JPH0124533Y2 - - Google Patents
Info
- Publication number
- JPH0124533Y2 JPH0124533Y2 JP1982143306U JP14330682U JPH0124533Y2 JP H0124533 Y2 JPH0124533 Y2 JP H0124533Y2 JP 1982143306 U JP1982143306 U JP 1982143306U JP 14330682 U JP14330682 U JP 14330682U JP H0124533 Y2 JPH0124533 Y2 JP H0124533Y2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- tank
- amount
- pipe
- receiving tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 50
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 22
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
【考案の詳細な説明】
本考案は拡散吸収式冷蔵庫に関し、特に加熱量
の上昇に対応して冷凍能力を上昇させることがで
きる拡散吸収式冷蔵庫を提供するものである。[Detailed Description of the Invention] The present invention relates to a diffusion absorption type refrigerator, and particularly provides a diffusion absorption type refrigerator that can increase its refrigerating capacity in response to an increase in the amount of heating.
拡散吸収式冷蔵庫の冷凍能力は、発生器で蒸発
したアンモニア蒸気の気泡により気泡ポンプがく
み上げる揚液量に依存し、この気泡ポンプのくみ
上げ揚液量は、ポンプパイプ内に、ある一定量の
気泡が存在する時に最大となる。 The refrigerating capacity of a diffusion absorption refrigerator depends on the amount of liquid pumped by the bubble pump using the bubbles of ammonia vapor evaporated in the generator. is maximum when exists.
すなわち、従来の拡散吸収式冷蔵庫を示す第1
図において、発生器6で発生したアンモニア蒸気
は気泡となつて気泡ポンプ15を上昇して分離器
1に至るが、その際の気泡の上昇によつて液がく
み上げられ希溶液パイプ8へ供給される。ところ
がこのくみ上げ揚液量は気泡の状態によつて大き
く変化する。例えば第2図は気泡ポンプ内の気泡
の様子を示したものであり、(a)は、加熱量が小さ
い場合で、気泡量が少なく揚液量も小さい。 In other words, the first example shows a conventional diffusion absorption refrigerator.
In the figure, the ammonia vapor generated in the generator 6 turns into bubbles and ascends the bubble pump 15 to reach the separator 1, but as the bubbles rise at that time, the liquid is pumped up and supplied to the dilute solution pipe 8. Ru. However, the amount of pumped liquid varies greatly depending on the state of the bubbles. For example, FIG. 2 shows the state of bubbles in the bubble pump, and (a) shows the case where the amount of heating is small, the amount of bubbles is small, and the amount of pumped liquid is also small.
(b)は、加熱量が最適で一番揚液量が多い場合で
あり、(c)は、加熱量が大きすぎ蒸気が気泡となら
ずパイプの中心に蒸気流ができ揚液量も少ない状
態である。 (b) is the case when the amount of heating is optimal and the amount of liquid pumped is the highest, and (c) is the case where the amount of heating is so large that the steam does not form bubbles and the steam flow is in the center of the pipe and the amount of liquid pumped is small. state.
このように従来の構造を有する気泡ポンプは、
加熱量の変化によりその揚液量は、第3図Aに示
すように最適な加熱量の時のみその揚液量が最大
となり、それより多すぎる加熱量でも少なすぎる
加熱量でも揚液量は少なくなる。一方冷蔵庫の動
作原理によれば、加熱量が多くなるほど多くのア
ンモニア蒸気が発生し、それに伴ない吸収器で多
量の吸収液が必要となるため、理想的には第3図
に破線Bで示されるように、加熱量の増加に伴い
揚液量も増加する特性を有する揚液ポンプが必要
となる。 In this way, a bubble pump with a conventional structure is
As shown in Figure 3A, the amount of liquid pumped due to changes in the amount of heating reaches its maximum only when the heating amount is optimal, and the amount of liquid pumped will be the maximum even if the amount of heating is too high or too low. It becomes less. On the other hand, according to the operating principle of a refrigerator, the greater the amount of heating, the more ammonia vapor is generated, and as a result, a large amount of absorption liquid is required in the absorber. Therefore, a liquid pump with a characteristic that the amount of liquid pumped increases as the amount of heating increases is required.
第1図に示したように、加熱源が電気ヒータ1
2であれば、常に一定の加熱量が供給されるた
め、従来の構造の気泡ポンプであつても、その揚
液量が最大となるようにポンプパイプの径を設計
すれば良いことになるが太陽熱や、エンジン、ボ
イラーなどの排熱などを冷蔵庫の加熱源として使
用する場合には、加熱量が常に一定ではないため
前記したように、加熱量の増加にともない揚液量
が増加する構造の揚液ポンプが必要となる。本考
案は、このような特性を有する揚液ポンプの改良
構造に関するものであり、その具体的構成は、発
生器、分離器、精溜器、凝縮器、冷蔵室を冷却す
る蒸発器、吸収器、受液タンク、希溶液パイプを
備え、且つ発生器が、受液タンクと略同じ高さに
独立して配設された蒸気発生槽と、この蒸気発生
槽と分離器とを連結し、受液タンクの液面より低
い位置に下部開口部を有し、それによつて蒸気発
生槽の上部に蒸気密閉空間部を形成しうる揚液ポ
ンプパイプと、蒸気発生槽と受液タンクの液部分
を連結する連通パイプと、この連通パイプに介在
され受液タンクから蒸気発生槽へのみ流通を可能
にする逆止弁とからなる拡散吸収式冷蔵庫であ
る。 As shown in FIG. 1, the heating source is an electric heater 1.
If it is 2, a constant amount of heating is always supplied, so even if it is a bubble pump with a conventional structure, the diameter of the pump pipe can be designed to maximize the amount of liquid pumped. When solar heat, exhaust heat from an engine, boiler, etc. is used as a heating source for a refrigerator, the amount of heating is not always constant, so as mentioned above, the amount of liquid pumped increases as the amount of heating increases. A liquid pump is required. The present invention relates to an improved structure of a pump having such characteristics, and its specific structure includes a generator, a separator, a rectifier, a condenser, an evaporator for cooling the refrigerator compartment, and an absorber. A steam generating tank is provided with a liquid receiving tank, a dilute solution pipe, and a generator is arranged independently at approximately the same height as the liquid receiving tank, and this steam generating tank and a separator are connected to each other, and a receiving tank is installed. A liquid lift pump pipe that has a lower opening at a position lower than the liquid level of the liquid tank, thereby forming a steam-tight space above the steam generation tank, and a liquid portion of the steam generation tank and the liquid receiving tank. This is a diffusion-absorption type refrigerator that consists of a connecting pipe and a check valve that is interposed in the pipe and allows flow only from the liquid receiving tank to the steam generating tank.
すなわち、本考案は蒸気発生槽を分離器及び希
溶液パイプとは独立して設置し、その蒸気発生槽
と分離器とを特定の揚液ポンプパイプで連結する
ことによつて、蒸気発生槽の蒸気の圧力で揚液で
きるようにし、それによつて加熱量に比例した揚
液量が得られるようにするものである。 That is, the present invention installs the steam generation tank independently of the separator and the dilute solution pipe, and connects the steam generation tank and the separator with a specific pump pipe, thereby increasing the efficiency of the steam generation tank. It is possible to pump liquid using the pressure of steam, thereby making it possible to obtain the amount of liquid pumped that is proportional to the amount of heating.
以下図に示す実施例に基づいて本考案を詳述す
る。なおこれによつて本考案が限定されるもので
はない。 The present invention will be described in detail below based on embodiments shown in the figures. Note that the present invention is not limited thereby.
第4図は、本考案による揚液ポンプを有する拡
散吸収式冷蔵庫の断面図である。発生器、つまり
揚液ポンプは、ポンプパイプ15、蒸気発生槽と
しての膨張槽16、加熱熱管17、逆止弁18付
連通管19よりなりそれ以外は第1図の原理図に
示した構造と全く同じである。 FIG. 4 is a sectional view of a diffusion absorption refrigerator with a liquid pump according to the present invention. The generator, that is, the lift pump, consists of a pump pipe 15, an expansion tank 16 as a steam generation tank, a heating heat pipe 17, and a communication pipe 19 with a check valve 18, and the rest has the structure shown in the principle diagram of FIG. It's exactly the same.
膨張槽16と受液タンク11とは、逆止弁18
を介して連通管19で結ばれており、ポンプパイ
プ15の開口部は膨張槽内の液面20より下部に
位置しており、加熱パイプ17により膨張槽内の
液が加熱され蒸発したアンモニア蒸気により液面
20はポンプパイプ15の下部開口部の位置まで
押下げられる。この時、逆止弁18は、矢印の方
向にしか液を流さないため、液はポンプパイプ1
5内を上昇し、分離器1内のポンプパイプ上部開
口部まで押上げられるとともに、アンモニア蒸気
もポンプパイプ15を介して分離器1に導入され
ることになる。一旦、液がポンプパイプ上部開口
部まで押上げられると、膨張槽内の圧力と分離器
内の圧力は一様となり、連通管の原理により、受
液タンク11内の液が逆止弁18を通つて膨張槽
内に流れこむ。この動作を繰返すことにより膨張
槽16内の液は、アンモニア蒸気を蒸発させなが
ら次々とくみ上げられていくことになる。このく
み上げのサイクルは、加熱量が多ければ多いほど
速く繰返えされることになり、単位時間当りのく
み上げ量は加熱量に比例して大きくなる。 The expansion tank 16 and the liquid receiving tank 11 are connected to each other by a check valve 18.
The opening of the pump pipe 15 is located below the liquid level 20 in the expansion tank, and the liquid in the expansion tank is heated by the heating pipe 17 and evaporated ammonia vapor. As a result, the liquid level 20 is pushed down to the position of the lower opening of the pump pipe 15. At this time, the check valve 18 allows the liquid to flow only in the direction of the arrow, so the liquid flows into the pump pipe 1.
5 and is pushed up to the upper opening of the pump pipe in the separator 1, and the ammonia vapor is also introduced into the separator 1 via the pump pipe 15. Once the liquid is pushed up to the upper opening of the pump pipe, the pressure in the expansion tank and the pressure in the separator become uniform, and due to the principle of a communicating pipe, the liquid in the liquid receiving tank 11 passes through the check valve 18. and flows into the expansion tank. By repeating this operation, the liquid in the expansion tank 16 will be pumped up one after another while evaporating the ammonia vapor. This cycle of pumping is repeated more quickly as the amount of heating increases, and the amount of pumping per unit time increases in proportion to the amount of heating.
第5図は、液の加熱位置を膨張槽外にした構造
の揚液ポンプを有するものであり、受液タンク1
1と膨張槽16の間の連通管の一部21を加熱し
アンモニア蒸気を膨張槽上部に導びく構造にした
ものである。 Figure 5 shows a liquid pump having a structure in which the liquid is heated outside the expansion tank, and the liquid is heated in the liquid receiving tank 1.
1 and the expansion tank 16 is heated, and the ammonia vapor is guided to the upper part of the expansion tank.
以上、本考案による揚液ポンプにおいては、加
熱量の変動が有つても、その変動に比例した量の
揚液量を供給することができ、その加熱量に比例
した冷凍能力を出すことができる。 As described above, in the pump according to the present invention, even if there is a fluctuation in the amount of heating, it is possible to supply an amount of pumped liquid proportional to the fluctuation, and it is possible to produce a refrigeration capacity proportional to the amount of heating. .
第1図は、従来の拡散式吸収冷蔵庫の断面によ
る原理図、第2図は、気泡ポンプ内の流れの様子
を示す拡大断面図、第3図は、気泡ポンプの揚液
量と加熱量の関係を示すグラフ、第4図は、本考
案の一実施例を示す拡散吸収式冷蔵庫の断面図、
第5図は、他の実施例を示す断面図である。
1……分離器、2……精溜器、3……凝縮器、
4……蒸発器、5……吸収器、6……発生器、8
……希溶液パイプ、11……受液タンク、15…
…ポンプパイプ、16……膨張槽(蒸気発生槽)、
18……逆止弁、19……連通パイプ。
Figure 1 is a cross-sectional diagram of the principle of a conventional diffusion-type absorption refrigerator, Figure 2 is an enlarged cross-sectional view showing the flow inside the bubble pump, and Figure 3 is a diagram showing the amount of liquid pumped and the amount of heating by the bubble pump. A graph showing the relationship, FIG. 4 is a sectional view of a diffusion absorption refrigerator showing an embodiment of the present invention,
FIG. 5 is a sectional view showing another embodiment. 1... Separator, 2... Rectifier, 3... Condenser,
4... Evaporator, 5... Absorber, 6... Generator, 8
...Dilute solution pipe, 11...Liquid receiving tank, 15...
...pump pipe, 16...expansion tank (steam generation tank),
18...Check valve, 19...Communication pipe.
Claims (1)
却する蒸発器、吸収器、受液タンク、希溶液パイ
プを備え、且つ発生器が、受液タンクと略同じ高
さに独立して配設された蒸気発生槽と、この蒸気
発生槽と分離器とを連結し、受液タンクの液面よ
り低い位置に下部開口部を有し、それによつて蒸
気発生槽の上部に蒸気密閉空間部を形成しうる揚
液ポンプパイプと、蒸気発生槽と受液タンクの液
部分を連結する連通パイプと、この連通パイプに
介在され受液タンクから蒸気発生槽へのみ流通を
可能にする逆止弁とからなる拡散吸収式冷蔵庫。 It is equipped with a generator, a separator, a rectifier, a condenser, an evaporator for cooling the refrigerator compartment, an absorber, a liquid receiving tank, and a dilute solution pipe, and the generator is installed independently at approximately the same height as the liquid receiving tank. A steam generating tank installed in the tank is connected to the separator, and the lower opening is lower than the liquid level of the liquid receiving tank, thereby sealing the upper part of the steam generating tank. A liquid pump pipe that can form a space, a communication pipe that connects the liquid parts of the steam generation tank and the liquid receiving tank, and a reverse pipe that is interposed in this communication pipe and allows flow only from the liquid receiving tank to the steam generation tank. A diffusion absorption refrigerator consisting of a stop valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14330682U JPS5949177U (en) | 1982-09-20 | 1982-09-20 | Diffusion absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14330682U JPS5949177U (en) | 1982-09-20 | 1982-09-20 | Diffusion absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5949177U JPS5949177U (en) | 1984-04-02 |
JPH0124533Y2 true JPH0124533Y2 (en) | 1989-07-25 |
Family
ID=30319920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14330682U Granted JPS5949177U (en) | 1982-09-20 | 1982-09-20 | Diffusion absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949177U (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55165467A (en) * | 1979-06-11 | 1980-12-23 | Mitsubishi Electric Corp | Thermostat |
-
1982
- 1982-09-20 JP JP14330682U patent/JPS5949177U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55165467A (en) * | 1979-06-11 | 1980-12-23 | Mitsubishi Electric Corp | Thermostat |
Also Published As
Publication number | Publication date |
---|---|
JPS5949177U (en) | 1984-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0124533Y2 (en) | ||
JPS597862A (en) | Absorption type heat pump system | |
JP2003083634A (en) | Heat pump system | |
US3357203A (en) | Absorption refrigeration system | |
US3648481A (en) | Generator of absorption refrigeration apparatus | |
US4014183A (en) | Absorption refrigerator of natural circulation type | |
US2215674A (en) | Refrigeration | |
US2557573A (en) | Air conditioning | |
US5373709A (en) | Absorption type refrigerator | |
JP2548789Y2 (en) | Cooler structure in absorption refrigeration cycle | |
CN208139629U (en) | Generator and combustion chamber with the generator | |
US3623333A (en) | Absorption cooling system | |
US2253893A (en) | Combination pressure and absorption type refrigeration device | |
US3073257A (en) | Heat actuated pumps | |
US2761656A (en) | Air conditioning | |
US2977775A (en) | Absorption refrigerator | |
JPS6337638Y2 (en) | ||
JPS6011395Y2 (en) | Absorption refrigerator device | |
JPS6229822Y2 (en) | ||
US2240540A (en) | Refrigeration | |
SU1393926A1 (en) | Pump with heat drive | |
JPH0238023Y2 (en) | ||
SU606038A1 (en) | Domestic air conditioner | |
KR960003885Y1 (en) | Pumping boiler | |
JPS602539Y2 (en) | absorption refrigerator |