JPS6039654Y2 - heat transfer device - Google Patents

heat transfer device

Info

Publication number
JPS6039654Y2
JPS6039654Y2 JP1980130446U JP13044680U JPS6039654Y2 JP S6039654 Y2 JPS6039654 Y2 JP S6039654Y2 JP 1980130446 U JP1980130446 U JP 1980130446U JP 13044680 U JP13044680 U JP 13044680U JP S6039654 Y2 JPS6039654 Y2 JP S6039654Y2
Authority
JP
Japan
Prior art keywords
heat
reservoir
radiator
heat collector
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980130446U
Other languages
Japanese (ja)
Other versions
JPS5755888U (en
Inventor
政明 村上
哲朗 大串
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1980130446U priority Critical patent/JPS6039654Y2/en
Publication of JPS5755888U publication Critical patent/JPS5755888U/ja
Application granted granted Critical
Publication of JPS6039654Y2 publication Critical patent/JPS6039654Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Central Heating Systems (AREA)

Description

【考案の詳細な説明】 この考案は、配管内に封入された作動流体の相変化と、
重力による液の還流作用により、集熱器から放熱器へ熱
輸送する熱伝達装置に関するものである。
[Detailed explanation of the invention] This invention is based on the phase change of the working fluid sealed in the piping,
The present invention relates to a heat transfer device that transports heat from a heat collector to a radiator by the reflux action of liquid due to gravity.

従来、この種の装置として、第1図に示すものがあった
Conventionally, there has been a device of this type as shown in FIG.

図において、1は太陽光の熱を受ける集熱器、2は室内
に置かれた放熱器で、集熱器1より高い位置に置かれて
いる。
In the figure, 1 is a heat collector that receives heat from sunlight, and 2 is a heat radiator placed indoors, which is placed higher than the heat collector 1.

3A、3Bは集熱器1と放熱器2の間を連通ずる配管で
、配管3Aの両端は集熱器1、放熱器2の下部へそれぞ
れ接続されている。
3A and 3B are pipes communicating between the heat collector 1 and the heat radiator 2, and both ends of the pipe 3A are connected to the lower portions of the heat collector 1 and the heat radiator 2, respectively.

また、配管3Bの両端は集熱器1、放熱器2の上部へそ
れぞれ接続されている。
Further, both ends of the pipe 3B are connected to the upper portions of the heat collector 1 and the heat radiator 2, respectively.

4は配管3Aの途中に配設されたバルブ、5はリザーバ
バであり、リザーバ5下部とバルブ4、放熱器2間の配
管3Aとは配管3Cにより連通されている。
4 is a valve disposed in the middle of the pipe 3A, 5 is a reservoir bar, and the lower part of the reservoir 5 is connected to the pipe 3A between the valve 4 and the radiator 2 through a pipe 3C.

このときリザーバ5は集熱器1よりも高く、放熱器2よ
りも低い位置にある。
At this time, the reservoir 5 is located higher than the heat collector 1 and lower than the heat radiator 2.

なお、リザーバ5の容積は装置全体の液状作動流体を溜
められる程度に設定されている。
Note that the volume of the reservoir 5 is set to such an extent that it can store the liquid working fluid for the entire device.

以上説明した1〜5内部には、たとえばフロン、水など
の作動流体が封入されており、その量は動作時、集熱器
1に液状の作動流体が充満する程度である。
A working fluid such as fluorocarbon or water is sealed inside 1 to 5 described above, and the amount thereof is such that the heat collector 1 is filled with the liquid working fluid during operation.

次に動作について説明する。Next, the operation will be explained.

まず、動作させる場合にはバルブ4は開の状態にする。First, when operating, the valve 4 is opened.

この状態で集熱器1に太陽光が当たると、集熱器1は加
熱され、その中の作動流体は蒸発熱を奪って蒸発し、放
熱器2とのわずかな圧力差のために、配管3Bを通って
放熱器2へ達し、そこで冷却され、凝縮熱を放出して液
化する。
When sunlight hits the heat collector 1 in this state, the heat collector 1 is heated, the working fluid inside it takes away the heat of evaporation and evaporates, and due to the slight pressure difference with the heat radiator 2, the pipe 3B and reaches the radiator 2, where it is cooled, releases heat of condensation, and liquefies.

放熱器2で液化した作動流体は重力の作用により、放熱
器2の下部から配管3Aを通り、放熱器2よりも低い位
置にある集熱器1へ還流する。
Due to the action of gravity, the working fluid liquefied in the radiator 2 passes through the pipe 3A from the lower part of the radiator 2 and flows back to the heat collector 1 located at a lower position than the radiator 2.

以上の動作が順次くり返されることにより、太陽光の持
つ熱を動力を使うことなく室内に取り入れ、室内を暖房
することが可能となる。
By repeating the above operations in sequence, it becomes possible to take the heat of sunlight into the room and heat the room without using power.

また、夏期など室内を暖房する必要が無い場合にはバル
ブ4は閉にする。
Further, the valve 4 is closed when there is no need to heat the room, such as in the summer.

この状態では放熱器2で凝縮液化した作動流体は集熱器
1へ還流することができなくなるため、それまで集熱器
1内にあった液状の作動流体が全て蒸発して無くなると
同時にこの装置による熱輸送作用は停止し、室内は暖房
されなくなる。
In this state, the working fluid that has condensed and liquefied in the heat radiator 2 cannot flow back to the heat collector 1, so the device The heat transport effect of the air will stop, and the room will no longer be heated.

このとき、放熱器2で凝縮液化した作動流体は配管3A
、3Cを通って放熱器2より低い位置にあるリザーバ5
へ溜まる。
At this time, the working fluid condensed and liquefied in the radiator 2 is transferred to the pipe 3A.
, 3C and is located lower than the heat sink 2.
It accumulates in

この後、再び熱輸送作用を行なわせたい場合にはバルブ
4を開にすれば良い。
After this, if it is desired to perform the heat transport action again, the valve 4 may be opened.

バルブ4が開になることによりリザーバ5に溜っていた
液状の作動流体は重力の作用で配管3C,3Aを通って
集熱器1へ流れ込み、先に説明した動作原理通りの熱輸
送を始める。
When the valve 4 is opened, the liquid working fluid accumulated in the reservoir 5 flows into the heat collector 1 through the pipes 3C and 3A under the action of gravity, and begins to transport heat according to the operating principle described above.

従来の熱伝達装置は、以上のように構成されているので
バルブ4を閉めた動作停止時に、外気にさらされている
集熱器1が室内に置かれている放熱器2の温度より低く
なると、定常動作時とは逆に集熱器1で作動流体の凝縮
液化が起こり、リザーバ5や放熱器2内の圧力より集熱
器1内の圧力の方が低くなる。
Since the conventional heat transfer device is configured as described above, when the valve 4 is closed and the operation is stopped, the temperature of the heat collector 1 exposed to the outside air becomes lower than that of the radiator 2 placed indoors. Condensation and liquefaction of the working fluid occurs in the heat collector 1, contrary to the normal operation, and the pressure in the heat collector 1 becomes lower than the pressure in the reservoir 5 and the radiator 2.

そうすると、それまでリザーバ5に溜っていた液状の作
動流体は配管3C,3Aから放熱器2、配管3Bを通っ
て集熱器1に流れ込むことになる。
Then, the liquid working fluid that had been accumulated in the reservoir 5 will flow from the pipes 3C and 3A to the heat collector 1 through the radiator 2 and the pipe 3B.

このように、一度配管3B内に液が充満すると再起動時
、集熱器1内で発生した蒸気は配管3B内の液中を放熱
器2まで流れなくてはならないため、その圧力損は極め
て大きくなり、結局熱輸送量が著しく減少する欠点があ
った。
In this way, once the pipe 3B is filled with liquid, when restarting, the steam generated in the heat collector 1 must flow through the liquid in the pipe 3B to the radiator 2, so the pressure loss is extremely high. This resulted in a disadvantage that the amount of heat transport decreased significantly.

この考案は上記のような従来のものの欠点を除去するた
めになされたもので、放熱器で凝縮した液を集熱器へ導
ひくための配管の途中にリザーバを設けているが、この
リザーバ内に非凝縮性ガスを適量封入することにより、
動作停止時には集熱器、および集熱器で蒸発した蒸気を
放熱器へ導びくための配管内に非凝縮性ガスが充満し、
リザーバ内の液が集熱器へ流れるのを防止し確実な再起
動性を有する熱伝達装置を提供することを目的としてい
る。
This idea was made to eliminate the drawbacks of the conventional ones as mentioned above, and a reservoir is provided in the middle of the piping to guide the liquid condensed in the radiator to the heat collector. By filling an appropriate amount of non-condensable gas into
When operation is stopped, non-condensable gas fills the heat collector and the piping that guides the steam evaporated in the heat collector to the radiator.
It is an object of the present invention to provide a heat transfer device that prevents liquid in a reservoir from flowing to a heat collector and has reliable restartability.

以下、この考案の一実施例を図について説明する。An embodiment of this invention will be described below with reference to the drawings.

第2図において、1,2.3A、3B、3C,4は、第
1図における従来の熱伝達装置のものと同様なので説明
を省略する。
In FIG. 2, 1, 2.3A, 3B, 3C, and 4 are the same as those of the conventional heat transfer device in FIG. 1, so the explanation thereof will be omitted.

6はリザーバ、7はリザーバ6内に封入された非凝縮性
ガスであり、リザーバ6上部と放熱器2の作動流体出口
側端部とは配管3Dにより連通されている。
6 is a reservoir, 7 is a non-condensable gas sealed in the reservoir 6, and the upper part of the reservoir 6 and the working fluid outlet side end of the radiator 2 are connected through a pipe 3D.

以上の構成において、非凝縮性ガス7の量は、動作停止
時の圧力で、集熱器1、配管3B、放熱器2の容積を合
計した程度であり、またリザーバ6の容積は装置全体の
液状作動流体を溜められる大きさであるとともに、動作
時の圧力で非凝縮性ガス7をリザーバ6内に貯えられる
程度とする。
In the above configuration, the amount of non-condensable gas 7 is approximately the sum of the volumes of the heat collector 1, piping 3B, and radiator 2 at the pressure when the operation is stopped, and the volume of the reservoir 6 is the same as that of the entire device. The reservoir 6 is large enough to store the liquid working fluid, and is large enough to store the non-condensable gas 7 in the reservoir 6 at the pressure during operation.

なおリザーバ6の位置については従来例と同じなので説
明を省略する。
Note that the position of the reservoir 6 is the same as in the conventional example, so a description thereof will be omitted.

この実施例においても、熱伝達装置の熱輸送原理は前記
した従来の熱輸送原理と同様である。
In this embodiment as well, the heat transport principle of the heat transfer device is similar to the conventional heat transport principle described above.

本装置において、バルブ4を閉めて動作を停止させた場
合には、集熱器1内の圧力が動作時の圧力に比べて低く
なるため、リザーバ6内の非凝縮性ガス7は配管3D、
放熱器2、配管3Bを通って集熱器1に流れ込み、装置
全体を均圧する。
In this device, when the valve 4 is closed to stop the operation, the pressure inside the collector 1 becomes lower than the pressure during operation, so the non-condensable gas 7 in the reservoir 6 is transferred to the pipe 3D,
It flows into the heat collector 1 through the heat radiator 2 and piping 3B, and equalizes the pressure of the entire device.

すなわち、集熱器1内の圧力が低くなった場合には、リ
ザーバ6に溜っている液状作動流体がリザーバ6から出
るのでは無く、かわりにリザーバ6上部にあった非凝縮
性ガス7が出て行(ため、配管3Bに液が流入すること
は無くなる。
That is, when the pressure inside the heat collector 1 becomes low, the liquid working fluid stored in the reservoir 6 does not come out of the reservoir 6, but instead, the non-condensable gas 7 that was in the upper part of the reservoir 6 comes out. (Thus, liquid will no longer flow into the pipe 3B.

また、集熱器1や配管3B、放熱器2に非凝縮性ガス7
が充満している状態から再起動させるには、従来装置同
様にバルブ4を開にすれば良い。
In addition, non-condensable gas 7 is added to the heat collector 1, piping 3B, and radiator 2.
To restart the system from a state where it is full, just open the valve 4 as in the conventional system.

バルブ4が開とともに、リザーバ6に溜っていた液状の
作動流体は重力の作用により集熱器1へ流れ込み、集熱
器1が太陽光により加熱されていると、そこで蒸発熱を
奪って高圧の蒸気となり、集熱器1より圧力の低い放熱
器2へ流れる。
When the valve 4 opens, the liquid working fluid stored in the reservoir 6 flows into the heat collector 1 due to the action of gravity, and if the heat collector 1 is heated by sunlight, it absorbs the heat of evaporation and becomes a high-pressure fluid. It becomes steam and flows to the radiator 2, which has a lower pressure than the heat collector 1.

そしてそれまで集熱器1や配管3B、放熱器2にあった
非凝縮性ガス7は蒸気に押されて配管3Dを通りリザー
バ6に溜まり、この後は前述した熱輸送原理通りの熱輸
送が行なわれることになる。
The non-condensable gas 7 that had been in the heat collector 1, piping 3B, and radiator 2 until then is pushed by the steam and passes through the piping 3D and accumulates in the reservoir 6. After this, heat transport according to the heat transport principle described above is carried out. It will be done.

以上の説明ではリザーバ6に非凝縮性ガス7を封入する
ことにより、熱伝達装置の再起動が確実に行なわれるこ
とについて説明したが、本考案による二次的効果として
蒸発圧力の低い作動流体が使用できる点についても次に
説明する。
In the above explanation, it has been explained that the heat transfer device can be reliably restarted by filling the reservoir 6 with the non-condensable gas 7. However, as a secondary effect of the present invention, the working fluid with low evaporation pressure is The points that can be used are also explained below.

従来の熱伝達装置では配管内に非凝縮性ガス7が混入す
ると、それが放熱器2内にブロックされ熱輸送が阻害さ
れる。
In conventional heat transfer devices, when non-condensable gas 7 gets mixed into the piping, it is blocked in the radiator 2 and heat transport is inhibited.

したがって、配管から空気がスローリークしてくるのを
無くすため、作動流体としては熱伝達装置が置かれる最
低の雰囲気温度で大気圧以上の蒸気圧を持つものが選ば
れていた。
Therefore, in order to eliminate slow leakage of air from the piping, the working fluid has been selected to have a vapor pressure greater than atmospheric pressure at the lowest ambient temperature in which the heat transfer device is placed.

例えは、最低雰囲気温度が一20°Cとすると、フロン
系作動流体ではR−12が蒸気圧1.5ka/rdで適
しているようであるが温度が高くなった場合(100℃
の蒸気圧は約34ko/d)は危険であるため総括的に
は不適である。
For example, if the minimum ambient temperature is 120°C, R-12 seems to be suitable as a fluorocarbon-based working fluid with a vapor pressure of 1.5 ka/rd, but if the temperature rises (100°C
The vapor pressure of about 34 ko/d) is dangerous and is therefore generally inappropriate.

すなわち従来はスローリークによる熱輸送量の減少か圧
力のどちらかで無理をしなくてはならなかった。
In other words, in the past, it was necessary to either reduce the amount of heat transport due to slow leakage or increase pressure.

しかし、本考案による熱伝達装置では最初から非凝縮性
ガス7が混入することを前提とした構成と戊っているた
め蒸気圧の低い作動流体を使用しても、非動作時におけ
る非凝縮ガス7の圧力が大気圧程度になるように構成す
れは性能に支障をおよぼさないメリットがある。
However, since the heat transfer device according to the present invention is configured on the assumption that non-condensable gas 7 will be mixed in from the beginning, even if a working fluid with low vapor pressure is used, non-condensable gas will be mixed in during non-operation. 7 has the advantage of not affecting performance by configuring it so that the pressure is around atmospheric pressure.

以上のように、この考案によれば、放熱器の作動流体出
口側端部とリザーバ上部とを配管により連通させ、リザ
ーバ内部には非凝縮性ガスを適量封入するように構成し
たので、再起動を確実に行なえるようになり、また作動
流体の選定範囲を広くとれるという実用上顕著な効果が
ある。
As described above, according to this invention, the working fluid outlet side end of the radiator and the upper part of the reservoir are connected through piping, and the reservoir is configured to be filled with an appropriate amount of non-condensable gas. This has the practical effect of making it possible to reliably perform the above operations, and widening the selection range of working fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱伝達装置を示す構成図、第2図はこの
考案の一実施例による熱伝達装置を示す構成国である。 図において、1は集熱器、2は放熱器、3A。 3B、3C,3Dは配管、4はバルブ、5,6はリザー
バ、7は非凝縮性ガスである。 なお、各図中同一符号は同−又は相当部分を示す。
FIG. 1 is a configuration diagram showing a conventional heat transfer device, and FIG. 2 is a configuration diagram showing a heat transfer device according to an embodiment of this invention. In the figure, 1 is a heat collector, 2 is a heat radiator, and 3A. 3B, 3C, and 3D are pipes, 4 is a valve, 5 and 6 are reservoirs, and 7 is a non-condensable gas. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)ループ状配管中、上下に位置して設けられた放熱
器と集熱器とからなり、その内部に適量封入された作動
流体の相変化と重力による還流作用により、上記配管下
部に位置する上記集熱器から、上部に位置する上記放熱
器へ熱輸送するものにおいて、上記放熱器で凝縮した液
を上記集熱器へ導くための配管の途中にリザーバを設け
、その内部に非凝縮性ガスを適量封入したことを特徴と
する熱伝達装置。
(1) Consisting of a heat radiator and a heat collector located above and below in a loop-shaped pipe, the position at the bottom of the pipe is created by the phase change of an appropriate amount of working fluid sealed inside and the reflux action due to gravity. In a device that transports heat from the heat collector to the heat radiator located above, a reservoir is provided in the middle of the piping for guiding the liquid condensed in the heat radiator to the heat collector, and a reservoir is provided inside the reservoir to prevent condensation. A heat transfer device characterized by enclosing an appropriate amount of a reactive gas.
(2)放熱器の作動流体出口側端部とリザーバ上部とを
パイプで連通したことを特徴とする実用新案登録請求の
範囲第一項記載の熱伝達装置。
(2) The heat transfer device according to claim 1, wherein the working fluid outlet side end of the radiator and the upper part of the reservoir are communicated with each other by a pipe.
JP1980130446U 1980-09-12 1980-09-12 heat transfer device Expired JPS6039654Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980130446U JPS6039654Y2 (en) 1980-09-12 1980-09-12 heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980130446U JPS6039654Y2 (en) 1980-09-12 1980-09-12 heat transfer device

Publications (2)

Publication Number Publication Date
JPS5755888U JPS5755888U (en) 1982-04-01
JPS6039654Y2 true JPS6039654Y2 (en) 1985-11-28

Family

ID=29490763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980130446U Expired JPS6039654Y2 (en) 1980-09-12 1980-09-12 heat transfer device

Country Status (1)

Country Link
JP (1) JPS6039654Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678871B2 (en) * 1987-10-12 1994-10-05 株式会社フジクラ Water heater
JP6590719B2 (en) * 2016-02-05 2019-10-16 日立Geニュークリア・エナジー株式会社 Loop-type thermosiphon heat pipe and nuclear reactor equipped with the same

Also Published As

Publication number Publication date
JPS5755888U (en) 1982-04-01

Similar Documents

Publication Publication Date Title
US4094147A (en) Circuit for the supply of condensable fluid to a solar engine
JPS6039654Y2 (en) heat transfer device
US4407129A (en) Closed loop solar collecting system operating a thermoelectric generator system
JP3303644B2 (en) Loop heat transport system
JPH0428993B2 (en)
JPS6143110Y2 (en)
JPS6215733Y2 (en)
JPS6170388A (en) Heat transfer device
US4412529A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
JPS6238148Y2 (en)
JPS62794A (en) Heat transfer device
JPS6311563Y2 (en)
US4354483A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
US4397300A (en) Closed loop solar collector system with dual chamber fluid supply arrangement
JPS6034941Y2 (en) heat transfer device
JPS6314224Y2 (en)
JPS6039656Y2 (en) heat transfer device
JPS6347738Y2 (en)
JPS625572Y2 (en)
JPS6251394B2 (en)
JPS60114697A (en) Heat transfer device
JPS6034940Y2 (en) heat transfer device
JPS6343656B2 (en)
JPS5971985A (en) Heat transporting apparatus
JPS60175995A (en) Heat transfer device