…
…保護容器、4……多孔質ガラス母材、5……排
気装置、6a,6b……トーチ、7a,7b……
気相原料供給管、8a,8b……火炎、9……液
相原料溜め、10……液相原料(Nd化合物溶
液)、11……超音波発振器。
The figure is a diagram showing the configuration of an example of an apparatus for producing a porous glass preform used in the present invention. 1...Rotary pulling device, 2...Starting board, 3...
...Protective container, 4... Porous glass base material, 5... Exhaust device, 6a, 6b... Torch, 7a, 7b...
Gas phase raw material supply pipe, 8a, 8b...Flame, 9...Liquid phase raw material reservoir, 10...Liquid phase raw material (Nd compound solution), 11...Ultrasonic oscillator.
Claims (1)
孔質ガラス体を形成した後、高温に加熱して透明
ガラス化するガラス体の製造方法において、ネオ
ジウム化合物を溶解した溶液を超音波振動により
加振粒子化して高温反応部に供給することによ
り、Nd2O3を含む多孔質ガラス体を形成すること
を特徴とするレーザ用ガラス母材の製造方法。1 In a method for manufacturing a glass body in which a porous glass body with a refractive index distribution is formed by a gas phase chemical reaction and then heated to a high temperature to become transparent vitrified, a solution containing a neodymium compound dissolved therein is vibrated by ultrasonic vibration. A method for producing a glass base material for a laser, characterized in that a porous glass body containing Nd 2 O 3 is formed by pulverizing the material and supplying it to a high-temperature reaction section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13866780A JPS5767046A (en) | 1980-10-06 | 1980-10-06 | Manufacture of glass base material for laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13866780A JPS5767046A (en) | 1980-10-06 | 1980-10-06 | Manufacture of glass base material for laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5767046A JPS5767046A (en) | 1982-04-23 |
JPS6259059B2 true JPS6259059B2 (en) | 1987-12-09 |
Family
ID=15227304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13866780A Granted JPS5767046A (en) | 1980-10-06 | 1980-10-06 | Manufacture of glass base material for laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5767046A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63184386A (en) * | 1986-09-18 | 1988-07-29 | Furukawa Electric Co Ltd:The | Optical fiber and optical fiber type light emitting material |
FR2675649B1 (en) * | 1991-04-22 | 1993-07-16 | Alcatel Nv | TELECOMMUNICATIONS SYSTEM WITH FIBER OPTICAL AMPLIFIERS FOR THE TRANSMISSION OF LONG DISTANCE SIGNALS. |
US5296012A (en) * | 1992-12-28 | 1994-03-22 | Corning Incorporated | Method of making optical waveguide preforms |
-
1980
- 1980-10-06 JP JP13866780A patent/JPS5767046A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5767046A (en) | 1982-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4362545A (en) | Support member for an optical waveguide preform | |
MacChesney et al. | Materials development of optical fiber | |
JPS63162537A (en) | Glass substrate formed from gas phase derived gel and production process therefor | |
WO2016021576A1 (en) | Optical fiber base material and method for producing optical fiber | |
JP2527849B2 (en) | Optical fiber transmission line manufacturing method | |
CN100503493C (en) | Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same | |
RU2236386C2 (en) | Method of manufacturing optic fiber intermediate product | |
KR940004209B1 (en) | Optical fiber component optical coupler and method of producing thereof | |
US11780762B2 (en) | Method for manufacturing a preform for optical fibers | |
JPS6259059B2 (en) | ||
US8857372B2 (en) | Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique | |
US6418757B1 (en) | Method of making a glass preform | |
JP2000191336A (en) | Production of optical fiber preform and production of optical fiber | |
US4289522A (en) | Support member for an optical waveguide preform | |
KR101343683B1 (en) | Process for producing optical fiber base and apparatus therefor | |
JPS605030A (en) | High purity glass powder and apparatus and method for manufacturing glass products thereby | |
JPH0244031A (en) | Production of nonlinear optical glass | |
JPS6289B2 (en) | ||
Morse et al. | A High Temperature Sol-Gel Process for Glass Formation: Aerosol Doping in Modified Chemical Vapor Deposition | |
JPH07115887B2 (en) | Method for producing glass containing rare earth element | |
Morse et al. | Aerosol transport for optical fiber core doping: a new technique for glass formation | |
KR101211309B1 (en) | Base material for optical fiber and method for production thereof and method for production of optical fiber | |
JPH05330831A (en) | Production of rare-earth-element-doped quartz glass | |
JPS60108325A (en) | Production of glass | |
JPS6210942B2 (en) |