JPS5941772B2 - Ultrafine powder synthesis furnace - Google Patents

Ultrafine powder synthesis furnace

Info

Publication number
JPS5941772B2
JPS5941772B2 JP54134231A JP13423179A JPS5941772B2 JP S5941772 B2 JPS5941772 B2 JP S5941772B2 JP 54134231 A JP54134231 A JP 54134231A JP 13423179 A JP13423179 A JP 13423179A JP S5941772 B2 JPS5941772 B2 JP S5941772B2
Authority
JP
Japan
Prior art keywords
gas
powder
plasma flame
coil
synthesis furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54134231A
Other languages
Japanese (ja)
Other versions
JPS5658537A (en
Inventor
浩介 中村
忠道 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54134231A priority Critical patent/JPS5941772B2/en
Publication of JPS5658537A publication Critical patent/JPS5658537A/en
Publication of JPS5941772B2 publication Critical patent/JPS5941772B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は新規な高周波誘導熱プラズマ法による超微粉合
成炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafine powder synthesis furnace using a novel high frequency induction thermal plasma method.

従来の高周波誘導法プラズマ法による粉体合成炉ではア
ルゴンを主体とするガス流を熱プラズマとし、このプラ
ズマフレーム中に原料を導入、気化1反応させ、下流域
で析出する微粉を捕集している。
In the conventional powder synthesis furnace using the high-frequency induction plasma method, a gas flow mainly composed of argon is used as thermal plasma, raw materials are introduced into this plasma flame, vaporization reaction takes place, and fine powder precipitated in the downstream region is collected. There is.

しかし従来方式では得られる粉体の粒径が0.3〜0.
5μ程度のもので、より一層微細な粉体を収率よく得る
ことは困難であった。
However, in the conventional method, the particle size of the powder obtained is 0.3~0.
It was difficult to obtain finer powder with a good yield of about 5 μm.

一方超微粉に対するニーズは強く、その高効率な合成法
の開発が強く、望まれている。
On the other hand, there is a strong need for ultrafine powder, and the development of highly efficient synthesis methods is strongly desired.

本発明の目的は粒径が0.08μ以下の粉体でも高収率
で得ることができる高周波誘導熱プラズマ方式による超
微粉合成炉を提供することにある。
An object of the present invention is to provide an ultrafine powder synthesis furnace using a high-frequency induction thermal plasma method that can obtain powder with a particle size of 0.08 μm or less at a high yield.

本発明は、高周波誘導加熱コイルと、該コイルの内側に
ガスを供給するノズルと、前記コイルによる加熱によっ
て前記ノズルの先端に形成される前記ガスのプラズマフ
レーム中に金属粉末および該金属粉末と化学反応する反
応ガスを供給するノズルと、前記金属粉末と反応ガスと
の化学反応によって形成された無機微粉末を回収する容
器とを備えたものにおいて、前記容器の前記プラズマフ
レームのテールフレーム部に相当する位置に前記プラズ
マフレームを冷却する冷却用ガスを噴出させる冷却用ガ
ス導入室を設けたことを特徴とする超微粉合成炉にある
The present invention provides a high-frequency induction heating coil, a nozzle for supplying gas to the inside of the coil, and a metal powder and a chemical substance formed between the metal powder and the metal powder during a plasma flame of the gas formed at the tip of the nozzle by heating by the coil. A device comprising a nozzle for supplying a reactive gas to be reacted and a container for collecting inorganic fine powder formed by a chemical reaction between the metal powder and the reactive gas, which corresponds to a tail frame portion of the plasma flame of the container. The ultrafine powder synthesis furnace is characterized in that a cooling gas introduction chamber is provided at a position where cooling gas is ejected to cool the plasma flame.

本発明は微粉合成炉によって形成される粉末の粒子の大
きさが原料を含むガス流がプラズマを通過した後の温度
勾配に支配されやすいことに注目し種々実験検討した結
果なされたもので、プラズマフレームのテールフレーム
部に冷却用ガスヲ吹きつけることにより超微粉末を得る
ことができることを見い出した。
The present invention was made as a result of various experimental studies focusing on the fact that the size of powder particles formed in a powder synthesis furnace is easily controlled by the temperature gradient after the gas flow containing the raw material passes through the plasma. It has been discovered that ultrafine powder can be obtained by blowing cooling gas onto the tail frame portion of the frame.

実施例 図は、本発明の超微粉合成炉の一例を示す断面構成図で
ある。
The embodiment diagram is a cross-sectional configuration diagram showing an example of the ultrafine powder synthesis furnace of the present invention.

導入管8からアルゴンをプラズマトーチ2へ導入し、4
MHzの高周波電源に接続されている誘導コイル3を利
用しだ熱プラズマフレーム16をトーチ2の下部に発生
させる。
Argon is introduced into the plasma torch 2 from the introduction pipe 8, and
A thermal plasma flame 16 is generated at the bottom of the torch 2 using an induction coil 3 connected to a high frequency power source of MHz.

導入管9からはトーチ2の内壁への反応物の析着を防止
する目的で水素ガスを導入する。
Hydrogen gas is introduced from the introduction pipe 9 for the purpose of preventing deposition of reactants on the inner wall of the torch 2.

325メツシュ全通のシリコン粉末18を入れた原料フ
ィーダ1には導入管7からメタンを導入しシリコン粉末
18とメタンの混合物を熱プラズマフレーム16中ニ供
給する。
Methane is introduced from the introduction pipe 7 into the raw material feeder 1 containing 325 meshes of silicon powder 18, and a mixture of the silicon powder 18 and methane is supplied into the thermal plasma flame 16.

プラズマフレーム16のテールフレーム部17の下流に
は容器6内に水冷金属筒5を設置され析出物19が図の
ように水冷金属筒5の上端に堆積される。
A water-cooled metal tube 5 is installed in the container 6 downstream of the tail frame portion 17 of the plasma flame 16, and precipitates 19 are deposited on the upper end of the water-cooled metal tube 5 as shown in the figure.

従来のテールフレーム部17を冷却する冷却用ガス導入
室4を持たない場合の析出粉は粒径が0.3〜0.5μ
のシリコンカーバイドとカーボンの混合物である。
The particle size of the precipitated powder when the conventional tail frame part 17 is not provided with the cooling gas introduction chamber 4 is 0.3 to 0.5μ.
It is a mixture of silicon carbide and carbon.

これに対しプラズマフレーム16のテールフレーム部1
7に導入管10からプラズマフレーム16の冷却用ガス
20として水素を導入してプラズマフレーム16を急冷
する冷却用ガス導入室4を有する構造にする本発明によ
ると析出物の粒径は0.08μ以下となり、更に急冷用
ガスの供給量を調節することにより析出物の粒径を制御
することができる。
On the other hand, the tail frame portion 1 of the plasma flame 16
According to the present invention, the particle size of the precipitates is 0.08μ. The particle size of the precipitate can be controlled by further adjusting the supply amount of the quenching gas.

発明者らは種々検討した結果急冷用ガスの導入量は導入
管8から導入されるアルゴンガス量と関係することを明
らかにした。
As a result of various studies, the inventors have found that the amount of quenching gas introduced is related to the amount of argon gas introduced from the introduction pipe 8.

即ち冷却用ガスとアルゴンの流量比は0.3/1以下で
は微粉化効果が小さく、逆に15/l以下ではプラズマ
フレーム16が不安定となり連続的に合成反応を続ける
ことが困難になる。
That is, if the flow rate ratio of cooling gas and argon is less than 0.3/1, the pulverization effect will be small, and if it is less than 15/l, the plasma flame 16 will become unstable and it will be difficult to continue the synthesis reaction continuously.

また冷却ガス導入室4はプラズマフレーム16のテール
フレーム部1γに設けられ、プラズマフレーム16の1
/2より下流側に設ける必要がある。
Further, the cooling gas introduction chamber 4 is provided in the tail frame portion 1γ of the plasma flame 16, and is provided in the tail frame portion 1γ of the plasma flame 16.
It is necessary to provide it downstream from /2.

即ちより誘導コイル側に設けると熱プラズマが消滅しや
すく微粉合成ができない。
That is, if it is provided closer to the induction coil, thermal plasma is more likely to disappear, making it impossible to synthesize fine powder.

以下シリコンカーバイドの合成例を示したが、生成粉、
原料2反応および冷却用ガスはこの実施例に限定される
ものでなく、酸化物、窒化物、炭化物、硼化物などの微
粉合成に適用可能である。
An example of synthesis of silicon carbide is shown below, but the resulting powder,
The raw material 2 reaction and cooling gas are not limited to this example, but can be applied to the synthesis of fine powders of oxides, nitrides, carbides, borides, etc.

本発明によれば0.1μ以下の微粉を容易に得ることが
でき、機能性焼結体の新材料開発促進の効果がある。
According to the present invention, fine powder of 0.1 μm or less can be easily obtained, which has the effect of promoting the development of new materials for functional sintered bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の基本構成を説明する概略図である。 1・・・原料フィーダ、2・・・プラズマトーチ、3・
・・誘導加熱コイル、4・・・冷却用ガス導入室、5・
・・水冷金属筒、619.容器、710.ガス導入管(
メタン)、8、・・ガス導入管(アルゴン)、9 、1
0.・・ガス導入管(水素)、11,12.・・水導入
管、13゜14、・・排水管、15・・・排気、16・
・・プラズマフレーム、17.、、テールフレーム部、
18・・、金属粉末。
The figure is a schematic diagram illustrating the basic configuration of the present invention. 1... Raw material feeder, 2... Plasma torch, 3...
...Induction heating coil, 4...Cooling gas introduction chamber, 5.
...Water-cooled metal tube, 619. container, 710. Gas introduction pipe (
methane), 8, gas introduction pipe (argon), 9, 1
0. ...Gas introduction pipe (hydrogen), 11, 12.・・Water inlet pipe, 13° 14・・Drainage pipe, 15・Exhaust, 16・
...Plasma flame, 17. ,, tail frame part,
18..., metal powder.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波誘導加熱コイルと、該コイルの内側にガスを
供給するノズルと、前記コイルによる加熱によって前記
ノズルの先端に形成される前記ガスのプラズマフレーム
中に金属粉末および該金属粉末と化学反応する反応ガス
を供給するノズルと、前記金属粉末と反応ガスとの化学
反応によって形成された無機微粉末を回収する容器とを
備えたものにおいて、前記容器の前記プラズマフレーム
のテールフレーム部に相当する位置に前記プラズマフレ
ームを冷却する冷却用ガスを噴出させる冷却用ガス導入
室を設けたことを特徴とする超微粉合成炉。
1 A high-frequency induction heating coil, a nozzle that supplies gas to the inside of the coil, a metal powder and a chemical reaction with the metal powder during a plasma flame of the gas formed at the tip of the nozzle by heating by the coil. A device comprising a nozzle for supplying gas and a container for collecting inorganic fine powder formed by a chemical reaction between the metal powder and the reaction gas, wherein the container is located at a position corresponding to the tail frame portion of the plasma flame. An ultrafine powder synthesis furnace characterized in that a cooling gas introduction chamber is provided for blowing out a cooling gas for cooling the plasma flame.
JP54134231A 1979-10-19 1979-10-19 Ultrafine powder synthesis furnace Expired JPS5941772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54134231A JPS5941772B2 (en) 1979-10-19 1979-10-19 Ultrafine powder synthesis furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54134231A JPS5941772B2 (en) 1979-10-19 1979-10-19 Ultrafine powder synthesis furnace

Publications (2)

Publication Number Publication Date
JPS5658537A JPS5658537A (en) 1981-05-21
JPS5941772B2 true JPS5941772B2 (en) 1984-10-09

Family

ID=15123484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54134231A Expired JPS5941772B2 (en) 1979-10-19 1979-10-19 Ultrafine powder synthesis furnace

Country Status (1)

Country Link
JP (1) JPS5941772B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239316A (en) * 1984-05-11 1985-11-28 Natl Inst For Res In Inorg Mater Manufacture of hyperfine sic powder
JPS61178413A (en) * 1985-02-02 1986-08-11 Toyota Motor Corp Production of silicon carbide powder
EP0199482B1 (en) * 1985-04-04 1993-01-13 Nippon Steel Corporation Processes for producing silicon carbide particles and sinter
KR100483886B1 (en) 2002-05-17 2005-04-20 (주)엔피씨 Plasma reaction apparatus
JP2008514806A (en) * 2004-08-28 2008-05-08 ナノ プラズマ センター カンパニー リミテッド Paramagnetic nanopowder, method for producing paramagnetic nanopowder, and composition containing paramagnetic nanopowder
KR101158188B1 (en) * 2010-02-01 2012-06-19 삼성전기주식회사 Apparatus for synthesizing nano particles, and method for synthesizing the nano particles with the same

Also Published As

Publication number Publication date
JPS5658537A (en) 1981-05-21

Similar Documents

Publication Publication Date Title
US5486675A (en) Plasma production of ultra-fine ceramic carbides
JP3541939B2 (en) Method for producing fine and ultrafine powder and transfer arc plasma system
US7910048B2 (en) Apparatus for plasma synthesis of rhenium nano and micro powders
Boulos Thermal plasma processing
US4812166A (en) Process for producing ultrafine particles of metals, metal compounds and ceramics and apparatus used therefor
US8859931B2 (en) Plasma synthesis of nanopowders
US4164553A (en) Plasma arc process for the production of chemical products in power form
JP3274740B2 (en) Apparatus and method for producing fine metal and ceramic powders
JPS60175537A (en) Preparation of ultra-fine ceramic particles
EP1843834A1 (en) Induction plasma synthesis of nanopowders
JP2002540054A (en) Method and apparatus for producing amorphous silica from silicon and silicon-containing materials
JPS5941772B2 (en) Ultrafine powder synthesis furnace
US3399980A (en) Metallic carbides and a process of producing the same
Akashi Progress in thermal plasma deposition of alloys and ceramic fine particles
IL105593A (en) Fine non-oxide ceramic powders.
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JP2868039B2 (en) Method for producing lower metal oxide
US20090042716A1 (en) High Temperature Reactor for the Poduction of Nanophase WC/CO Powder
EP1204591B1 (en) Production of silica particles
WO1992014576A1 (en) Plama production of ultra-fine ceramic carbides
JPH03224625A (en) Device for synthesizing superfine powder
JPS5950014A (en) Manufacture of silicon powder
JPS60251928A (en) Preparation of ultra-fine metal compound particle
JPS6019034A (en) Chemical reaction apparatus using composite plasma
JP2929815B2 (en) Method for producing carbide powder