JPS60251928A - Preparation of ultra-fine metal compound particle - Google Patents

Preparation of ultra-fine metal compound particle

Info

Publication number
JPS60251928A
JPS60251928A JP10910684A JP10910684A JPS60251928A JP S60251928 A JPS60251928 A JP S60251928A JP 10910684 A JP10910684 A JP 10910684A JP 10910684 A JP10910684 A JP 10910684A JP S60251928 A JPS60251928 A JP S60251928A
Authority
JP
Japan
Prior art keywords
gas
metal compound
reaction chamber
reaction
compound particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10910684A
Other languages
Japanese (ja)
Inventor
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10910684A priority Critical patent/JPS60251928A/en
Publication of JPS60251928A publication Critical patent/JPS60251928A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

PURPOSE:To achieve the continuation of a process and to uniformize the particle size distribution of formed fine particles, by injecting a geseous mixture consisting of metal chloride vapor and the other element constituting an ultra-fine metal compound particles from a fan-shaped nozzle before heating the same at specific temp. CONSTITUTION:A high purity silicon metal powder having an average particle size of about 100mum is thrown in a first reaction vessel 1 and a vacuum pump 20 is operated to evacuate a first reaction chamber 2, a separation chamber 7 and a second reaction chamber 8 to 1.3X10<-5>atm. A valve 22 is opened to introduce hydrogen chloride gas into the reaction chamber 2 from a condenser 21 and the reaction chamber 2 is heated to about 1,400 deg.C by a graphite heater 3 to generate silicon tetrachloride gas and hydrogen gas. At the same time, when the vacuum pump 20 is operated to adjust the pressure ratio of the reaction chamber 2 and the separation chamber 7 to 10:1, a mixture of silicon tetrachloride and hydrogen is injected into the separation chamber 7 through a fan-shaped nozzle 4 operated under a deficient inflation condition.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は金属化合物超微粒子の製造方法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for producing ultrafine metal compound particles.

〔従来技術〕[Prior art]

金属化合物超微粒子は顔料、研磨材、固体1IlI滑剤
、各種ペースト等の他、焼結体の原料として重要である
。このうち、焼結体の原料として用いる場合、焼結の駆
動力は粒子の表面エネルギであるので、原料粉体が微細
になるほど焼結速度が大きくなる。このため、窒化ケイ
素(Sl)N4)や炭化ケイ素(S i C)のように
共有結合性で焼結性の低い物質の焼結体製造においては
、原料の微細化が極めて有効と考えられている。
Ultrafine metal compound particles are important as raw materials for pigments, abrasives, solid 1Il lubricants, various pastes, and sintered bodies. Among these, when used as a raw material for a sintered body, the driving force for sintering is the surface energy of the particles, so the finer the raw material powder, the higher the sintering speed. For this reason, miniaturization of raw materials is considered to be extremely effective in producing sintered bodies of materials with covalent bonds and low sinterability, such as silicon nitride (Sl)N4) and silicon carbide (S i C). There is.

従来、かかる金属化合物超微粒子の製造方法としては、
固相反応法、熱分解法、気相反応法等があり、このうち
気相反応法は他の方法に比べ、(a)原料が揮発性で精
製が容易であり、生成粉体の粉砕が不要なので生成物が
高純度である、fb)生成粒子の凝集が少ない、(C1
反応条件によって粒径分布の狭い超微粒子が容易にiM
られる、(dl雰囲気の制御が容易で、酸化物のほかに
、他の方法では直接合成が困難な金属、窒化物、炭化物
、硼素等の非酸化物に適用できる、という特徴を持つ。
Conventionally, methods for producing ultrafine metal compound particles include:
There are solid-phase reaction methods, thermal decomposition methods, gas-phase reaction methods, etc. Among these, the gas-phase reaction method is superior to other methods because (a) the raw material is volatile and purification is easy, and the resulting powder can be easily pulverized. Since the product is unnecessary, the product is highly pure, fb) There is little aggregation of the produced particles, (C1
Depending on the reaction conditions, ultrafine particles with a narrow particle size distribution can be easily produced by iM.
It has the characteristics that the atmosphere can be easily controlled, and it can be applied not only to oxides but also to non-oxides such as metals, nitrides, carbides, and boron, which are difficult to synthesize directly by other methods.

このため、気相から金属化合物超微粒子を製造する方法
が注目されている。
For this reason, a method of producing ultrafine metal compound particles from a gas phase is attracting attention.

この従来の気相反応により金属化合物超微粒子を製造す
る方法として、窒化ケイ素を例にとり説明する。この窒
化ケイ素の製造は、例えば高温に加熱した四塩化珪素(
Sick、)とアンモニアガスを反応容器中に導入し、
反応容器中で迅速に混合し1000℃〜1500℃で反
応させる。この反応を式で示すと、次のようになる。
A method for producing ultrafine metal compound particles by this conventional gas phase reaction will be explained using silicon nitride as an example. The production of silicon nitride involves, for example, silicon tetrachloride (silicon tetrachloride) heated to high temperature.
Sick, ) and ammonia gas are introduced into the reaction vessel,
Mix rapidly in a reaction vessel and react at 1000°C to 1500°C. The formula for this reaction is as follows.

3SiCβ&+4NH,→Si+Na +12HC6(
「化学工学J1982年10月刊二[微粉体材料の製造
と表面改質の技術」) ところで、上記窒化ケイ素の製造においては、金属塩化
物である四塩化珪素が、金属および塩化物単独の場合に
比べ極めて高価(少なくとも単独の場合に比べ10倍以
上)であり、製造コストを大幅に上昇させるという問題
がある。
3SiCβ&+4NH, →Si+Na +12HC6(
"Chemical Engineering J, October 1982, Vol. 2 [Manufacture of fine powder materials and surface modification technology"] By the way, in the production of silicon nitride, silicon tetrachloride, which is a metal chloride, is used as a metal and a chloride alone. There is a problem in that it is extremely expensive (at least 10 times more expensive than when it is used alone) and significantly increases manufacturing costs.

また、高温反応容器内での反応が十分には制御できない
ため、得られた金属化合物超微粒子の粒度分布が100
人〜1000人と広くなりバラツキが大きくなるという
問題がある。
In addition, because the reaction in the high-temperature reaction vessel cannot be sufficiently controlled, the particle size distribution of the obtained ultrafine metal compound particles is 100%.
There is a problem that the number of people varies from 1,000 to 1,000 people, and the variation becomes large.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の問題を解決するためになされた
もので、本発明の目的は、金属化合物超微粒子の製造方
法において、金属粉末から出発して金属塩化物を形成し
、この金属塩化物と反応ガスを反応させるまでの工程を
連続的に行うことにより、低コスト化並びに得られる金
属化合物超微粒子の粒度分布の均一化を図ることにある
The present invention has been made to solve the problems of the prior art described above, and an object of the present invention is to form a metal chloride starting from a metal powder in a method for producing ultrafine metal compound particles, and to form a metal chloride by starting from a metal powder. By continuously performing the steps of reacting the metal compound with the reaction gas, the purpose is to reduce costs and make the particle size distribution of the obtained ultrafine metal compound particles uniform.

〔発明の構成〕[Structure of the invention]

かかる目的は、本発明によれば、次の金属化合物超微粒
子の製造方法によって達成される。
According to the present invention, this object is achieved by the following method for producing ultrafine metal compound particles.

即ち、本発明の金属化合物超微粒子の製造方法は、金属
化合物超微粒子を構成する少なくとも一つの金属粉末と
塩素含有ガスを密閉容器中で反応温度以上に加熱し、得
られた金属塩化物蒸気を不足膨張条件下で作動する末広
ノズルを通して瞬間的に所定温度まで冷却すると共に、
金属塩化物蒸気を他の成分ガスと分離し、続いてこの金
属塩化物蒸気を金属化合物超微粒子を構成する他の元素
もしくは他の元素を含む反応ガスと混合し、得られた混
合ガスを細管または末広ノズルを通して一定速度で噴出
させ、この混合ガスを金属化合物超微粒子の合成温度以
上に加熱して金属間化合物超微粒子を製造することを特
徴としている。
That is, in the method for producing ultrafine metal compound particles of the present invention, at least one metal powder constituting ultrafine metal compound particles and a chlorine-containing gas are heated to a temperature higher than the reaction temperature in a closed container, and the resulting metal chloride vapor is heated. It is instantaneously cooled to a predetermined temperature through a diverging nozzle that operates under underexpansion conditions, and
The metal chloride vapor is separated from other component gases, then this metal chloride vapor is mixed with other elements constituting ultrafine metal compound particles or a reaction gas containing other elements, and the resulting mixed gas is passed through a capillary. Alternatively, the method is characterized in that ultrafine intermetallic compound particles are produced by ejecting the mixed gas at a constant speed through a wide-spread nozzle and heating the mixed gas to a temperature higher than the synthesis temperature of ultrafine metal compound particles.

本発明において、金属化合物超微粒子の一部を構成する
金属としては、ケイ素、アルミニウム、チタン、ジルコ
ニウム等、もしくはこれらの組合せを用いることができ
る。
In the present invention, silicon, aluminum, titanium, zirconium, etc., or a combination thereof can be used as the metal constituting a part of the ultrafine metal compound particles.

塩素を含有するガスとしては、塩化水素等を用いること
ができる。
Hydrogen chloride or the like can be used as the gas containing chlorine.

また、他の元素としては、窒素、炭素、酸素等を用いる
ことができ、他の元素を含むガスとしては、例えば他の
元素が窒素である場合にはアンモニア等を、また他の元
素が炭素である場合にはメタン、エタン、プロパン等の
低級脂肪族炭化水素を用いることができる。
Further, as other elements, nitrogen, carbon, oxygen, etc. can be used, and as gases containing other elements, for example, when the other element is nitrogen, ammonia etc. can be used, and when the other element is carbon, for example, ammonia etc. can be used. In this case, lower aliphatic hydrocarbons such as methane, ethane, and propane can be used.

本発明において、金属塩化物蒸気を不足膨張条件下で作
動する末広ノズルを通すのは、金属塩化物蒸気を他の成
分ガスと分離するためである。即ち、不足膨張条件下で
噴出された混合ガスは、混合ガス中の各元素の比熱比に
より噴出角度が異なり、この噴出角度の差を利用して2
種以上の気体を分離することが可能であることが知られ
ている(例えば、特公昭54−4792号公報)。この
原理を利用して必要な金属塩化物蒸気を分離することが
できる。
In the present invention, the metal chloride vapor is passed through a diverging nozzle operating under underexpansion conditions in order to separate the metal chloride vapor from other component gases. In other words, the mixed gas ejected under underexpansion conditions has a different ejection angle depending on the specific heat ratio of each element in the mixed gas, and by using this difference in ejection angle,
It is known that it is possible to separate more than one species of gas (for example, Japanese Patent Publication No. 54-4792). This principle can be used to separate the required metal chloride vapor.

得られた金属塩化物蒸気と金属化合物超微粒子を構成す
る他の元素もしくは他の元素を含む反応ガスとの混合ガ
スを末広ノズルまたは細管を通すのは、混合ガスの流速
を一定して反応を制御し、均一な粒径の金属化合物超微
粒子を得るためである。
Passing the mixed gas of the obtained metal chloride vapor and other elements constituting the metal compound ultrafine particles or a reaction gas containing other elements through a wide-spread nozzle or thin tube is to keep the flow rate of the mixed gas constant and carry out the reaction. This is to control and obtain ultrafine metal compound particles with a uniform particle size.

〔発明の作用〕[Action of the invention]

本発明の金属化合物超微粒子の製造方法によれば、まず
金属粉末と塩素含有ガスが密閉容器中で反応温度以上に
加熱され、金属塩化物蒸気とその他の成分ガス(例えば
、水素ガス)の混合ガスが生成される。この混合ガスは
不足膨張条件下て作動する末広ノスルに導かれ、この末
広ノズルを通って噴出される。このとき、金属塩化物蒸
気と他の成分ガスとの比熱比の違いにより、噴出角度が
異なることを利用して、金属塩化物蒸気を分離する。分
離された金属塩化物蒸気を金属化合物超微粒子を構成す
る他の元素もしくは他の元素を含む反応ガスと混合し、
得られた混合ガスを細管または末広ノズルを通して、一
定速度で金属化合物超微粒子の合成温度以上に加熱され
た室内に噴出させる。この結果、所定の金属化合物超微
粒子が得られる。
According to the method for producing ultrafine metal compound particles of the present invention, metal powder and chlorine-containing gas are first heated above the reaction temperature in a closed container, and metal chloride vapor and other component gases (e.g., hydrogen gas) are mixed. Gas is produced. This gas mixture is directed to a diverging nozzle which operates under underexpansion conditions and is ejected through this diverging nozzle. At this time, the metal chloride vapor is separated by utilizing the fact that the ejection angle is different due to the difference in specific heat ratio between the metal chloride vapor and other component gases. Mixing the separated metal chloride vapor with other elements constituting ultrafine metal compound particles or a reaction gas containing other elements,
The obtained mixed gas is ejected at a constant rate through a thin tube or a diverging nozzle into a chamber heated to a temperature higher than the synthesis temperature of ultrafine metal compound particles. As a result, predetermined ultrafine metal compound particles are obtained.

(発明の効果〕 以上より、本発明の金属化合物超微粒子の製造方法によ
れば、次の効果を奏する。
(Effects of the Invention) As described above, the method for producing ultrafine metal compound particles of the present invention provides the following effects.

(イ)高価な金属塩化物を使用することなく、安価な金
属粉末と塩素含有ガスを出発原料とし、反応途中で金属
塩化物を生成する方法を採っているため、従来の方法に
比べ低コスト化を図ることができる。
(b) The method uses inexpensive metal powder and chlorine-containing gas as starting materials and generates metal chlorides during the reaction, without using expensive metal chlorides, resulting in lower costs than conventional methods. It is possible to aim for

(ロ)金属塩化物蒸気と他の元素もしくは他の元素を含
む反応ガスの混合ガスが細管等を通って反応室に導かれ
るため、混合ガスの流速がほぼ一定に制御できる。この
ため、得られた金属化合物超微粒子の粒度分布は従来の
方法によるものよりも均一となる。
(b) Since the mixed gas of metal chloride vapor and other elements or reaction gases containing other elements is guided into the reaction chamber through a thin tube or the like, the flow rate of the mixed gas can be controlled to be almost constant. Therefore, the particle size distribution of the obtained ultrafine metal compound particles becomes more uniform than that obtained by conventional methods.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。こ
の実施例は窒化ケイ素を製造する例を示す。
Next, embodiments of the present invention will be described with reference to the drawings. This example shows an example of manufacturing silicon nitride.

ここで、第1図は本発明の実施例に用いた金属化合物超
微粒子製造装置の概略を示す概略構成図である。
Here, FIG. 1 is a schematic configuration diagram showing an outline of an apparatus for producing ultrafine metal compound particles used in an example of the present invention.

図中、1は一部が開閉可能とされ、実質的に密閉された
第1の反応容器であり、内部に第1の反応室2が形成さ
れている。この第1の反応容器1の周囲には、第1のグ
ラファイトヒータ3が装着され、この第1のグラファイ
トヒータ3により、第1の反応室2の温度は所定温度に
制御可能とされている。第1の反応容器1は末広ノズル
(ラバール管)4を介して第2の反応容器5と接続され
ており、第2の反応容器5は、細管6によって分離室7
と第2の反応室8に区分されている。この分離室7内に
は、第2の反応容器5を貫通して屈曲した混合ガス採取
管9が取り付けられ、この混合ガス採取管9の一端は、
分離室7内における上記末広ノズル4と対向する位置に
設けられ、他端は第2の反応容器5外のバルブ10を介
してポンプ11と接続されている。このポンプ11は冷
却管12と接続されている。また、この分離室7の途中
にはアンモニアガス供給管13が開口しており、このア
ンモニアガス供給管13を介して他の元素としてのアン
モニアガスが導入される。また、第2の反応室8の周り
には、第2の反応室8内を所定の温度に保持するために
第2のグラファイトヒータ14が取り付けられている。
In the figure, reference numeral 1 denotes a substantially sealed first reaction container that is partially openable and closable, and has a first reaction chamber 2 formed therein. A first graphite heater 3 is installed around the first reaction vessel 1, and the temperature of the first reaction chamber 2 can be controlled to a predetermined temperature by the first graphite heater 3. The first reaction vessel 1 is connected to a second reaction vessel 5 via a diverging nozzle (Laval tube) 4, and the second reaction vessel 5 is connected to a separation chamber 7 via a thin tube 6.
and a second reaction chamber 8. A mixed gas sampling tube 9 that penetrates the second reaction vessel 5 and is bent is installed in this separation chamber 7, and one end of this mixed gas sampling tube 9 is
It is provided at a position facing the diverging nozzle 4 in the separation chamber 7, and the other end is connected to the pump 11 via a valve 10 outside the second reaction vessel 5. This pump 11 is connected to a cooling pipe 12. Further, an ammonia gas supply pipe 13 is opened in the middle of this separation chamber 7, and ammonia gas as another element is introduced through this ammonia gas supply pipe 13. Further, a second graphite heater 14 is attached around the second reaction chamber 8 in order to maintain the inside of the second reaction chamber 8 at a predetermined temperature.

第2の反応室8は、導管15を介してサイクロン16と
連通している。このサイクロン16は、下方でバルブ1
7を介して製造された超微粒子の取り出しが可能とされ
ており、上方は導管18を介し、バルブ19と真空ポン
プ20を通って凝縮器21に接続されている。この凝縮
器21で凝縮された成分の一部は、途中にバルブ22を
有する導管23を介して第1の反応容器1と接続され、
他の成分はバルブ24を介して系外へ取り出される。ま
た、導管23の途中には、四塩化珪素を再利用するため
に、途中にバルブ25を備えた導管26が接続されてい
る。
The second reaction chamber 8 communicates with the cyclone 16 via a conduit 15. This cyclone 16 has valve 1 below.
It is possible to take out the produced ultrafine particles through 7, and the upper part is connected to a condenser 21 through a conduit 18, a valve 19, and a vacuum pump 20. A part of the components condensed in this condenser 21 is connected to the first reaction vessel 1 via a conduit 23 having a valve 22 in the middle,
Other components are taken out of the system via valve 24. Furthermore, a conduit 26 having a valve 25 in the middle is connected to the conduit 23 in order to reuse silicon tetrachloride.

次に、本実施例の作動を説明する。Next, the operation of this embodiment will be explained.

まず、第1の反応容器1内に平均粒径約100μmの高
純度シリコン金属粉末を投入し、真空ポンプ20を作動
させて、第1の反応室2、分離室7、第2の反応室8お
よびサイクロン16内を10−’ Torr (1,3
X 10−”気圧)まで排気する。続いて、バルブ22
を開き、導管23を介して凝縮器21から塩化水素ガス
を第1の反応室2へ導入すると共に、第1のグラファイ
トヒータ3により第1の反応室2内をシリコン金属の融
点以下、即ち約1400℃まで加熱する。すると、シリ
コン金属と塩化水素ガスが次式の如く反応し、四塩化珪
素ガスと水素ガスを発生する。
First, high-purity silicon metal powder with an average particle size of about 100 μm is charged into the first reaction chamber 1, and the vacuum pump 20 is operated to remove the first reaction chamber 2, separation chamber 7, and second reaction chamber 8. and 10-' Torr (1,3
x 10-” atmosphere). Then, valve 22
is opened, hydrogen chloride gas is introduced into the first reaction chamber 2 from the condenser 21 via the conduit 23, and the inside of the first reaction chamber 2 is heated to a temperature below the melting point of silicon metal, that is, approximately Heat to 1400°C. Then, silicon metal and hydrogen chloride gas react as shown in the following equation to generate silicon tetrachloride gas and hydrogen gas.

Si(固体)+4HCj! (気体)−3iCβ4 (
気体)+2H+(気体)上記反応により発生した四塩化
珪素ガスと水素ガスによって、第1の反応室2内の圧力
は数百TOrrに達する。この反応と同時に、真空ポン
プ20を作動させ、バルブ19の開度を調整しながら分
離室7と第2の反応室8内の圧力を制御する。本実施例
では、第1の反応室2と分離室7の圧力比を10=1程
度に調整した。この結果、不足膨張条件下で作動する末
広ノズル4を通って、四塩化珪素と水素の混合ガスが分
離室7内へ噴出する。
Si (solid) + 4HCj! (gas)-3iCβ4 (
Gas) +2H+ (Gas) The pressure inside the first reaction chamber 2 reaches several hundred Torr due to the silicon tetrachloride gas and hydrogen gas generated by the above reaction. Simultaneously with this reaction, the vacuum pump 20 is operated to control the pressure in the separation chamber 7 and the second reaction chamber 8 while adjusting the opening degree of the valve 19. In this example, the pressure ratio between the first reaction chamber 2 and the separation chamber 7 was adjusted to approximately 10=1. As a result, a mixed gas of silicon tetrachloride and hydrogen is ejected into the separation chamber 7 through the diverging nozzle 4 which operates under underexpansion conditions.

この噴出された混合ガスは、断熱膨張により急激な温度
低下をきたし、約700℃となる。
The ejected mixed gas causes a rapid temperature drop due to adiabatic expansion, reaching approximately 700°C.

このとき、不足膨張条件下で噴出された混合ガスは、混
合ガス中の各元素の比熱比により噴出角度が異なるため
、この噴出角度の差を利用して気体の分離が可能となる
。本実施例の場合、不足膨張流の外側部分を四塩化珪素
ガス(比熱比:1.13)が流れ、また内側部分に四塩
化珪素ガスと水素ガス(比熱比:1.41)の混合ガス
が流れる。
At this time, since the mixed gas ejected under underexpansion conditions has different ejection angles depending on the specific heat ratio of each element in the mixed gas, it is possible to separate the gases by utilizing the difference in ejection angles. In the case of this example, silicon tetrachloride gas (specific heat ratio: 1.13) flows in the outer part of the underexpanded flow, and a mixed gas of silicon tetrachloride gas and hydrogen gas (specific heat ratio: 1.41) flows in the inner part. flows.

従って、末広ノズル4の直後の混合ガス採取管9の先端
位置を、四塩化珪素ガスおよび四塩化珪素と水素の混合
ガスの境界線に沿って設けることにより、四塩化珪素と
水素の混合ガスは混合ガス採取管9内に採取され、四塩
化珪素ガスは分離室7内に拡散する。
Therefore, by arranging the tip of the mixed gas sampling pipe 9 immediately after the wide-spread nozzle 4 along the boundary line between the silicon tetrachloride gas and the mixed gas of silicon tetrachloride and hydrogen, the mixed gas of silicon tetrachloride and hydrogen can be The silicon tetrachloride gas is collected into the mixed gas collection pipe 9 and diffused into the separation chamber 7 .

混合ガス採取管9に採取された混合ガスは、ポンプ11
を通って冷却管12に導入され、ここで室温まで冷却さ
れて四塩化珪素と水素ガスに分離され、水素ガスはバル
ブ27を介して系外へ取り出される。また、液化された
四塩化珪素は、導管26を介し、バルブ25により適宜
ら1の反応室2内へ送られ再利用される。
The mixed gas collected in the mixed gas sampling pipe 9 is transferred to the pump 11.
The hydrogen gas is introduced into the cooling pipe 12, where it is cooled to room temperature and separated into silicon tetrachloride and hydrogen gas, and the hydrogen gas is taken out of the system via the valve 27. Further, the liquefied silicon tetrachloride is sent to one of the reaction chambers 2 as appropriate through the conduit 26 by the valve 25 and reused.

一方、不足膨張流の外側部分を流れる四塩化珪素ガスは
、分離室7内でアンモニアガス供給管13を介して導入
されたアンモニアガスと混合され、次式の如く反応して
シリコンイミドを生成する。
On the other hand, silicon tetrachloride gas flowing in the outer part of the underexpanded flow is mixed with ammonia gas introduced through the ammonia gas supply pipe 13 in the separation chamber 7, and reacts as shown in the following equation to produce silicon imide. .

5i(14+8NH]→ 4NHa C1!+S i (NH2) 。5i (14+8NH] → 4NHa C1! +S i (NH2).

シリコンイミドを含んだガスは、末広ノズル4より大き
な径を有する細管6を通って第2の反応室8にほぼ一定
速度で導入される。このとき、分離室7と第2の反応室
8の圧力比は1.5:1程度に設定する。この第2の反
応室8に導入されたガス流は、第2のグラファイトヒー
タ14により1000℃〜1600℃に加熱され、シリ
コンイミドが熱分解し、窒化ケイ素を生成する。このと
き、加熱温度が高(分解時間の長い程、得られた窒化ケ
イ素の粉末は粒成長し粗大化する。
The gas containing silicon imide is introduced into the second reaction chamber 8 at a substantially constant rate through a thin tube 6 having a diameter larger than that of the diverging nozzle 4. At this time, the pressure ratio between the separation chamber 7 and the second reaction chamber 8 is set to about 1.5:1. The gas flow introduced into the second reaction chamber 8 is heated to 1000° C. to 1600° C. by the second graphite heater 14, and silicon imide is thermally decomposed to produce silicon nitride. At this time, the higher the heating temperature (and the longer the decomposition time), the more grains of the obtained silicon nitride powder grow and become coarser.

熱分解の後、ガス流は窒化ケイ素(固体)を含んだ塩化
水素、窒素、水素の混合ガスとなる。この混合ガスは、
導管15を通ってサイクロン16に導かれ、このサイク
ロン16で窒化ケイ素粉末はバルブ17を介して回収さ
れる。残りの混合ガスは、導管18を通って凝縮器21
に導かれ、ここで窒素と水素の混合ガスと液化塩化水素
とに分離される。そして、窒素と水素の混合ガスは、バ
ルブ24を介して系外へ取り出される。一方、液化され
た塩化水素は、必要に応じバルブ22の開閉により導管
23を通って第1の反応室2に導かれ、再利用される。
After pyrolysis, the gas stream becomes a mixture of hydrogen chloride, nitrogen, and hydrogen containing silicon nitride (solid). This mixed gas is
Through a conduit 15 it is led to a cyclone 16 in which the silicon nitride powder is recovered via a valve 17. The remaining mixed gas passes through conduit 18 to condenser 21
Here, it is separated into a mixed gas of nitrogen and hydrogen and liquefied hydrogen chloride. The mixed gas of nitrogen and hydrogen is then taken out of the system via the valve 24. On the other hand, the liquefied hydrogen chloride is guided to the first reaction chamber 2 through the conduit 23 by opening and closing the valve 22 as necessary, and is reused.

この結果得られた窒化ケイ素超微粒子は、第2の反応室
の温度を1000 ’c〜1200°Cとした場合には
、アモルファスが得られ、粒径は約500人で均一であ
った。また、第2の反応室内の温度を1200°C〜1
400°Cとした場合には、粒径1000人で均一なα
−3i、N、が得られ、第2の反応室内の温度を140
0℃〜1600°Cとした場合には、粒径1000人で
均一なβ−3i、N4が得られた。
The resulting ultrafine silicon nitride particles were amorphous when the temperature of the second reaction chamber was 1000°C to 1200°C, and had a uniform particle size of about 500°C. In addition, the temperature inside the second reaction chamber was set to 1200°C to 1200°C.
At 400°C, the particle size of 1000 particles is uniform
-3i,N, was obtained, and the temperature in the second reaction chamber was reduced to 140
When the temperature was 0°C to 1600°C, uniform β-3i and N4 with a particle size of 1000 were obtained.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

例えば、実施例では窒化ケイ素超微粒子を製造する例を
示したが、他の窒化物や酸化物も同様な方法で製造する
ことができる。
For example, although an example of producing ultrafine silicon nitride particles has been shown in the embodiment, other nitrides and oxides can also be produced in a similar manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた金属化合物超微粒子製
造装置の概略を示す概略構成図である。 1− 第1の反応容器 2−−−−第1の反応室 3−第1のグラファイトヒータ 4−−−−一末広管 5−−−−第2の反応容器 6−−−−−細管 7−−−−一分離室 8−−−−第2の反応室 9−−−一−−混合ガス採取管 10.17.19.22.24.25.27−−−−−
−ハルブ 11−−−−−ポンプ 12−−−−一冷却管 13−−−−−−アンモニアガス供給管14−−−−−
−第2のグラファイトヒータ15.18.23.26−
−−−−導管16−−−−サイクロン 20−−−−一真空ポンプ 21−−−一凝縮器 第1図
FIG. 1 is a schematic diagram showing the outline of an apparatus for producing ultrafine metal compound particles used in Examples of the present invention. 1 - First reaction vessel 2 ---- First reaction chamber 3 - First graphite heater 4 ---- One wide-ended tube 5 ---- Second reaction vessel 6 ---- Thin tube 7 --- One separation chamber 8 --- Second reaction chamber 9 --- One -- Mixed gas sampling tube 10.17.19.22.24.25.27 ---
- Harb 11 ------- Pump 12 ---- - Cooling pipe 13 ------- Ammonia gas supply pipe 14 ----
-Second graphite heater 15.18.23.26-
--- Conduit 16 --- Cyclone 20 --- - Vacuum pump 21 --- Condenser Fig. 1

Claims (1)

【特許請求の範囲】[Claims] (11金属化合物超微粒子を構成する少なくとも一つの
金属粉末と塩素含有ガスを密閉容器中で反応温度以上に
加熱し、得られた金属塩化物蒸気を不足膨張条件下で作
動する末広ノズルを通して瞬間的に所定温度まで冷却す
ると共に、金属塩化物蒸気を他の成分ガスと分離し、続
いてこの金属塩化物蒸気を金属化合物超微粒子を構成す
る他の元素もしくは他の元素を含む反応ガスと混合し、
得られた混合ガスを細管または末広ノズルを通して一定
速度で噴出させ、この混合ガスを金属化合物超微粒子の
合成温度以上に加熱して金属化合物超微粒子を製造する
ことを特徴とする金属化合物超微粒子の製造方法。
(11) At least one metal powder constituting ultrafine metal compound particles and a chlorine-containing gas are heated to a temperature higher than the reaction temperature in a closed container, and the resulting metal chloride vapor is passed instantaneously through a wide-spread nozzle that operates under underexpansion conditions. At the same time as cooling to a predetermined temperature, the metal chloride vapor is separated from other component gases, and then this metal chloride vapor is mixed with other elements constituting ultrafine metal compound particles or a reaction gas containing other elements. ,
A method of producing ultrafine metal compound particles, characterized in that the obtained mixed gas is ejected at a constant speed through a narrow tube or a wide-spread nozzle, and the mixed gas is heated to a temperature higher than the synthesis temperature of ultrafine metal compound particles to produce ultrafine metal compound particles. Production method.
JP10910684A 1984-05-29 1984-05-29 Preparation of ultra-fine metal compound particle Pending JPS60251928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10910684A JPS60251928A (en) 1984-05-29 1984-05-29 Preparation of ultra-fine metal compound particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10910684A JPS60251928A (en) 1984-05-29 1984-05-29 Preparation of ultra-fine metal compound particle

Publications (1)

Publication Number Publication Date
JPS60251928A true JPS60251928A (en) 1985-12-12

Family

ID=14501723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10910684A Pending JPS60251928A (en) 1984-05-29 1984-05-29 Preparation of ultra-fine metal compound particle

Country Status (1)

Country Link
JP (1) JPS60251928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320032A (en) * 1986-07-14 1988-01-27 Res Dev Corp Of Japan Production of hyperfine particle having film
JPH0236273A (en) * 1988-05-27 1990-02-06 Minnesota Mining & Mfg Co <3M> Dispersion
JP2016120496A (en) * 2010-08-30 2016-07-07 インテグリス・インコーポレーテッド Apparatus and method for preparing compound or intermediate thereof from solid material, and use of such compound and intermediate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320032A (en) * 1986-07-14 1988-01-27 Res Dev Corp Of Japan Production of hyperfine particle having film
JPH0511491B2 (en) * 1986-07-14 1993-02-15 Shingijutsu Kaihatsu Jigyodan
JPH0236273A (en) * 1988-05-27 1990-02-06 Minnesota Mining & Mfg Co <3M> Dispersion
JP2016120496A (en) * 2010-08-30 2016-07-07 インテグリス・インコーポレーテッド Apparatus and method for preparing compound or intermediate thereof from solid material, and use of such compound and intermediate

Similar Documents

Publication Publication Date Title
US4484943A (en) Method and apparatus for making a fine powder compound of a metal and another element
US4812166A (en) Process for producing ultrafine particles of metals, metal compounds and ceramics and apparatus used therefor
US5486675A (en) Plasma production of ultra-fine ceramic carbides
JP3725544B2 (en) Method and apparatus for producing high purity, non-agglomerated submicron particles
US7438880B2 (en) Production of high purity ultrafine metal carbide particles
US20080019903A1 (en) Process and apparatus for prodcing concrrently hydrogen or ammonia and metal oxide nanoparticles
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
US7625542B2 (en) Method for the production of metal carbides
Gitzhofer Induction plasma synthesis of ultrafine SiC
US4552740A (en) Process for producing amorphous and crystalline silicon nitride
JPS60251928A (en) Preparation of ultra-fine metal compound particle
Chang et al. Kinetics and mechanisms for nitridation of floating aluminum powder
Guo et al. Effects of process parameters on ultrafine SiC synthesis using induction plasmas
US6113668A (en) Process for manufacture of powder compact feed materials for fine grained hardmetal
US5484751A (en) Metal/metalloid nitride/carbide ceramic powders prepared by flash pyrolysis
JPH0127773B2 (en)
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPS5891018A (en) Manufacture of fine nitride powder
JP4545357B2 (en) Method for producing aluminum nitride powder
JPS5895606A (en) Production of silicon nitride powder
JP2929815B2 (en) Method for producing carbide powder
Hanabusa et al. Production of Si3N4/Si3N4 and Si3N4/Al2O3 composites by CVD coating of fine particles with ultrafine powder
JPS5950601B2 (en) Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment
JPS5913611A (en) Hyperfine powder of si3n4, method and apparatus for manufacturing it