JPH0461195B2 - - Google Patents

Info

Publication number
JPH0461195B2
JPH0461195B2 JP59153441A JP15344184A JPH0461195B2 JP H0461195 B2 JPH0461195 B2 JP H0461195B2 JP 59153441 A JP59153441 A JP 59153441A JP 15344184 A JP15344184 A JP 15344184A JP H0461195 B2 JPH0461195 B2 JP H0461195B2
Authority
JP
Japan
Prior art keywords
liquid
bubbles
heating
pump
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153441A
Other languages
Japanese (ja)
Other versions
JPS6131679A (en
Inventor
Kenji Okayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15344184A priority Critical patent/JPS6131679A/en
Publication of JPS6131679A publication Critical patent/JPS6131679A/en
Publication of JPH0461195B2 publication Critical patent/JPH0461195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating
    • F04F1/04Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating generated by vaporising and condensing

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は外部から何らの機械的駆動を用いる事
なく液体と加熱するだけで液体を加熱と同時に圧
送するポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pump that heats and simultaneously pumps a liquid by simply heating the liquid without using any external mechanical drive.

(従来の技術) 従来、モーター、コンプレツサーなど外部動力
を必要とせず、液体を加熱するだけでポンプ作用
を生じさせるものとして熱駆動ポンプが知られて
いる(雑誌ソーダーと塩素1983、2号P64〜P77
「熱駆動ポンプについて」参照)。
(Prior art) Heat-driven pumps have been known as pumps that do not require external power such as motors or compressors, and can generate pumping action simply by heating the liquid (Magazine Soda and Chlorine 1983, No. 2, p. 64) P77
(See "About heat-driven pumps").

すなわち、この熱駆動ポンプは、第15図に示
すように、吸込管1と、吐出管2と、これらの管
の間に設けた2本の加熱管3,4とから成る加熱
部で構成されていて、吸込管1と吐出管2は液体
を一方向に流す為の逆止弁5,6がそれぞれ取付
けられた構造である。
That is, as shown in FIG. 15, this heat-driven pump consists of a heating section consisting of a suction pipe 1, a discharge pipe 2, and two heating pipes 3 and 4 provided between these pipes. The suction pipe 1 and the discharge pipe 2 are each equipped with check valves 5 and 6 for flowing liquid in one direction.

各管1,2,3,4の内部は液体で満たされて
いて、加熱部を外部から加熱すると、その中にあ
る液体が沸騰して気泡が発生し、管内で成長す
る。その結果、気泡の体積分の液体が逆止弁5を
通り吐出管2から排出される。その後、成長した
気泡はやがて冷えて収縮を始め、これにより加熱
管内の圧力が下がり、吸込管1から逆止弁6を通
つた冷えた液体が管内に流入する。この繰返しで
ポンプとして作動する。
The inside of each tube 1, 2, 3, 4 is filled with liquid, and when the heating section is heated from the outside, the liquid inside boils and bubbles are generated and grow inside the tube. As a result, liquid corresponding to the volume of the bubbles passes through the check valve 5 and is discharged from the discharge pipe 2. Thereafter, the grown bubbles eventually cool down and begin to contract, which lowers the pressure inside the heating tube, and the cooled liquid that has passed through the check valve 6 from the suction tube 1 flows into the tube. By repeating this process, it works as a pump.

しかし、この熱駆動ポンプは、加熱部が管にな
つていて、吸込管1や吐出管2から熱的に遮断さ
れていない構造の為、以下の問題を有する。すな
わちポンプに投入されたエネルギーのロスが発生
して効率が悪い。また、構造的にも上下2本の加
熱管を必要とし、複雑である。さらに、加熱量が
小さくなると効率的に作動しなくなる。
However, this heat-driven pump has the following problems because the heating section is a pipe and is not thermally isolated from the suction pipe 1 and the discharge pipe 2. In other words, there is a loss of energy input into the pump, resulting in poor efficiency. In addition, it is structurally complicated as it requires two heating tubes, one above and the other. Furthermore, if the amount of heating is small, it will not work efficiently.

(発明の目的) 本発明はこのような従来の熱駆動ポンプの欠点
を解消するもので、その目的とするところは、僅
かな加熱量で気泡を確実に発生かつ成長させ、ポ
ンプ作用を確実に行なう熱駆動ポンプを提供する
にある。
(Object of the Invention) The present invention solves the drawbacks of the conventional heat-driven pump.The purpose of the present invention is to generate and grow bubbles reliably with a small amount of heating, and to ensure the pump action. To provide a thermally driven pump.

(発明の構成) 本発明によれば、熱駆動ポンプは、熱伝導率の
低い物質で作られた一本の管に、熱伝導率の高い
材料で作られ、内部に凹部をもつ加熱部を連結
し、前記管の各々の端に、フラツパー型式の逆止
弁を設け、前記加熱部に隣接して管内に吸込部を
配設して成ることを特徴とする。
(Structure of the Invention) According to the present invention, a heat-driven pump includes a heating section made of a material with high thermal conductivity and having a recess inside, in a single tube made of a material with low thermal conductivity. A flapper type check valve is provided at each end of the pipe, and a suction part is disposed in the pipe adjacent to the heating part.

管の内部は液体で満されていて、加熱部を外か
ら加熱すると、内部の凹部の先端から1ケの気泡
が発生して、加熱部内部、液体吐出側の熱伝導率
の低い材料で作られた管内に成長して行く。これ
により押しのけられた液体は、吐出側逆止弁を通
りポンプ外へ排出される。一方、管内に成長した
気泡は冷やされて収縮し、ポンプ内部が外に対し
て負圧になると、吸込み側逆止弁が開き、外部か
ら冷えた液体が流入し再びポンプ内を満たす、と
いう動作を繰返えす。
The inside of the tube is filled with liquid, and when the heating part is heated from the outside, a bubble is generated from the tip of the internal recess, and the inside of the heating part and the liquid discharge side are made of materials with low thermal conductivity. It grows inside the tube. The liquid displaced thereby passes through the discharge side check valve and is discharged to the outside of the pump. On the other hand, the air bubbles that have grown inside the pipe cool and contract, and when the inside of the pump becomes negative pressure relative to the outside, the suction side check valve opens, and cold liquid flows in from the outside and fills the inside of the pump again. Repeat.

(実施例) 以下本発明の実施例を添付図面を参照して説明
する。第1図において、熱駆動ポンプ凹部は、熱
伝導率の低い物質で作つた管G1、管G2の間に連
結され、内部に円錘形の凹部Pを持つた加熱部B
を有している。加熱部は、例えば銅のような熱伝
導率の高い材料で作られる。凹部Pの立体角は使
用する液体と凹部Pの材料とのぬれ角度より小さ
くなつている。一方管G1、G2の両端には逆止弁
CV1、CV2が取付けてある。逆止弁CV1、CV2
それぞれ内部にゴムシートや金属箔で作られたフ
ラツパーFとそれを受ける斜めの弁座面Tと、こ
の弁座面に設けたシール用のOリングSとからな
つている。フラツパーFはその付根の一体の板バ
ネF′によりOリングSに弱い力で押し付けられて
いる。又管G1と加熱部Bとの間には、使用する
液体を良く濡らし、熱伝導率の低い物質で作られ
た吸込部Iが管G1内において取付けてある、こ
の例では吸込部は先細の孔からなる。
(Example) Examples of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, the heat-driven pump recess is connected between a pipe G 1 and a pipe G 2 made of a material with low thermal conductivity, and has a conical recess P inside.
have. The heating part is made of a material with high thermal conductivity, such as copper, for example. The solid angle of the recess P is smaller than the wetting angle between the liquid used and the material of the recess P. On the other hand, check valves are installed at both ends of pipes G 1 and G 2 .
CV 1 and CV 2 are installed. The check valves CV 1 and CV 2 each consist of a flapper F made of a rubber sheet or metal foil inside, a diagonal valve seat surface T that receives it, and an O-ring S for sealing provided on this valve seat surface. It's summery. The flapper F is pressed against the O-ring S with a weak force by an integral leaf spring F' at its base. Also, between the pipe G1 and the heating part B, a suction part I made of a material with low thermal conductivity and well wetted with the liquid to be used is installed in the pipe G1.In this example, the suction part is Consists of tapered holes.

変形例として、加熱部Bは第3図に示す様に円
錘形凹部Pの頂点に逆に円錘形に広がる空洞Rを
持つものでも良い。逆止弁CV1、CV2も又第4図
および第5図に示す様にフラツパーFを円板状に
して保持器D内に流れに対し直角に置き、弁座に
対してフリーにしておくものでも良いし、あるい
は弱いバネで弁座に押付けるようにしたものでも
良い。又吸込部Iは第6図および第7図に示すよ
うに十字形片で作られた分割孔を有するものでも
良い。使用可能な液体は水、各種冷媒(R−11、
R−12、アンモニア等)液体金属、低融金属等、
蒸発してあとに固形物を残さないものなら何でも
良い。
As a modification, the heating section B may have a conical cavity R at the apex of the conical recess P, as shown in FIG. The check valves CV 1 and CV 2 also have a flapper F in the form of a disc and are placed in the retainer D at right angles to the flow, as shown in Figures 4 and 5, and are left free with respect to the valve seat. It may be a solid piece, or it may be one that is pressed against the valve seat with a weak spring. The suction portion I may also have a dividing hole made of a cross-shaped piece, as shown in FIGS. 6 and 7. Usable liquids include water and various refrigerants (R-11,
R-12, ammonia, etc.) liquid metals, low melting metals, etc.
Anything that evaporates and leaves no solids behind is fine.

次に、第8図乃至第13図、第16図乃至第1
8図の動作説明図を参照して、本実施例のポンプ
の作動を説明する。
Next, FIGS. 8 to 13, and 16 to 1
The operation of the pump of this embodiment will be explained with reference to the operation explanatory diagram of FIG.

先ず、ポンプに圧送する液体を満たす。この時
凹部Pの立体角が凹部の材料と液体との接触角よ
り小さくなつている為、液体は凹部Pを完全にぬ
らすことができず加熱部Bの凹部Pの先端に気泡
Nが残る(第8図)。次に加熱Bを加熱すると気
泡Nの上を覆う液体が加熱され気泡内部の圧力に
おける飽和温度を上回ると気泡と液体の界面より
液体側から気泡側へ蒸発が起こり、気泡Nは成長
を始める(第9図)。
First, fill the pump with the liquid to be pumped. At this time, since the solid angle of the recess P is smaller than the contact angle between the material of the recess and the liquid, the liquid cannot completely wet the recess P, and air bubbles N remain at the tip of the recess P of the heating section B ( Figure 8). Next, when heating B is heated, the liquid covering the bubble N is heated, and when the pressure inside the bubble exceeds the saturation temperature, evaporation occurs from the liquid side to the bubble side from the interface between the bubble and the liquid, and the bubble N starts to grow ( Figure 9).

その結果、ポンプ内の圧力が逆止弁CV2の外側
よりわずかに上昇し逆止弁CV2が開となる。逆止
弁CV1は閉となる。気泡の成長と共にその容積分
の液体が逆止弁CV2を通し外部へ圧送される。気
泡は管G2側に成長してゆくと同時にその表面積
が増大してゆき加熱部Bへの回りの液体からの蒸
発量と増大して表面での蒸気の減縮量がバランス
した所で気泡の成長は止まる(第10図)。
As a result, the pressure inside the pump rises slightly from the outside of the check valve CV 2 , and the check valve CV 2 opens. Check valve CV 1 is closed. As the bubbles grow, the volume of liquid is pumped to the outside through the check valve CV 2 . As the bubbles grow toward the pipe G2 side, their surface area increases, and when the amount of evaporation from the surrounding liquid to the heating section B and the amount of vapor reduction on the surface are balanced, the bubbles stop growing. Growth stops (Figure 10).

この状態は不安定でやがて凝縮量が上回り気泡
は収縮を始める。すると逆止弁CV2が閉じ逆止弁
CV1が開く、この時吸込部Iは加熱部側に向つて
内径が小さくなつている孔を有している為気泡と
液体の界面を毛管力により加熱部側に吸込むポン
プ作用が働き界面が加熱部の入口まで来るとその
付近が冷やされて、気泡がさらに収縮を始める
(第11図)。やがて気泡温度の低下により強い負
圧が生じ逆止弁CV1を通して外部から冷たい液体
がポンプ内に流入する(第12図)。
This state is unstable and eventually the amount of condensation exceeds the amount and the bubbles begin to contract. Then check valve CV 2 closes and the check valve
CV 1 opens. At this time, suction part I has a hole whose inner diameter decreases toward the heating part, so a pump action works to suck the interface between the bubbles and liquid into the heating part by capillary force, and the interface closes. When the bubbles reach the entrance of the heating section, the area around them is cooled and the bubbles begin to contract further (Figure 11). Eventually, a strong negative pressure is generated due to the drop in bubble temperature, and cold liquid flows into the pump from the outside through the check valve CV 1 (Fig. 12).

この過程は気泡の収縮→冷たい液体の流入→気
泡の温度を下げる→負圧の発生→冷たい液体の流
入という環境で一瞬にして気泡はつぶれ、その容
積に相当する量の液体が外部より補給される。こ
の時、最初と同様液体は凹部の先端をぬらす事が
できず、次の気泡成長の為の核を残す。又、液体
の加熱は、気泡成長の過程で気液の界面で行われ
る。
This process involves the contraction of a bubble, the inflow of cold liquid, the lowering of the temperature of the bubble, the generation of negative pressure, and the inflow of cold liquid.The bubble collapses in an instant, and an amount of liquid corresponding to its volume is replenished from the outside. Ru. At this time, like the first time, the liquid cannot wet the tip of the recess, leaving a nucleus for the next bubble growth. Further, heating of the liquid is performed at the gas-liquid interface during the bubble growth process.

以上の説明は凹部材料と液体の接触角が比較的
大きくなる組合せの場合で、たとえば、凹部が銅
で作られ、液体がR−11などの場合、接触角が
30゜前後になるものである。
The above explanation applies to combinations where the contact angle between the recess material and the liquid is relatively large. For example, when the recess is made of copper and the liquid is R-11, the contact angle is
The angle is around 30°.

次に、加熱部凹部を液体が良く濡らすような液
体と加熱部材料の組合せの場合、たとえば加熱部
が銅で作られていて、液体が水というような場合
を説明する。この場合、両者の接触角はほとんど
ゼロである。したがつて凹部は液体によつて満た
されてしまい、前述の様な気泡は存在できない。
Next, a case will be described in which a combination of a liquid and a material for the heating part is such that the liquid well wets the recessed part of the heating part, such as a case where the heating part is made of copper and the liquid is water. In this case, the contact angle between the two is almost zero. Therefore, the recesses are filled with liquid and no air bubbles can exist as described above.

しかし凹部の持つ別の作用によつて従来のもの
より早く気泡を発生することができる。すなわ
ち、第16図は、凹部Pが液体によつて満たされ
ている状態を示す断面図であつて、加熱部は液体
の飽和温度より十分高い温度TSになつていて、
そこに外部から冷えた液体が導入され凹部Pが完
全に液体で満たされていて、少しの時間が経過し
た時の状態である。この時、熱は凹部壁面Rから
液体へ垂直な方向に伝導によつて伝わつて行くの
で、距離aに応じて低下してゆく等温線T1,T2
T3,T4を仮定することができる。従つて、凹部
Pの先端に行く程高温になる。換言すると、周囲
から一様に加熱されている凹部内の液体は、その
周囲の間隔が短かくなる凹部先端の方が、入口部
分にある液体より早く昇温する。
However, due to another effect of the recesses, bubbles can be generated more quickly than in the conventional method. That is, FIG. 16 is a cross-sectional view showing a state in which the recess P is filled with liquid, and the heating part is at a temperature T S sufficiently higher than the saturation temperature of the liquid,
This is the state when cold liquid is introduced from the outside and the recess P is completely filled with liquid, and a short time has passed. At this time, heat is transmitted from the recess wall surface R to the liquid by conduction in the perpendicular direction, so the isotherms T 1 , T 2 ,
T 3 and T 4 can be assumed. Therefore, the temperature increases toward the tip of the recess P. In other words, the liquid in the recess, which is uniformly heated from the surroundings, rises in temperature faster at the tip of the recess where the distance between the peripheries is shorter than the liquid at the inlet.

したがつて、もし等温線T4が液体の飽和温度
に等しいとすると、それより先端部分の液体は過
飽和となりいつでも気泡の発生が可能となる。な
お、T0は外部から導入された冷えた液体の温度
である。
Therefore, if the isotherm T 4 is equal to the saturation temperature of the liquid, the liquid at the tip becomes supersaturated and bubbles can be generated at any time. Note that T 0 is the temperature of the cold liquid introduced from the outside.

また、凹部が液体で満たされてから気泡が発生
するまでの時間が比較的に短かいので、対流の影
響は無視できると考えられる。
Furthermore, since the time from when the recesses are filled with liquid to when bubbles are generated is relatively short, the influence of convection is considered to be negligible.

第17図は、このような状態で凹部先端壁面R
のある点が蒸気発生の核となり、非常に小さな気
泡Nが発生する。発生した気泡への周囲の過飽和
液体からの蒸発STによつて、気泡Nが成長して行
く状態を示している。第18図は気泡Nがさらに
成長した状態を示しているこの図でBSLは気・液
界面を示し、こをを通して液体から気泡Nへ蒸発
STが行なわれる。
FIG. 17 shows the tip wall surface R of the recess in such a state.
A certain point becomes a nucleus of steam generation, and very small bubbles N are generated. This shows a state in which bubbles N grow due to evaporation ST from the surrounding supersaturated liquid to the generated bubbles. Figure 18 shows the state in which the bubble N has grown further. In this figure, B SL indicates the gas-liquid interface, through which evaporation from the liquid to the bubble N occurs.
ST is performed.

(発明の効果) 以上の様な過程で作動する為従来のものとくら
べると、次の利点がある。
(Effects of the invention) Since it operates through the process described above, it has the following advantages compared to the conventional system.

従来のものは加熱部が金属パイプで配管構成さ
れているに過ぎないため、管を通して熱のもれが
ひどくポンプ作用を十分に生じさせるには可成り
の熱量を必要とする。本発明では熱伝導率の低い
パイプで断熱されており、また内部に円錘形の凹
部があり、常に気泡核が存在するか又は非常に早
く気泡が発生する為、気泡発生や成長の時間が短
かく液体に余分な熱を伝えないのでより小さい加
熱量、加熱度で1個の気泡を発生させる事ができ
る。
In conventional pumps, the heating section is simply constructed of metal pipes, so heat leaks through the pipes, and a considerable amount of heat is required to produce sufficient pumping action. The present invention is insulated with a pipe with low thermal conductivity, and has a conical concave portion inside, so bubble nuclei are always present or bubbles are generated very quickly, so it takes time for bubble generation and growth. Since it is short and does not transfer excess heat to the liquid, it is possible to generate one bubble with a smaller heating amount and heating degree.

さらに詳しく述べるため、同一容積の液体を排
出する為に必要なエネルギーについて、従来の管
状の加熱部と本発明の凹部を持つものと比較す
る。単に同一容積の気泡を発生する為に費される
エネルギーは両者同一である。しかし、それによ
つて排出される液体の温度が両者は著しく異な
る。すなわち、本発明の場合、加熱部に凹部があ
る為、気泡がその先端部に存在するか、あるいは
先端にある液体が他の所にある液体より著しく早
く昇温し、気泡が発生成長していく。かくして、
気泡の成長までの時間が短くなり、他の所にある
液体はあまり昇温せずに排出されてしまう。
To explain in more detail, the energy required to discharge the same volume of liquid will be compared between the conventional tubular heating section and the recessed section of the present invention. The energy expended simply to generate the same volume of bubbles is the same in both cases. However, the temperature of the liquid discharged thereby differs significantly between the two. In other words, in the case of the present invention, since there is a concave part in the heating part, either bubbles exist at the tip, or the temperature of the liquid at the tip rises significantly faster than the liquid in other places, causing bubbles to form and grow. go. Thus,
The time it takes for bubbles to grow becomes shorter, and the liquid in other areas is discharged without heating up much.

一方、従来からの管状の加熱部では管の壁面か
ら気泡を発生させる。したがつて、管の内周付近
の液体全てを飽和温度以上に昇温させるために
は、中心部までも飽和温度近くまで昇温させなく
てはならず、液体で加熱部が満たされてから気泡
が発生するまでの時間が長くかかり、排出される
液温は本発明の場合よりかなり高温である。
On the other hand, in the conventional tubular heating section, bubbles are generated from the wall surface of the tube. Therefore, in order to raise the temperature of all the liquid near the inner circumference of the tube to above the saturation temperature, the temperature must also be raised to near the saturation temperature in the center. It takes a longer time to generate bubbles, and the temperature of the discharged liquid is much higher than in the case of the present invention.

そして、これは加熱量が小さい場合より長時間
となり、排出液温もさらに上昇してしまい、後に
述べる気泡収縮を困難にしてしまう。従来の管状
の加熱部でも管の一部を本発明の凹部先端の内径
程にくびれさせれば早い昇温と排出液の低温化は
可能であるが、この絞りにより加熱部に外から液
体を流入させる際に著しい流路抵抗を生じ好まし
くない。
This takes a longer time than when the amount of heating is small, and the temperature of the discharged liquid also rises, making it difficult to shrink the bubbles, which will be described later. Even in a conventional tubular heating section, it is possible to quickly raise the temperature and lower the temperature of the discharged liquid by constricting a part of the tube to the inner diameter of the tip of the recess of the present invention. This is not preferable since it causes significant flow resistance when flowing.

このように従来のものは排出される液体の温度
を上げる為の余分なエネルギーを必要としポンプ
としての効率は本発明のものより無い。
As described above, the conventional pump requires extra energy to raise the temperature of the discharged liquid, and is less efficient as a pump than the pump of the present invention.

さらに、本発明のように加熱部を熱的に断熱し
てあるものと、従来のように断熱を全く考慮して
いないものでは、同一エネルギーを加熱部に投入
した場合、従来のものは加熱部に連結された配管
に熱が逃げて行き、内部の液体の温度を上げてし
まう。これに対して、本発明の場合は加熱部が断
熱管によつて連結されているので熱の逃げが少な
くより高温になる為、より活発な気泡発生が可能
となる。
Furthermore, when the same energy is input into the heating part, the heating part is thermally insulated as in the present invention, and the conventional one which does not consider insulation at all. Heat escapes into the pipes connected to the pipes, raising the temperature of the liquid inside. On the other hand, in the case of the present invention, since the heating parts are connected by a heat insulating tube, less heat escapes and the temperature is higher, so that more active bubble generation is possible.

さらにまた、加熱部に連結された配管内の液体
の温度を上げることが無い。この事は成長した気
泡を確実に収縮させ安定したポンプ動作を維持す
る為に非常に重要である。すなわち、本発明の場
合は加熱部につながつた吐出側管は低い温度に保
たれている為管内に侵入してきた気泡は冷され収
縮が始まり、これがポンプ内を負圧にして、ポン
プを収縮過程に導びくきつかけを作り出す。これ
に対し従来のものは、加熱部からの熱が配管に伝
わり配管を高温にしてしまう為、成長した気泡は
収縮しにくくなり、安定したポンプ動作を期待す
ることができない。
Furthermore, there is no need to increase the temperature of the liquid in the pipe connected to the heating section. This is very important in order to reliably deflate the grown bubbles and maintain stable pump operation. In other words, in the case of the present invention, the discharge side pipe connected to the heating section is kept at a low temperature, so the air bubbles that have entered the pipe are cooled down and begin to contract, which creates a negative pressure inside the pump and causes the pump to undergo the contraction process. Create a trigger that leads to On the other hand, in conventional pumps, the heat from the heating section is transmitted to the piping, raising the temperature of the piping, making it difficult for the grown bubbles to contract, and stable pump operation cannot be expected.

本発明の逆止弁はフラツパー式で圧力感度が高
い為より低い過熱度で弁が開き、また気泡成長が
止まり収縮が始まるわずかな圧力を感じて収縮過
程に引きこむ事ができる。
The check valve of the present invention is a flapper type and has high pressure sensitivity, so the valve opens at a lower degree of superheat, and can be pulled into the contraction process by sensing the slight pressure at which bubble growth stops and contraction begins.

本ポンプは加熱された蒸気泡への加熱による蒸
発により液体と押出し気泡の凝縮により外部から
液体を導入しポンプとして働いているが外部の負
荷が大きくなると、(たとえば水位差など)気泡
成長に十分な過熱度が必要となり気泡は管G2
いつぱいに成長する様になり管G2を加熱し、収
縮過程に入いりにくくなる。これを改善する為に
第14図に示す様に熱伝導率の高い材料で作つた
熱交換器EXを管G2の間と逆止弁CV1に連結され
る液体導入管G0の間に入れると良い。この構成
では、管G2内を成長してきた気泡は液体導入管
G0内の外部の液体で十分に冷えた熱交換器EXに
触れると熱をうばわれ、そこで気泡を収縮過程に
強制的に引込むことができ、従つてポンプの作動
範囲と安定性を増すことができる。
This pump works as a pump by introducing liquid from the outside by condensing the liquid and extruded bubbles through evaporation by heating the heated vapor bubbles, but when the external load becomes large (for example, due to a water level difference), it is insufficient for bubble growth. A certain degree of superheating is required, and the bubbles grow tightly inside the tube G2 , heating the tube G2 and making it difficult to enter the contraction process. In order to improve this, as shown in Fig. 14, a heat exchanger EX made of a material with high thermal conductivity is installed between the pipe G 2 and the liquid introduction pipe G 0 connected to the check valve CV 1 . Good to include. In this configuration, the bubbles that have grown inside the tube G2 are transferred to the liquid introduction tube.
Touching a sufficiently cold heat exchanger EX with external liquid in G 0 carries away heat, where air bubbles can be forced into the contraction process, thus increasing the working range and stability of the pump. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による熱駆動ポンプの長さ方向
断面図、第2図は逆止弁のフラツパーを示す正面
図、第3図は加熱部の変形例を示す断面図、第4
図は逆止弁の変形例を示す断面図、第5図はその
横断面図、第6図は別の形態の吸込部をもつ加熱
部の断面図、第7図はその横断面図、第8図乃至
第13図は本発明のポンプの動作説明図、第14
図は本発明のポンプの変形例を示す断面図、第1
5図は従来の熱駆動ポンプ概略図、第16図乃至
第18図は加熱部内気泡発生の説明図である。 C…凝縮管、D…保持管、F,F′…フラツパー
型、G1,G2…管、CV1、CV2…逆止弁、B…加
熱部、P…円錘形の凹部、I…吸込部、EX…熱
交換器、N…気泡、R…壁面、S…Oリング、ST
…蒸気、T0〜T5…凹部等温線、a…距離、G0
液体導入管。
FIG. 1 is a longitudinal cross-sectional view of the heat-driven pump according to the present invention, FIG. 2 is a front view showing the flapper of the check valve, FIG. 3 is a cross-sectional view showing a modified example of the heating section, and FIG.
The figure is a cross-sectional view showing a modified example of the check valve, FIG. 5 is a cross-sectional view thereof, FIG. Figures 8 to 13 are explanatory diagrams of the operation of the pump of the present invention;
The figure is a sectional view showing a modified example of the pump of the present invention.
FIG. 5 is a schematic diagram of a conventional heat-driven pump, and FIGS. 16 to 18 are explanatory diagrams of the generation of bubbles in the heating section. C...Condensing pipe, D...Holding pipe, F, F'...Flapper type, G1 , G2 ...Pipe, CV1 , CV2 ...Check valve, B...Heating part, P...Conical recess, I ...Suction part, EX...Heat exchanger, N...Bubble, R...Wall surface, S...O ring, S T
...Steam, T 0 - T 5 ... Concavity isotherm, a... Distance, G 0 ...
Liquid introduction tube.

Claims (1)

【特許請求の範囲】 1 熱伝導率の低い物質で作られた一本の管に、
熱伝導率の高い材料で作られ、内部に凹部をもつ
加熱部を連結し、前記管の各々の端に、フラツパ
ー型式の逆止弁を設け、前記加熱部に隣接して管
内に吸込部を配設して成ることを特徴とする熱駆
動ポンプ。 2 熱伝導率の低い物質で作られた一本の管に、
熱伝導率の高い材料で作られ、内部の凹部をもつ
加熱部を連結し、前記管の各々の端に、フラツパ
ー型式の逆止弁を設け、前記加熱部に隣接して上
流側の管内に吸込部を配設し、上流側の逆止弁に
連結される該導入管と下流側の前記管とを熱交換
器で連結して成ることを特徴とする熱駆動ポン
プ。
[Claims] 1. A single tube made of a material with low thermal conductivity,
A heating section made of a material with high thermal conductivity and having an internal recess is connected, a flapper type check valve is provided at each end of the tube, and a suction section is provided in the tube adjacent to the heating section. A heat-driven pump characterized by comprising: 2 In a single tube made of a material with low thermal conductivity,
A heating section made of a material with high thermal conductivity and having an internal recess is connected, a flapper type check valve is provided at each end of the tube, and a check valve of the flapper type is provided in the upstream tube adjacent to the heating section. 1. A heat-driven pump characterized in that a suction section is provided, and the introduction pipe connected to the check valve on the upstream side and the pipe on the downstream side are connected by a heat exchanger.
JP15344184A 1984-07-24 1984-07-24 Heat drive pump Granted JPS6131679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15344184A JPS6131679A (en) 1984-07-24 1984-07-24 Heat drive pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15344184A JPS6131679A (en) 1984-07-24 1984-07-24 Heat drive pump

Publications (2)

Publication Number Publication Date
JPS6131679A JPS6131679A (en) 1986-02-14
JPH0461195B2 true JPH0461195B2 (en) 1992-09-30

Family

ID=15562599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15344184A Granted JPS6131679A (en) 1984-07-24 1984-07-24 Heat drive pump

Country Status (1)

Country Link
JP (1) JPS6131679A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718408B2 (en) * 1986-06-23 1995-03-06 謙治 岡安 Heat driven pump
JP2519959B2 (en) * 1987-12-22 1996-07-31 謙治 岡安 Electronic device cooling device
JP2594446B2 (en) * 1987-12-22 1997-03-26 謙治 岡安 Heat transfer device
JP2657809B2 (en) * 1987-12-22 1997-09-30 謙治 岡安 Heat transfer device
US7444817B2 (en) 2003-06-13 2008-11-04 Canon Kabushiki Kaisha Optical micromotor, micropump using same and microvalve using same
US7530795B2 (en) 2003-06-13 2009-05-12 Canon Kabushiki Kaisha Fluid control mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122007A (en) * 1973-03-31 1974-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122007A (en) * 1973-03-31 1974-11-21

Also Published As

Publication number Publication date
JPS6131679A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
JPH0718408B2 (en) Heat driven pump
TWI579519B (en) Pulsating multi-pipe heat pipe
JPH0467112B2 (en)
JPH10503580A (en) Energy transfer system between hot and cold heat sources
CN110345787A (en) A kind of design method for integrated high temp alkali metal heat pipe
CN108253830A (en) Loop heat pipe with assisted transfusion pipeline
JPH0461195B2 (en)
CN108253829A (en) The loop heat pipe of micro channel array auxiliary drive
CN107462095A (en) A kind of thermal siphon of variable heat conduction
CN105277026A (en) Self-wetting fluid oscillatory flow heat pipe
CN208398693U (en) The loop heat pipe of micro channel array auxiliary drive
JPH10160266A (en) Heat exchanger for air conditioner
JPH057511Y2 (en)
JPH057512Y2 (en)
CN100480610C (en) Ring type heat pipe device
CN208333198U (en) A kind of Horizontal heat pipe for accelerating condensate liquid reflux and enhanced heat exchange
CN207963582U (en) A kind of thermal siphon of variable heat conduction
RU2213912C2 (en) Solar power complex
US20030037909A1 (en) Method of action of the plastic heat exchanger and its constructions
CN109373794A (en) A kind of automatic adjustment heat flow density type heat pipe
Lodhi et al. A Survey On Heat Pipe Heat Recovery Systems
Sun et al. Fluid Flow and Heat Transfer Characteristics of Micro Oscillating Heat Pipes With and Without Expanding Channels
Sugumar et al. Heat transport limitation of a triangular micro heat pipe
CN2109540U (en) Low boiling point in-tube boiling heat exchanger
JP3411792B2 (en) Vertical heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term