JPS6229822Y2 - - Google Patents

Info

Publication number
JPS6229822Y2
JPS6229822Y2 JP518683U JP518683U JPS6229822Y2 JP S6229822 Y2 JPS6229822 Y2 JP S6229822Y2 JP 518683 U JP518683 U JP 518683U JP 518683 U JP518683 U JP 518683U JP S6229822 Y2 JPS6229822 Y2 JP S6229822Y2
Authority
JP
Japan
Prior art keywords
heat
pipe
driven pump
heating
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP518683U
Other languages
Japanese (ja)
Other versions
JPS59113672U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP518683U priority Critical patent/JPS59113672U/en
Publication of JPS59113672U publication Critical patent/JPS59113672U/en
Application granted granted Critical
Publication of JPS6229822Y2 publication Critical patent/JPS6229822Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Central Heating Systems (AREA)

Description

【考案の詳細な説明】 本考案は、熱駆動ポンプに関するものである。[Detailed explanation of the idea] The present invention relates to a thermally driven pump.

熱駆動ポンプは、熱を利用して熱と液体との同
時輸送を行う装置であつて、従来使用されている
一般的の装置を第1図について説明すると、上下
に平行に配設された上部加熱管1と下部加熱管2
の各一端である吐出端1a,2aを結んで上方に
延び屈曲部を経て下方に垂下する一連の吐出管
3、同じく吸込端1b,2bを結んで吸込管4
を、それぞれ吐出管3、吸込管4の屈曲部3a,
4aが上部加熱管1より上方位置にあるように設
けると共に、吐出管3には屈曲部3aと上部加熱
管1との間に位置して逆止弁5、吸込管4には垂
下端に位置して逆止弁6を介設し、かつ吐出管
3、吸込管4の下端をそれぞれ高温水槽7、低温
水槽8内に臨ませて構成されている。なお、上部
加熱管1と下部加熱管3とは機能的に加熱部9を
形成している。
A heat-driven pump is a device that uses heat to simultaneously transport heat and liquid.A conventionally used general device is explained with reference to Figure 1.A heat-driven pump is a device that uses heat to simultaneously transport heat and liquid. Heating tube 1 and lower heating tube 2
A series of discharge pipes 3 are connected by connecting the discharge ends 1a and 2a, which extend upward and hang downward through a bent part, and a suction pipe 4 is also connected by connecting the suction ends 1b and 2b.
are the bent portions 3a of the discharge pipe 3 and the suction pipe 4, respectively.
4a is located above the upper heating pipe 1, the discharge pipe 3 is provided with a check valve 5 located between the bent portion 3a and the upper heating pipe 1, and the suction pipe 4 is provided with a check valve 5 located at the hanging end. A check valve 6 is interposed therebetween, and the lower ends of the discharge pipe 3 and the suction pipe 4 face into a high temperature water tank 7 and a low temperature water tank 8, respectively. Note that the upper heating tube 1 and the lower heating tube 3 functionally form a heating section 9.

この装置の作動原理は、各種熱発生装置からの
供給熱、高温排ガス等、任意の熱源で上部加熱管
1と下部加熱管2を加熱すると、上部加熱管1、
下部加熱管2内の液体が沸騰し、発生した気泡が
この両加熱管内、あるいは加熱管を出てつぶれる
際、圧力の変化を生じ、この結果、上部加熱管1
から液体を吸引すると共に、下部加熱管2にも液
体が流入する。このようなことが連続的に繰り返
されることにより、液体が熱を吸収しながら輸送
されるのである。
The operating principle of this device is that when the upper heating tube 1 and the lower heating tube 2 are heated with any heat source such as heat supplied from various heat generating devices or high-temperature exhaust gas, the upper heating tube 1,
When the liquid in the lower heating tube 2 boils and the generated bubbles collapse inside or out of the heating tubes, a pressure change occurs, and as a result, the upper heating tube 1
At the same time, the liquid also flows into the lower heating tube 2. By repeating this process continuously, the liquid is transported while absorbing heat.

ところで、このような構造を有している熱駆動
ポンプにおける吸収熱量−吐出量の特性曲線は、
第2図で示される曲線のようになることが知られ
ている。即ち、縦軸を吐出量G(Kg/h)、横軸
を吸収熱量Q(Kcal/h)とすると、この特性
曲線には大別して三つの領域A,B,Cがあつ
て、C領域に相当する能力で作動した場合に、安
定した吐出量が得られる。そしてC領域における
熱入力で始動した後、熱入力を逓減させると、A
領域においても安定し、少ない吐出量で作動す
る。しかし、A,B領域に相当する入力で始動さ
せた場合は、系全体の温度上昇が激しく、加熱部
がドライアウトを生じ、ポンプとして作動しな
い。そして熱駆動ポンプとして安定に作動する領
域はCの領域である。
By the way, the characteristic curve of absorbed heat amount vs. discharge amount in a heat-driven pump having such a structure is as follows:
It is known that the curve looks like the one shown in FIG. In other words, if the vertical axis is the discharge amount G (Kg/h) and the horizontal axis is the absorbed heat amount Q (Kcal/h), this characteristic curve can be roughly divided into three regions A, B, and C. When operated at a corresponding capacity, a stable discharge amount can be obtained. Then, after starting with heat input in region C, if the heat input is gradually decreased, A
It is stable even in this region and operates with a small discharge amount. However, if the pump is started with an input corresponding to areas A and B, the temperature of the entire system will rise sharply, the heating section will dry out, and the pump will not work. The region C is the region in which the heat-driven pump operates stably.

このように、熱駆動ポンプを安定に作動するに
は、吸収熱量がある値以上であることが必要であ
り、この値以下では作動が不安定であり、時には
加熱部内での作動液の交換(低温流体の流入、加
熱された流体の流出)が止まり、ドライアクトす
る恐れがある。このような特性を有するため、熱
駆動ポンプはある定められた温度レベル、熱量範
囲で使用すべきものである。しかし、熱源の状況
によつては、所定の温度レベル、熱量範囲に到達
する以前に、これらより低い温度レベル、熱量過
程が存在する。このような状況においては、前述
のごとく熱駆動ポンプの作動は不安定となる。
In order to operate a heat-driven pump stably, the amount of heat absorbed must be above a certain value; below this value, operation becomes unstable, and sometimes the working fluid within the heating section must be replaced ( The inflow of low temperature fluid and the outflow of heated fluid may stop, resulting in a dry act. Because of these characteristics, heat-driven pumps should be used within a certain temperature level and calorific value range. However, depending on the conditions of the heat source, before the predetermined temperature level and calorific range are reached, a lower temperature level and calorific process may exist. In such a situation, the operation of the heat-driven pump becomes unstable as described above.

本考案は、このような問題を解決するため、熱
駆動ポンプの加熱を、公知の熱流スイツチ性を備
えた制御付ヒートパイプ即ち、内部に作動流体の
ほかに所要量の不凝縮性ガスを封入したヒートパ
イプにより行わせることにより、不安定作動領域
における熱駆動ポンプの作動を、自動的に制御す
るようにしたものである。
In order to solve these problems, the present invention uses a heat pipe with a known heat flow switch function to control the heating of a heat-driven pump. The operation of the heat-driven pump in the unstable operation region is automatically controlled by using the heat pipe.

上記ヒートパイプ、つまりヒートパイプを形成
する管体内に、予め作動流体のほかに微量のヘリ
ウム、ネオン、窒素などの不凝縮性ガスを封入し
熱流スイツチ性を備えた制御付ヒートパイプは、
第3図に示すような伝熱特性がある。即ち、熱源
の熱負荷、従つて、このヒートパイプの熱入力が
Q1<Q2<Q3<Q4というように増大するにつれ
て、ヒートパイプ内の蒸気圧が上り、封入されて
いる不凝縮性ガスを圧縮し、凝縮部の活動部分の
長さが長くなり、凝縮部の界面熱抵抗が減少す
る。このようにして、ヒートパイプへの熱入力が
増加(減少)すると、凝縮部伝熱抵抗が減少(増
加)し、蒸気温度と熱伝達量がともに増加(減
少)する。
The above-mentioned heat pipe, that is, the controlled heat pipe, which has heat flow switching properties by filling a small amount of non-condensable gas such as helium, neon, nitrogen, etc. in addition to the working fluid in advance in the tube forming the heat pipe,
It has heat transfer characteristics as shown in Figure 3. That is, the heat load of the heat source and therefore the heat input of this heat pipe is
As Q 1 < Q 2 < Q 3 < Q 4 increases, the vapor pressure inside the heat pipe increases, compressing the enclosed noncondensable gas, and increasing the length of the active part of the condensing section. , the interfacial thermal resistance of the condensing section decreases. In this way, when the heat input to the heat pipe increases (decreases), the condenser heat transfer resistance decreases (increases), and both the steam temperature and the amount of heat transfer increase (decrease).

従つて、加熱部を、このような伝熱特性を持つ
た制御付ヒートパイプの凝縮部に結合した熱駆動
ポンプは、熱源の熱負荷(温度、熱量)が低い範
囲ではヒートパイプを介しての加熱部への加熱は
なされず、熱駆動ポンプは作動しない。そして熱
源の熱負荷が増大し、ヒートパイプを介して加熱
部へ有効に熱伝達が開始され、その際の熱駆動ポ
ンプにおける吸収熱量が第2図のQc付近にある
ようにしておくことにより、不安定作動領域にお
ける熱駆動ポンプの作動を、自動的に抑制するこ
とができる。このような熱流スイツチ性を備えた
制御付ヒートパイプの設計、製造は公知の知識、
技術で十分にできる。
Therefore, in a heat-driven pump in which the heating part is coupled to the condensing part of a controlled heat pipe with such heat transfer characteristics, in a range where the heat load (temperature, amount of heat) of the heat source is low, the heat transfer through the heat pipe is reduced. No heating is applied to the heating section and the heat-driven pump is not activated. Then, the heat load on the heat source increases and effective heat transfer to the heating part starts via the heat pipe, and by making sure that the amount of heat absorbed by the heat-driven pump at that time is around Qc in Figure 2, Operation of the thermally driven pump in unstable operating regions can be automatically suppressed. The design and manufacture of a controlled heat pipe with such heat flow switching properties are well-known knowledge.
Technology can do it.

第4図、第5図は、本考案の実施例を示したも
のである。第4図でイは熱駆動ポンプに係るもの
で、各部は第1図と同じ符号で示されている。ロ
は熱流スイツチ性を備えた制御付ヒートパイプで
あつて、10はヒートパイプの蒸発部、11は同
じく凝縮部、12は蒸発部内面に内張したウイツ
クである。第5図は多数の加熱部9a,9b……
を並列配設し、それらの入口側と出口側を連結管
13,14に接続して形成された熱駆動ポンプイ
を用いた場合を示し、制御付ヒートパイプロは横
幅の広い構造となつている。第4図、第5図とも
に、熱駆動ポンプイの加熱部9,9a,9a,9
c……は、ヒートパイプロの凝縮部11中に封入
され、加熱部の多数のフインを介して吸熱が行わ
れる。
4 and 5 show an embodiment of the present invention. In FIG. 4, reference numeral A relates to a heat-driven pump, and each part is designated by the same reference numeral as in FIG. B is a controlled heat pipe having a heat flow switching function, 10 is an evaporation part of the heat pipe, 11 is a condensation part, and 12 is a wick lined inside the evaporation part. FIG. 5 shows a large number of heating parts 9a, 9b...
The case is shown in which a heat-driven pump is used, which is formed by arranging the heat pipes in parallel and connecting their inlet and outlet sides to connecting pipes 13 and 14, and the controlled heat pipe has a wide structure. . Both FIG. 4 and FIG. 5 show heating parts 9, 9a, 9a, 9 of the thermally driven pump.
c... is sealed in the condensing section 11 of the heat pipero, and heat is absorbed through the many fins of the heating section.

本考案は以上のように熱入力が一定量に限ら
れ、効率的に作動が行われ、しかも構造が極めて
簡単であつて従来の熱駆動ポンプをそのまま利用
できる等、多くの利点がある。
As described above, the present invention has many advantages, such as limited heat input, efficient operation, and extremely simple structure, allowing conventional heat-driven pumps to be used as is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の装置の説明図、第2図は従来
の装置の特性を示す線図、第3図は本考案の装置
における特性を示す線図、第4図は本考案の説明
図、第5図は本考案の他の一例を示す斜面図であ
る。 図中符号、1は上部加熱管、2は下部加熱管、
3,13は吐出管、4,14は吸込管、9,9
a,9b,9c……は加熱部、10は蒸発部、1
1は凝縮部、12はウイツク、イは熱駆動ポン
プ、ロはヒートパイプを示す。
Fig. 1 is an explanatory diagram of the conventional device, Fig. 2 is a diagram showing the characteristics of the conventional device, Fig. 3 is a diagram showing the characteristics of the device of the present invention, and Fig. 4 is an explanatory diagram of the present invention. , FIG. 5 is a perspective view showing another example of the present invention. Codes in the figure: 1 is the upper heating tube, 2 is the lower heating tube,
3, 13 are discharge pipes, 4, 14 are suction pipes, 9, 9
a, 9b, 9c... are heating parts, 10 are evaporation parts, 1
1 is a condensing section, 12 is a heat pump, A is a heat-driven pump, and B is a heat pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 加熱部内に位置すべき上部加熱管と下部加熱管
の上下対応する各一端に、それぞれ逆止弁を有
し、かつ立上り部、屈曲部、垂下部で形成される
吐出管及び吸込管を連結してなる熱駆動ポンプの
前記加熱部を、別に内部に作動流体のほかに所要
量の不凝縮性ガスを封入し熱流スイツチ性を備え
た制御付ヒートパイプの凝縮部に内装して一体に
構成した熱駆動ポンプ。
Each of the upper and lower heating pipes located in the heating section has a check valve at one end corresponding to the upper and lower sides, and a discharge pipe and a suction pipe formed by a rising part, a bent part, and a hanging part are connected. The heating section of the heat-driven pump is integrated with the condensing section of a controlled heat pipe that separately seals a required amount of non-condensable gas in addition to the working fluid and has a heat flow switch function. Heat driven pump.
JP518683U 1983-01-18 1983-01-18 heat driven pump Granted JPS59113672U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP518683U JPS59113672U (en) 1983-01-18 1983-01-18 heat driven pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518683U JPS59113672U (en) 1983-01-18 1983-01-18 heat driven pump

Publications (2)

Publication Number Publication Date
JPS59113672U JPS59113672U (en) 1984-08-01
JPS6229822Y2 true JPS6229822Y2 (en) 1987-07-31

Family

ID=30136782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518683U Granted JPS59113672U (en) 1983-01-18 1983-01-18 heat driven pump

Country Status (1)

Country Link
JP (1) JPS59113672U (en)

Also Published As

Publication number Publication date
JPS59113672U (en) 1984-08-01

Similar Documents

Publication Publication Date Title
US2696085A (en) Heat pump water heater
JPH10503580A (en) Energy transfer system between hot and cold heat sources
RU1836608C (en) Forrectifier with gas bubble pump
JPS6229822Y2 (en)
JPH01217165A (en) Absorption heat pump device
JPS6121599Y2 (en)
JPS61134596A (en) Heat exchanger for heat pump device
JPS6121598Y2 (en)
JPH07111312B2 (en) Heat transfer device
JPS6030485A (en) Piston driven temperature difference pump
JPH0461195B2 (en)
US3015221A (en) Pump in absorption refrigeration machine
JPH0124533Y2 (en)
JPS5920568Y2 (en) Hot water circulation equipment for hot water boilers
JPS6039654Y2 (en) heat transfer device
KR970001838B1 (en) Heating cycle device
KR960003885Y1 (en) Pumping boiler
JPS6196395A (en) Heat transfer device
JPS5913666B2 (en) heat pump system
KR100339361B1 (en) Absorption heating and cooling system
RU2069821C1 (en) Low-pressure steam heating system
JPH0510596B2 (en)
JPS62119330A (en) Double tube type steam conveying device
KR950012156B1 (en) Hot water boiler
JPH0740810Y2 (en) Vacuum steam generator piping system