JPS6036320A - Preparation of fine powder of silicic acid - Google Patents

Preparation of fine powder of silicic acid

Info

Publication number
JPS6036320A
JPS6036320A JP14605483A JP14605483A JPS6036320A JP S6036320 A JPS6036320 A JP S6036320A JP 14605483 A JP14605483 A JP 14605483A JP 14605483 A JP14605483 A JP 14605483A JP S6036320 A JPS6036320 A JP S6036320A
Authority
JP
Japan
Prior art keywords
silicic acid
plasma
passage ring
plasma flame
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14605483A
Other languages
Japanese (ja)
Inventor
Michio Uemura
道夫 植村
Masanao Tsukada
塚田 正直
Masaru Sato
優 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIJIYUU RES CENTER KK
Original Assignee
NICHIJIYUU RES CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIJIYUU RES CENTER KK filed Critical NICHIJIYUU RES CENTER KK
Priority to JP14605483A priority Critical patent/JPS6036320A/en
Publication of JPS6036320A publication Critical patent/JPS6036320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prepare spherical fine powder of silicic acid having minute particle diameters, by feeding a silicon-containing substance to plasma flame, reducing viscosity of formed silicic acid to provide it with fluidity, releasing it to atmospheric pressure. CONSTITUTION:The torch 1 to generate plasma is provided with the non-conductive tubular gas passage ring 2 passing only high frequency, an auxiliary gas such as air, oxygen, nitrogen, argon, etc. is jetted from the feed opening 3 to the interior of the passage ring 2, and simultaneously a raw material for silicic acid is from the inlet 4 for raw material to it. While high frequency is applied to the high-frequency coils 5, 5', and 5'' set at the outside of the passage ring 2, magnetic field is generated in the torch 1, and the discharge plasma flames 6, 6', and 6'' are produced. Formed silicic acid is heated by the plasma flames 6, 6', and 6'', the viscosity is reduced gradually, it is provided with fluidity, released from one end of the passage ring 2 to atmosphere, quenched, atomized, and pulverized silicic acid is collected in the gathering container 7.

Description

【発明の詳細な説明】 本発明はプラズマ炎によ2て微粉末けい酸を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing finely powdered silicic acid using a plasma flame.

従来、微粉末のけい酸はホワイトカーボンと呼ばれ、水
ガラスを加水分解した後、洗浄、脱水、乾燥後、粉砕し
て得る湿式法、又は無水けい酸をコークスと共に電気炉
で強熱して金属けい素又はフェロシリコンを得、これを
塩素化して四塩化けい素とし、これを加熱気化させたも
のに水素を加え、さらに空気を混合して燃焼する乾式法
によって製造されている。
Conventionally, fine powdered silicic acid is called white carbon, and is produced by a wet method by hydrolyzing water glass, washing, dehydrating, drying, and pulverizing it, or by heating anhydrous silicic acid with coke in an electric furnace to produce metal. It is produced by a dry method in which silicon or ferrosilicon is obtained, chlorinated to produce silicon tetrachloride, heated and vaporized, hydrogen is added, and air is mixed and burned.

しかし、これらの微粉末けい酸は、いずれも出発原料の
けい石から煩雑な工程を経て製造されており、多大なエ
ネルギーを消費する欠点を有している。
However, all of these finely powdered silicic acids are manufactured from silica as a starting material through complicated processes, and have the disadvantage of consuming a large amount of energy.

′一方、近年工業的に実用化されつつあるプラズマ炎に
よる金属微粉末又は金属酸化物を得る方法は従来より公
知であるが、この方法によって微粉末けい酸を製造する
ことは実施されていない。
'On the other hand, although a method for obtaining fine metal powder or metal oxide using plasma flame, which has recently been put into practical use industrially, has been known, production of fine powder silicic acid by this method has not been carried out.

それは、けい酸質原料を10,000〜20,000°
Cと高温のプラズマ炎中に送入して加熱溶融させて、噴
出するプラズマジェットによって大気中に放出霧化させ
ても、溶融されたけい酸のプラズマ炎内の滞留時間が極
めて短かく、溶融けい酸の融点である]、? 00〜2
,000℃程度の半溶融状態でプラズマ炎内から放出さ
れるので、放出された時に形状が球形とはならず、はと
んどがくの字状等の不規則な形状となり、粒径も30 
lt程度とそれほど微細化できず、従来の乾式法や湿式
法の4采な10μ以下のものが得られないだめと考えら
れる。
It is possible to heat silicic acid raw materials at 10,000 to 20,000°
Even if silicic acid is fed into a high-temperature plasma flame, heated and melted, and released into the atmosphere by a plasma jet and atomized, the residence time of the molten silicic acid in the plasma flame is extremely short, and the molten silicic acid does not melt. is the melting point of silicic acid]? 00-2
Since it is released from the plasma flame in a semi-molten state at about .000℃, the shape is not spherical when released, but is irregular, such as a dogleg shape, and the particle size is 30.
It is considered that it is not possible to obtain particles of 10 μm or less, which are the same as the conventional dry method or wet method.

本発明者等は、上述知見に基づいて研究の結果、特許請
求の範囲の構成とすることにより、゛プラズマ炎による
加熱溶融によって形状が球形でしかも粒径の微細が微粉
末けい酸を得ることができた。
As a result of research based on the above-mentioned knowledge, the present inventors have found that, by configuring the structure as claimed in the claims, it is possible to obtain fine powder silicic acid having a spherical shape and a fine particle size by heating and melting with a plasma flame. was completed.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられるけい素含有物質は、けい石。The silicon-containing substance used in the present invention is silica.

金属けい素、フェロシリコンダスト、有機けい素化合物
、シリコンアルコキシド化合物等が使用でき、これらの
けい素含有物質をプラズマ炎中で加熱溶融する。ここで
、これらのけい素含有物質力玉分解又は酸化されて生成
するけい酸が、粘性をイ氏下して流動性を帯びる温度捷
でプラズマ炎内に滞留させることが最も重要である。
Metallic silicon, ferrosilicon dust, organosilicon compounds, silicon alkoxide compounds, etc. can be used, and these silicon-containing substances are heated and melted in a plasma flame. Here, it is most important that the silicic acid produced by the decomposition or oxidation of these silicon-containing substances is allowed to remain in the plasma flame at a temperature that lowers its viscosity and becomes fluid.

けい酸は加熱すると約1700°Cから溶融を始めるが
、この温度では粘性が高いため、こ゛の状態でプラズマ
炎中から放出すれば形状が球形となり従って、けい酸の
粘性が低下して流動性を帯びる温度、具体的には2,1
00°C以上に加熱したのち、プラズマ炎中から放出す
ることによって形状が球形で微細なけい酸を得ることが
できる。
When silicic acid is heated, it begins to melt at about 1700°C, but since it is highly viscous at this temperature, if it is released from a plasma flame in this state, it will become spherical in shape, and the viscosity of silicic acid will decrease, making it less fluid. temperature, specifically 2,1
Fine spherical silicic acid can be obtained by heating it to 00°C or higher and then releasing it from a plasma flame.

また、加熱温度は2,100℃より高ければ高い程、よ
り球形で微細なけい酸が得られる。
Further, the higher the heating temperature is than 2,100°C, the more spherical and fine silicic acid can be obtained.

さて、けい酸の粘性が低下して流動性を帯びる温度まで
プラズマ炎内に滞留させる具体的手段としては、例えば
図面に示す様々装置が考えられる。
Now, as specific means for retaining silicic acid in the plasma flame to a temperature at which the viscosity of the silicic acid decreases and becomes fluid, various devices shown in the drawings can be considered, for example.

図面は、タンデム型プラズマと称されるプラズマ発生装
置によって微粉末けい酸を得るためのもので、プラズマ
発生トーチ1は、高周波のみを通す不良導電体からなる
筒状のガス通路環2を有し、このガス通路環2内に、ガ
ス注入口3がら空気。
The drawing shows a device for obtaining fine powder silicic acid using a plasma generation device called a tandem plasma, and a plasma generation torch 1 has a cylindrical gas passage ring 2 made of a poor conductor that allows only high-frequency waves to pass through. , Air enters the gas passage ring 2 through the gas inlet 3.

酸素、窒素、アルゴン等の補助ガスを噴射しつつ、同時
に原料送入口4よりけい酸質原料を送入し、前記補助ガ
ス流によってガス通路環2内の他端に搬送する。
While injecting an auxiliary gas such as oxygen, nitrogen, or argon, a silicic acid raw material is simultaneously introduced from the raw material inlet 4 and transported to the other end of the gas passage ring 2 by the auxiliary gas flow.

一方、これと同時に、ガス通路環2の外側に設けたプラ
ズマ炎を発生させるだめの高周波コイル5 、5’、 
5″に電源より高周波電圧を印加してプラズマ発生トー
チ1内に磁界を発生させて放電させてプラズマ炎6,6
.6を発生させる。
Meanwhile, at the same time, high-frequency coils 5, 5', which are provided outside the gas passage ring 2 and are used to generate a plasma flame,
A high frequency voltage is applied from a power supply to 5" to generate a magnetic field in the plasma generation torch 1 and discharge it, thereby generating plasma flames 6, 6.
.. Generate 6.

ここで、補助ガス流によって搬送されたけい酸質原料は
、まず始めに第1の高周波コイル5によって発生したプ
ラズマ炎によって溶融される。
Here, the silicic acid raw material carried by the auxiliary gas flow is first melted by the plasma flame generated by the first high-frequency coil 5.

ここでは、まだけい酸は半溶融状態で粘性が高いので、
さらに第2の高周波コイル5′によって発生したプラズ
マ炎によってさらに加熱し、けい酸の粘性を低下させ、
さらに第3の高周波コイル5″によって発生したプラズ
マ炎によって加熱することによって、完全にけい酸の粘
性を低下させた後、前記ガス通路環2の他端から噴出さ
せて大気中に放出させ急冷霧化し、捕捉容器7内に微細
化されたけい酸を回収する。
Here, the diic acid is still in a semi-molten state and has high viscosity, so
Furthermore, the silicic acid is further heated by the plasma flame generated by the second high-frequency coil 5', and the viscosity of the silicic acid is reduced.
Furthermore, the viscosity of the silicic acid is completely reduced by heating it with a plasma flame generated by the third high-frequency coil 5'', and then the silicic acid is ejected from the other end of the gas passage ring 2 and released into the atmosphere to rapidly cool it. The finely divided silicic acid is recovered in the capture container 7.

ここで、けい酸の粘性を低下させ流動性を帯びる温度ま
でプラズマ炎内に滞留する手段として高周波コイルを3
個連接したタンデム型プラズマ発生装置を例示しだが、
ダンデム型プラズマ発生装置を用いる場合高周波コイル
を2個以上連接すれば溶融けい酸の温度が2,100°
C程度となり、大気中に放出霧化されたけい酸の形状が
ほとんど球形となるのでプラズマフレームの長さにもよ
るが、この様々装置では高周波コイルを少なくとも2個
を連接すればよい。また、得られるけい酸の粒径は高周
波コイルの連接する数とアークガスの流量調節により制
御できる。また、この他のプラズマ発生装置であって加
熱時間を長くできるものであればどの様なものでもよい
ことは勿論である。
Here, three high-frequency coils were installed as a means of reducing the viscosity of silicic acid and retaining it in the plasma flame until it reached a temperature at which it became fluid.
This is an example of a tandem plasma generator that is connected to each other.
When using a dandem type plasma generator, if two or more high-frequency coils are connected, the temperature of molten silicic acid can be increased to 2,100°.
C, and the shape of the atomized silicic acid released into the atmosphere is almost spherical, so it is sufficient to connect at least two high-frequency coils in these various devices, although it depends on the length of the plasma flame. Further, the particle size of the obtained silicic acid can be controlled by adjusting the number of connected high-frequency coils and the flow rate of arc gas. Moreover, it goes without saying that any other plasma generating apparatus may be used as long as it can extend the heating time.

以上の様な本発明方法は、粒径の微細で、かつ球状のけ
い酸を簡単な工程で得ることができるもので、工業上ひ
益すること犬なるものである。
The method of the present invention as described above is capable of obtaining spherical silicic acid with a fine particle size in a simple process, and is industrially useful.

以下、実施例により説明する。Examples will be explained below.

実施例】 図面に示す装置を用いて空気を517m1n、白けい石
粉末(−150mesh)を100 f/minの供給
速度で供給し、プラズマ炎によって溶融後、捕捉容器に
捕捉した。
EXAMPLE Using the apparatus shown in the drawings, 517 ml of air and white silica powder (-150 mesh) were supplied at a supply rate of 100 f/min, and after being melted by a plasma flame, they were captured in a capture container.

第1表に結果を示す。Table 1 shows the results.

実施例2 実施例1と同一条件で、白けい石粉末を原料とし、高周
波コイル2個連接したプラズマ発生装置により、プラズ
マ炎によって溶融して微粉末けい酸を得た。
Example 2 Under the same conditions as in Example 1, white silica powder was used as a raw material and was melted by plasma flame using a plasma generator in which two high-frequency coils were connected to obtain fine powder silicic acid.

結果を第1表に示す。The results are shown in Table 1.

比較例 実施例1と同一条件で、白けい石粉末を原料とし、高周
波コイル1個のみのプラズマ発生装置によ゛す、プラズ
マ炎によって溶融して微粉末けい酸を得た。
Comparative Example Under the same conditions as in Example 1, white silica powder was used as a raw material and was melted by a plasma flame using a plasma generator having only one high-frequency coil to obtain finely powdered silicic acid.

結果を第1表に示す。The results are shown in Table 1.

第 1 表 コイルを2個以上とすることによって、微粉末けい酸の
粒径を5μ以下と小さく、かつその形状を90%以」−
も球形化することができた。
Table 1 By using two or more coils, the particle size of the fine powder silicic acid can be reduced to 5μ or less, and the shape can be reduced to 90% or more.
It was also possible to make it spherical.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す説明図である。 1・・・ プラズマ発生装置、2 ・・・ガス通路環、
3・ ガス注入口、4 ・・・・・・・原料送入口15
15’15″・・・ ・高周波コイ” 1 6 + 6
 ’ + 6”””・・プラズマ炎、7・・・・・・・
捕捉容器。
The drawings are explanatory diagrams showing one embodiment of the present invention. 1... plasma generator, 2... gas passage ring,
3. Gas inlet, 4... Raw material inlet 15
15'15"... ・High frequency carp" 1 6 + 6
' + 6"""...Plasma flame, 7...
Capture container.

Claims (1)

【特許請求の範囲】 プラズマ炎によって、けい素含有物質を溶融せしめ、大
気中に放出させて微粉末けい酸を得る方法において、 プラズマ炎にけい素含有物質を送入し、該けい素含有物
質が分解又は酸化されて生成するけい酸の粘性が急激に
低下して流動性を帯びる温度寸で前記プラズマ炎内にけ
い素含有物質を滞留させた後、大気中に放出することを
特徴とする微粉末けい酸の製造法。
[Claims] A method for obtaining finely powdered silicic acid by melting a silicon-containing substance using a plasma flame and releasing it into the atmosphere, comprising: feeding the silicon-containing substance into the plasma flame; The silicon-containing substance is retained in the plasma flame at a temperature at which the viscosity of the silicic acid produced by decomposition or oxidation of the plasma rapidly decreases and becomes fluid, and then released into the atmosphere. A method for producing finely powdered silicic acid.
JP14605483A 1983-08-10 1983-08-10 Preparation of fine powder of silicic acid Pending JPS6036320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14605483A JPS6036320A (en) 1983-08-10 1983-08-10 Preparation of fine powder of silicic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14605483A JPS6036320A (en) 1983-08-10 1983-08-10 Preparation of fine powder of silicic acid

Publications (1)

Publication Number Publication Date
JPS6036320A true JPS6036320A (en) 1985-02-25

Family

ID=15399043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14605483A Pending JPS6036320A (en) 1983-08-10 1983-08-10 Preparation of fine powder of silicic acid

Country Status (1)

Country Link
JP (1) JPS6036320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079695A (en) * 2009-10-06 2011-04-21 Sumitomo Osaka Cement Co Ltd Method for producing silicon lower oxide particle and dispersion of the particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079695A (en) * 2009-10-06 2011-04-21 Sumitomo Osaka Cement Co Ltd Method for producing silicon lower oxide particle and dispersion of the particles

Similar Documents

Publication Publication Date Title
JP6495323B2 (en) Glass batch processing method and apparatus using dual source cyclone plasma reactor
JP3938426B2 (en) Oxides obtained by pyrolysis, doped with aerosols
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
US3848068A (en) Method for producing metal compounds
KR20100024663A (en) Method and plasma torch for direct and continous synthesis of nano-scaled composite powders using thermal plasmas
JP2002346377A (en) Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor
US3733387A (en) Preparation of finely particulate silicon dioxide
US20030102207A1 (en) Method for producing nano powder
CN102126746A (en) Method and device for preparing nano tin dioxide by using high-frequency plasmas as heat source
US3419351A (en) Vapor phase process for the conversion of metal halides into their oxides
CN105314636A (en) Method for preparing high-purity ultra-fine boron carbide powder from plasmas
JPS6036320A (en) Preparation of fine powder of silicic acid
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
CN103072960A (en) Production method of nano silicon nitride powder
CN115740471A (en) Ultrasonic-assisted plasma-arc composite atomization powder making equipment and powder making method
JPH06299209A (en) Formation of powder granule of magnetic material
JPH02286B2 (en)
JP2002253953A (en) Apparatus and method of manufacturing ultrafine particle
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JPS63147812A (en) Production of silicon carbide powder
CN115028193B (en) Preparation method of nano indium oxide powder
EP1204591B1 (en) Production of silica particles
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPS61197416A (en) Production of silicon dioxide having ultra-high purity
JPS6036331A (en) Preparation of ultrafine powder of stabilized zirconia