JPS62296576A - Semiconductor laser array device - Google Patents

Semiconductor laser array device

Info

Publication number
JPS62296576A
JPS62296576A JP14067186A JP14067186A JPS62296576A JP S62296576 A JPS62296576 A JP S62296576A JP 14067186 A JP14067186 A JP 14067186A JP 14067186 A JP14067186 A JP 14067186A JP S62296576 A JPS62296576 A JP S62296576A
Authority
JP
Japan
Prior art keywords
currents
crystal
layer
mesa
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14067186A
Other languages
Japanese (ja)
Inventor
Kunio Ito
国雄 伊藤
Masahiro Kume
雅博 粂
Yuichi Shimizu
裕一 清水
Takeshi Hamada
健 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14067186A priority Critical patent/JPS62296576A/en
Publication of JPS62296576A publication Critical patent/JPS62296576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove the deterioration in reliability due to thermorunaway, and to obtain a semiconductor laser array device operating with a high output and having a long life by preventing the flow of currents through both resonator end-surfacc sections in a laser crystal. CONSTITUTION:Since an n-type GaAs layer 2 on a p-type GaAs substrate 1 is formed for stopping currents, currents do not flow in sections in the vicinity of end surfaces. A mesa 9 is shaped onto the GaAs substrate 1 in a crystal, three grooves 10 formed to the GaAs current block layer 2 reach the mesa 9, and currents are injected into an active layer 4 from the grooves 10. The ridges 11 of the block layer are shaped for easily controlling the film thickness of the active layer 4 in liquid phase epitaxial growth, and the decrease of a crystal growth rate is utilized in liquid growth on the ridges 11. Since currents are not flowed through end surface sections, heat generation in the crystal in the vicinity of the end surfaces is removed, thus preventing a temperature rise. Accordingly, the generation of deterioration in laser end surfaces is inhibited, thus lengthening life even by high-output operation.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は光ディスクの記録・消去や、医療用その他の高
出力赤外レーザ光源として用いられる半2へ−7 導体レーザアレイ装置に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Application Field The present invention is a semi-conductor laser array used as a high-power infrared laser light source for recording and erasing optical discs, medical purposes, and other purposes. It is related to the device.

従来の技術 近年半導体レーザ装置は、CDを始めとする光デイスク
上の信号の読み取りや、レーザビームプリンタの光源、
そして光通信にと、光産産の中心的なデバイスとして脚
光を浴びるに至っている。
2. Description of the Related Art In recent years, semiconductor laser devices have been used to read signals on optical disks such as CDs, and as light sources for laser beam printers.
It has come to be in the spotlight as a central device for optical communications and optical communications.

これらの光情報機器においては、レーザの光出力に対す
る要望は10〜20mW以下がほとんどであった。しか
し、光ディスクの記録・消去やプリンタの高速化、そし
て医療機器用にと高出力(20mW以上)のレーザ装置
に対する要望が近年袋々増えている。
In most of these optical information devices, the requirement for the optical output of the laser is 10 to 20 mW or less. However, the demand for high-output (20 mW or more) laser devices for use in recording and erasing optical disks, speeding up printers, and medical equipment has increased rapidly in recent years.

半導体レーザの高出力化を進めるにあたっての障害は2
つある。その1つは、出力を上げると、レーザ結晶内の
光密度の増大に伴なって結晶内を伝搬する光電界のモー
ドが基本モードから高次モードへ移り易くなることであ
る。高次モードで発振すると、結晶端面から出射される
レーザビームの強度分布が単峰性とならず、複数のピー
クを持ち、実用上大きな障害となる。この問題は、レー
ザ結晶内の発振領域(活性層)の膜厚を薄くすることで
解決された。そしてBuriecl Twin Rid
geSubstrate  レーザにおいては、活性層
の薄層化と電流注入効率の向上により200mW以上の
連続発振出力が得られている(電子通信学会技術研究報
告ED84−94(1984))。第2の点は、レーザ
結晶端面において光密度の増大に伴ない、端面近傍で劣
化が進みレーザの寿命が短くなることである。レーザ端
面部では、結晶内部に比べて熱の放散が悪く、端面近傍
の発振領域においては局所的に200’C以上にもなる
ことが轟らによって報告されている(ジャーナルオブア
プライドフィジックス、58.P1124(1985)
)。
There are two obstacles to increasing the output power of semiconductor lasers.
There is one. One of them is that when the output is increased, the mode of the optical electric field propagating within the crystal tends to shift from the fundamental mode to the higher-order mode as the optical density within the laser crystal increases. When oscillating in a higher-order mode, the intensity distribution of the laser beam emitted from the end face of the crystal does not have a single peak, but instead has multiple peaks, which poses a major practical problem. This problem was solved by reducing the thickness of the oscillation region (active layer) within the laser crystal. And Buriecl Twin Rid
In the geSubstrate laser, a continuous oscillation output of 200 mW or more is obtained by thinning the active layer and improving current injection efficiency (IEICE technical research report ED84-94 (1984)). The second point is that as the optical density increases at the laser crystal end face, deterioration progresses near the end face, shortening the life of the laser. It has been reported by Todoroki et al. that heat dissipates poorly at the laser end face compared to inside the crystal, and that the temperature locally reaches 200'C or more in the oscillation region near the end face (Journal of Applied Physics, 58. P1124 (1985)
).

この局所的な発熱は、結晶内で転位の発生増殖を促し、
転位が非発光中心となってレーザ光を吸収して更に発熱
するという悪循環(熱暴走)を繰り返し寿命を著しく縮
めることとなる。
This local heat generation promotes the generation and proliferation of dislocations within the crystal,
A vicious cycle (thermal runaway) in which dislocations become non-emissive centers, absorb laser light, and generate further heat is repeated, significantly shortening the lifetime.

発明が解決しようとする問題点 本発明は半導体レーザの結晶端面において熱の発生を少
なくシ、熱暴走による信頼性の悪化を排除して高出力動
作で′長寿命の半導体レーザアレイ装置を提供するもの
である。
Problems to be Solved by the Invention The present invention provides a semiconductor laser array device that reduces heat generation at the crystal end face of a semiconductor laser, eliminates deterioration of reliability due to thermal runaway, and operates at high output and has a long life. It is something.

問題点を解決するだめの手段 上記問題点を解決するために、本発明の半導体レーザア
レイ装置は、レーザ結晶の両共振器端面部に電流を流さ
ないようにしている。
Means for Solving the Problems In order to solve the above problems, the semiconductor laser array device of the present invention prevents current from flowing through the end faces of both resonators of the laser crystal.

作用 端面部に電流を流さないことによって、端面近傍の結晶
内部での発熱をなくシ、温度上昇を防いでいる。そのた
めレーザ端面における劣化の発生が抑えられ、高出力動
作でも長寿命のレーザアレイ装置が実現できることとな
る。
By not passing current through the active end face, heat generation inside the crystal near the end face is eliminated and temperature rise is prevented. Therefore, the occurrence of deterioration at the laser end face is suppressed, and a laser array device with a long life even when operated at high output can be realized.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における半導体レーザアレイ装
置の断面を示すものである。第1図において(2L)は
端面近傍の断面を示し、(b)はそれより内部での断面
を示す。p型G4AS基板1上のn型0418層2は電
流を阻止するためにあり、このた5/、7 め端面近傍((a)図参照)では電流が流れない。結晶
内部では(b)図の断面でわかるように、(raAs 
基板1上にメサ9があり、CrILAS電流ブロック層
2に設けた3本の溝1oがメサ9に達しており、溝1o
から電流が活性層4に注入される。ブロック層のリッジ
11は液相エピタキシャル成長において、活性層4の膜
厚制御を容易にするためにある。
FIG. 1 shows a cross section of a semiconductor laser array device in an embodiment of the present invention. In FIG. 1, (2L) shows a cross section near the end face, and (b) shows a cross section inside the end face. The n-type 0418 layer 2 on the p-type G4AS substrate 1 is provided to block current, and therefore no current flows near the 5/7 end faces (see figure (a)). Inside the crystal, (raAs
There is a mesa 9 on the substrate 1, and three grooves 1o provided in the CrILAS current blocking layer 2 reach the mesa 9, and the grooves 1o
A current is injected into the active layer 4 from. The ridge 11 of the block layer is provided to facilitate control of the thickness of the active layer 4 during liquid phase epitaxial growth.

即ち、リッジ11上では液相成長において、結晶成長速
度が遅くなることを利用している。
That is, the crystal growth rate on the ridge 11 is slow in liquid phase growth, which is utilized.

第2図に、本発明の半導体レーザアレイ装置の製造工程
の一部を示す。p型GaAS基板1上に、エツチングに
よってメサ9を形成する。メサの長さは200μm、高
さは3μm1幅は30μmとする。メサの前後の部分で
璧開により共振器端面を形成することになる(第2図(
1))。次に液相エピタキシャル成長法によりメサを埋
め尽し、表面が平坦になるように第1回目の成長を行な
う(第2図(2))。メサ上でのn型G&ムS層2の膜
厚は1.0μmである。エツチングによってリッジ11
及び3本の溝10を作成する(第2図(3))。溝の6
ベー7・ 深さは1.5μmとし溝の巾は2μ、溝間隔は3μとし
、かつ、メサ9のある部分では、溝がメサに達している
ようにする。かくしてメサのある部分では溝から電流が
流れ込み、ない部分では電流が流れなくすることができ
る。そして第2図(3)で示す基板上に2回目」の液相
エピタキシャル成長を行い、第1図(b)で示す多層構
造を成長させる。電極7.8を蒸着した後襞間によって
共振器端面を作成するのであるが、この特装開位置はメ
サと端面間の距離が10から60μmの範囲とする。
FIG. 2 shows a part of the manufacturing process of the semiconductor laser array device of the present invention. A mesa 9 is formed on a p-type GaAS substrate 1 by etching. The length of the mesa is 200 μm, the height is 3 μm, and the width is 30 μm. The resonator end face will be formed by opening the front and rear parts of the mesa (see Figure 2).
1)). Next, the first growth is performed by liquid phase epitaxial growth to completely fill the mesa and make the surface flat (FIG. 2 (2)). The thickness of the n-type G&M S layer 2 on the mesa is 1.0 μm. Ridge 11 by etching
and three grooves 10 are created (FIG. 2 (3)). groove 6
Base 7: The depth is 1.5 μm, the width of the groove is 2 μm, and the groove interval is 3 μm, and in the part where the mesa 9 is located, the groove reaches the mesa. In this way, current can flow from the groove in areas where there are mesas, and no current can flow in areas where there are no mesas. Then, a second liquid phase epitaxial growth is performed on the substrate shown in FIG. 2(3) to grow the multilayer structure shown in FIG. 1(b). After the electrodes 7.8 are deposited, a resonator end face is created between the folds, and the special open position is such that the distance between the mesa and the end face is in the range of 10 to 60 μm.

第3図に共振器長を250μmとしてメサから端面間の
電流非注入領域の長さが0μmと20μmと60μmの
場合の半導体レーザアレイ装置の電流−光出力特性を示
す。端面部での熱の発生が抑えられるために、飽和パワ
ーの上昇がみられる。
FIG. 3 shows the current-optical output characteristics of the semiconductor laser array device when the resonator length is 250 μm and the lengths of the current non-injected region between the mesa and the end face are 0 μm, 20 μm, and 60 μm. Since the generation of heat at the end face is suppressed, the saturation power increases.

非注入部分を長くしすぎると、この部分で若干レーザ光
の吸収があるため逆に飽和パワーは下がる。
If the non-injected portion is made too long, the saturation power will decrease because some laser light will be absorbed in this portion.

20μm〜30 p IIが実用的な値である。第4図
には、先出カ一定駆動における動作電流の経時変化を示
した。非注入領域が20μ論のレーザ装置では熱膨走の
抑制効果が働き急速劣化が全くみられない。
A practical value is 20 μm to 30 p II. FIG. 4 shows the change in operating current over time in constant first output drive. In a laser device in which the non-injected region is 20μ, the effect of suppressing thermal expansion works and no rapid deterioration is observed.

発明の効果 以上のように本発明は、電流非注入領域を端面近傍に設
けることにより、半導体レーザアレイ装置の熱膨走によ
る劣化を抑制することができ、その実用的効果は大なる
ものがある。
Effects of the Invention As described above, the present invention can suppress deterioration due to thermal expansion of a semiconductor laser array device by providing a current non-injection region near the end face, and has a great practical effect. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における半導体レーザアレイ装
置の断面図、第2図は製造工程の一部を示す斜視図、第
3図は半導体レーザアレイ装置の電流と光出力の関係を
示す特性図、第4図は一定先出力で駆動した時の半導体
レーザ装置の動作電流の経時変化を示す特性図である。 1・・・・・・p型GILAS基板、2・・・・・・n
型GaAsブロック層、3・・・・・・p型Ga1yA
%Asクラ・ンド層、4”’ −G4 j−2AJzA
s活性層、5・・・・・・n型G!L” −7人717
Asクラツド層、6・・・・・・n型G1118層、7
,8・・・・・・電極、9・・・・・・メサ、10・・
・・・・溝、11・・・・・・リッジ。
FIG. 1 is a cross-sectional view of a semiconductor laser array device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a part of the manufacturing process, and FIG. 3 is a characteristic showing the relationship between current and optical output of the semiconductor laser array device. 4 are characteristic diagrams showing changes over time in the operating current of a semiconductor laser device when driven at a constant output. 1...p-type GILAS substrate, 2...n
type GaAs block layer, 3... p-type Ga1yA
%Ascrand layer, 4”' -G4 j-2AJzA
s active layer, 5...n-type G! L” -7 people 717
As clad layer, 6...n-type G1118 layer, 7
, 8... Electrode, 9... Mesa, 10...
...Groove, 11...Ridge.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の表面に、前記半導体基板の相対
する両端面近傍は除いてストライプ状の突起が形成され
、前記半導体基板の表面に前記一導電型と反対の導電型
の層が形成され、前記反対導電型の層の表面から、前記
突起部直上では前記突起部に達し、前記突起部のない前
記両端面近傍では前記半導体基板に達しない深さのスト
ライプ状の溝が複数個形成されるとともに、前記複数個
の溝の最外側の2本の溝の外側に、たがいに平行な二つ
のリッジが形成され、前記リッジを有する基板上に活性
層を含む各層が形成されていることを特徴とする半導体
レーザアレイ装置。
Striped protrusions are formed on the surface of a semiconductor substrate of one conductivity type except near opposite end faces of the semiconductor substrate, and a layer of a conductivity type opposite to the one conductivity type is formed on the surface of the semiconductor substrate. , a plurality of striped grooves are formed from the surface of the layer of the opposite conductivity type to a depth that reaches the protrusion immediately above the protrusion and does not reach the semiconductor substrate near both end surfaces where the protrusion does not exist. and two parallel ridges are formed on the outside of the two outermost grooves of the plurality of grooves, and each layer including the active layer is formed on the substrate having the ridges. Features of semiconductor laser array device.
JP14067186A 1986-06-17 1986-06-17 Semiconductor laser array device Pending JPS62296576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14067186A JPS62296576A (en) 1986-06-17 1986-06-17 Semiconductor laser array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14067186A JPS62296576A (en) 1986-06-17 1986-06-17 Semiconductor laser array device

Publications (1)

Publication Number Publication Date
JPS62296576A true JPS62296576A (en) 1987-12-23

Family

ID=15274050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14067186A Pending JPS62296576A (en) 1986-06-17 1986-06-17 Semiconductor laser array device

Country Status (1)

Country Link
JP (1) JPS62296576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377184A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Manufacture of semiconductor laser array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377184A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Manufacture of semiconductor laser array

Similar Documents

Publication Publication Date Title
JPS6173393A (en) Semiconductor stripe laser
JPS62296576A (en) Semiconductor laser array device
JPH0431195B2 (en)
JPS62142383A (en) Semiconductor laser device
JP2798720B2 (en) Semiconductor laser array
US4745611A (en) Buried twin ridge substrate laser
JPS62296581A (en) Semiconductor laser array device
JPH0671121B2 (en) Semiconductor laser device
JPS62266888A (en) Semiconductor laser array
JPH02177583A (en) Semiconductor laser device
JPH029468B2 (en)
JP3549514B2 (en) Driving method of semiconductor light emitting device
JP3075512B2 (en) Semiconductor laser device
JPH0440875B2 (en)
JPH0268975A (en) Semiconductor laser
JPS6384086A (en) Semiconductor laser array element
JP3422365B2 (en) Ridge stripe type semiconductor laser device
JPS6297384A (en) Semiconductor laser device
JP2804544B2 (en) Semiconductor laser
JPS60245191A (en) Single beam type semiconductor laser array
JPH0642578B2 (en) Semiconductor laser device
JPS63215088A (en) Semiconductor laser array device
JPS61161786A (en) Semiconductor laser device
JPS63224387A (en) Semiconductor laser device
JPS6112399B2 (en)