JPS62266888A - Semiconductor laser array - Google Patents

Semiconductor laser array

Info

Publication number
JPS62266888A
JPS62266888A JP11100286A JP11100286A JPS62266888A JP S62266888 A JPS62266888 A JP S62266888A JP 11100286 A JP11100286 A JP 11100286A JP 11100286 A JP11100286 A JP 11100286A JP S62266888 A JPS62266888 A JP S62266888A
Authority
JP
Japan
Prior art keywords
ridge
end surface
crystal
semiconductor laser
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11100286A
Other languages
Japanese (ja)
Inventor
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Takeshi Hamada
健 浜田
Masahiro Kume
雅博 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11100286A priority Critical patent/JPS62266888A/en
Publication of JPS62266888A publication Critical patent/JPS62266888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce optical density at an end surface part, to suppress the deterioration at the end surface of a laser device and to obtain the laser device characterized by high output power and a long life, by making the thickness of an active layers at the end surface parts of both resonators of a laser crystal thinner than the inside of the crystal. CONSTITUTION:On a P-type GaAs substrate 1, a mesa 9 is formed by etching. Then the mesa is buried by a liquid phase epitaxy method, and the first growing is performed so as to flatten the surface. A ridge 11 and three grooves 10 are formed by etching. At this time, the width of the ridge 11 is made narrow in the vicinity of the end surface. The second phase epitaxy is performed on the substrate, and a multilayer structure is grown. At this time, the narrower the width of the ridge, the slower the growing speed on the ridge. Therefore an active layer becomes thin at the end surface part where the width of the ridge 11 is narrow in comparison with the inside of the crystal. When the active layer is thin, confinement of light becomes poor, and the diameter of the laser light beam becomes large in the vicinity of the end surface. Therefore the optical density can be decreased. As a result, the device can withstand up to high output power.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ディスクの記録、消去や、医療用その他に高
出力赤外レーザ光源として用いられる半導体レーザアレ
イ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser array device used as a high-power infrared laser light source for recording and erasing optical discs, medical purposes, and other purposes.

従来の技術 近年半導体レーザアレイ装置は、CDを始めとする光デ
イスク上の信号の読み取りや、レーザビームプリンタの
光源、そして光通信にと、光産業の中心的なデバイスと
して脚光を浴びるに至っている。これらの光情報機器に
おいては、レーザの光出力に対する要望は10〜20m
W以下がほとんどであった。しかし、光ディスクの記録
、消去やプリンタの高速化、そして医療機器用にと高出
力(20mW以上)の半導体レーザアレイ装置に対する
要望が近年盤々増えている。
Conventional Technology In recent years, semiconductor laser array devices have come into the spotlight as central devices in the optical industry, for reading signals on optical disks such as CDs, as light sources for laser beam printers, and for optical communications. . In these optical information devices, the requirement for laser optical output is 10 to 20 m.
Most were below W. However, the demand for semiconductor laser array devices with high output (20 mW or more) for use in recording and erasing optical disks, speeding up printers, and medical equipment has been increasing rapidly in recent years.

半導体レーザ装置の高出力化を進めるにあたっての障害
は2つある。その1つは、出力を上げると、レーザ結晶
内の光密度の増大に伴なって結晶内を伝搬する光電界の
モードが基本モードから高次モードへ移り易くなること
である。高次モードで発振すると、結晶端面から出射さ
れるレーザビームの強度分布が単峰性とならず、複数の
ピークを持ち、実用上大きな障害となる。この問題は、
レーザ結晶内の発振領域(活性層)の膜厚を薄くするこ
とで解決される。そしていわゆるBuriθdTwin
 Rid(e 5ubstrata  L/−ザにオイ
テは、活性層の薄層化と電流注入効率の向上により20
0mW以上の連続発振出力が得られている。(電子通信
学会技術研究報告ED84−94 (1984))第2
の点は、レーザ結晶端面において光密度の増大に伴ない
、端面近傍で劣化が進みレーザ装置の寿命が短くなるこ
とである。レーザ端面部では、結晶内部に比べて熱の放
散が悪く、端面近傍の発振領域においては局所的に20
0’C以上にもなることが轟らによって報告されている
。(ジャーナル オプ アプライド フィジックス、6
8゜1)1124(1985))この局所的な発熱は、
結晶内で転位の発生増殖を促し、転位が非発光中心とな
ってレーザ光を吸収して更に発熱するという悪循環(熱
暴走)を繰り返し寿命を著しく縮めることとなる。
There are two obstacles to increasing the output power of semiconductor laser devices. One of them is that when the output is increased, the mode of the optical electric field propagating within the crystal tends to shift from the fundamental mode to the higher-order mode as the optical density within the laser crystal increases. When oscillating in a higher-order mode, the intensity distribution of the laser beam emitted from the end face of the crystal does not have a single peak, but instead has multiple peaks, which poses a major practical problem. This problem,
This problem can be solved by reducing the thickness of the oscillation region (active layer) within the laser crystal. And the so-called BuriθdTwin
Rid(e 5ubstrata L/-) The current value is 20% by making the active layer thinner and improving the current injection efficiency.
Continuous oscillation output of 0 mW or more is obtained. (IEICE technical research report ED84-94 (1984)) No. 2
The point is that as the optical density increases at the laser crystal end face, deterioration progresses near the end face, shortening the life of the laser device. At the laser end face, heat dissipates poorly compared to inside the crystal, and locally in the oscillation region near the end face, 20
It has been reported by Todoroki et al. that the temperature can exceed 0'C. (Journal Op Applied Physics, 6
8゜1) 1124 (1985)) This local heat generation is
The generation and proliferation of dislocations within the crystal is promoted, and the dislocations become non-emissive centers that absorb laser light and generate further heat, repeating a vicious cycle (thermal runaway), which significantly shortens the life.

発明が解決しようとする問題点 本発明は結晶端面においてレーザ光の光密度を下げると
共に、端面における熱の発生を少なくし、端面の熱によ
る破壊や、レーザ動作において熱暴走による信頼性の悪
化を防ぎ、長寿命の半導体レーザアレイ装置を提供する
ものである。
Problems to be Solved by the Invention The present invention reduces the optical density of the laser beam at the crystal end face, reduces the generation of heat at the end face, and prevents damage to the end face due to heat and deterioration of reliability due to thermal runaway during laser operation. The purpose of the present invention is to provide a semiconductor laser array device with a long service life.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザア
レイ装置は、レーザ結晶の両共振器端面部の活性層の膜
厚を結晶内部よりも薄くしている。
Means for Solving the Problems In order to solve the above problems, in the semiconductor laser array device of the present invention, the thickness of the active layer at both cavity end faces of the laser crystal is made thinner than the thickness inside the crystal.

作用 この構成により、端面部でのレーザ光のビーム径が犬き
くなり、光密度が減少する。この作用により、レーザ端
面における劣化が抑えられ、高出力で長寿命のレーザ装
置が実現できることになる。
Effect: With this configuration, the beam diameter of the laser beam at the end face becomes large, and the light density decreases. This effect suppresses deterioration at the laser end face, making it possible to realize a laser device with high output and long life.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図a、  bは本発明の実施例における半導体レー
ザアレイ装置の断面を示すものである。第1図亀は端面
近傍の断面を示し、第1図すはそれより内部での断面を
示す。p型G&ムS基板1上のn型GaAs層2は電流
を阻止するためにある。GaAs基板1上にメサ9があ
り、GaAS電流ブロック層2に設けた溝1oかメサ9
に達しており、溝1゜から電流が活性層4に注入される
。ブロック層2のリッジ11は液相エピタキシャル成長
において、活性層4の膜厚制御を容易にするためにある
。即ち、リッジ11上では液相成長において、結晶成長
速度が遅くなることを利用している。ここでリッジ11
の幅は端面近傍で内部よりも小さく形成されている。
FIGS. 1a and 1b show cross sections of a semiconductor laser array device in an embodiment of the present invention. Figure 1 shows a cross section near the end face, and Figure 1 shows a cross section inside the end face. The n-type GaAs layer 2 on the p-type G&M S substrate 1 is for blocking current. There is a mesa 9 on the GaAs substrate 1, and the groove 1o provided in the GaAs current blocking layer 2 or the mesa 9
, and current is injected into the active layer 4 from the groove 1°. The ridge 11 of the block layer 2 is provided to facilitate control of the thickness of the active layer 4 during liquid phase epitaxial growth. That is, the crystal growth rate on the ridge 11 is slow in liquid phase growth, which is utilized. Here Ridge 11
The width is smaller near the end face than inside.

第2図に、本発明の半導体レーザアレイの製造工程の一
部を示す。p型G&ムS基板1上に、エツチングによっ
てメサ9を形成する。メサの長さは200μm、高さは
3μm2幅は30μmとする。
FIG. 2 shows a part of the manufacturing process of the semiconductor laser array of the present invention. A mesa 9 is formed on the p-type G&M S substrate 1 by etching. The length of the mesa is 200 μm, the height is 3 μm, and the width is 30 μm.

メサの前後の部分で弁開により共振器端面を形成するこ
とになる。(第2図a)次に液相エピタキシャル成長法
によりメサを埋め尽し、表面が平坦になるように第1回
目の成長を行なう。(第2図b)メサ上でのn型GaA
s層2の膜厚は1.0μmとする。エツチングによって
リッジ11及び3つの溝10を形成する。(第2図C)
溝の深さは1.5μmとし溝の巾は2μ、溝間隔は3μ
とする。
The resonator end faces are formed by opening the valve at the front and rear parts of the mesa. (FIG. 2a) Next, the first growth is performed by liquid phase epitaxial growth to completely fill the mesa and make the surface flat. (Figure 2b) n-type GaA on mesa
The thickness of the s-layer 2 is 1.0 μm. A ridge 11 and three grooves 10 are formed by etching. (Figure 2C)
The depth of the groove is 1.5 μm, the width of the groove is 2 μm, and the groove spacing is 3 μm.
shall be.

この時、リッジ11の幅を、端面近傍では狭くなるよっ
てする。即ち、結晶内部では100μm、端面近傍では
40μmとする。そして第2図Cで示す基板上に2回目
の液相エピタキシャル成長を行い、第1図すで示す多層
構造を成長させる。この時、リッジの上の成長速度が、
リッジの幅が狭くなる程遅くなるので、結晶内部に比べ
て、リッジ11の幅が狭い端面部では活性層が薄くなる
At this time, the width of the ridge 11 is made narrower near the end face. That is, it is 100 μm inside the crystal and 40 μm near the end face. Then, a second liquid phase epitaxial growth is performed on the substrate shown in FIG. 2C to grow the multilayer structure already shown in FIG. At this time, the growth rate on the ridge is
As the width of the ridge becomes narrower, the speed becomes slower, so the active layer becomes thinner at the end face portion where the width of the ridge 11 is narrower than inside the crystal.

活性層が薄いと光の閉じ込めが悪くなり、端面近傍では
レーザ光のビーム径が大きくなる。従って光密度を減少
させることができる。その結果高出力まで耐えられるこ
とになる。次に電極7,8を蒸着し之後弁開によって共
振器端面を作成する。
If the active layer is thin, light confinement will be poor, and the beam diameter of the laser beam will become large near the end face. Therefore, the light density can be reduced. As a result, it can withstand high output. Next, the electrodes 7 and 8 are deposited, and then the valve is opened to create a resonator end face.

第3図に本発明の半導体レーザアレイ装置と、従来の半
導体レーザアレイ装置の電流対光出力特性を示す。端面
部での光密度の減少と、熱の発生が抑えられているため
に飽和パワーの著しい上昇がみられる。第4図には、先
出カ一定駆動における動作電流の経時変化を示す。従来
のレーザアレイ装置では、高出力での寿命は短いが、本
発明による装置では十分実用的な寿命が得られている。
FIG. 3 shows the current vs. optical output characteristics of the semiconductor laser array device of the present invention and the conventional semiconductor laser array device. A significant increase in saturation power is observed due to the decrease in optical density at the end face and the suppression of heat generation. FIG. 4 shows the change over time of the operating current in constant first output drive. Although conventional laser array devices have a short lifespan at high output, the device according to the present invention has a sufficiently long lifespan for practical use.

発明の効果 以上のように本発明は、端面部の活性層を薄くすること
により、半導体レーザアレイ装置の寿命を著しく延ばす
ことができ、その実用的効果は犬なるものがある。
Effects of the Invention As described above, the present invention can significantly extend the life of a semiconductor laser array device by thinning the active layer at the end face portion, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における半導体レーザアレイ装
置の断面図、第2図は製造工程の一部を示す斜視図、第
3図は半導体レーザアレイ装置の電流と光出力の関係を
示す特性図、第4図は一定光出力で、駆動した時の半導
体レーザアレイ装置の動作電流の経時変化を示す特性図
である。 1・・・・・・p型GaAs基板、2・・・・・・n型
GaAs  ブロック層、3・・・・・・p型Ga、 
、A/yAsクラッド層、4−・−・GalzAgxA
s活性層、5・・・・・・n型Ga1.A/yAsクラ
ッド層、6・・・・・・n型GaAs層、7.8・・・
・・・電極、9・・・・・・メサ、10・・・・・・溝
、11・・・・・・リッジ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名’−
−P ’;−Gcb々5基籾 2−−−flワOnAδフ゛口、り] IQ−・−ラ良 第 3 図 冗 ’、ItrmA) 第 4 図 )4 〒(hour)
FIG. 1 is a cross-sectional view of a semiconductor laser array device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a part of the manufacturing process, and FIG. 3 is a characteristic showing the relationship between current and optical output of the semiconductor laser array device. 4 are characteristic diagrams showing changes over time in the operating current of the semiconductor laser array device when driven with a constant optical output. 1...p-type GaAs substrate, 2...n-type GaAs block layer, 3...p-type Ga,
, A/yAs cladding layer, 4-...GalzAgxA
s active layer, 5...n-type Ga1. A/yAs cladding layer, 6... n-type GaAs layer, 7.8...
...Electrode, 9...Mesa, 10...Groove, 11...Ridge. Name of agent: Patent attorney Toshio Nakao and 1 other person'-
-P';-Gcb 5 bases 2--flW OnAδ face]

Claims (1)

【特許請求の範囲】[Claims] ストライプ状の突起を有する一導電型の半導体基板の表
面に、前記一導電型と反対の導電型の層が形成され、前
記反対導電型の層の表面から前記突起部に達する深さの
複数個のストライプ状の溝が形成されるとともに、前記
最外側の2本の溝の両側にたがいに平行な二つのリッジ
が、前記基板の両端面近傍で幅が狭くなるように形成さ
れ、前記リッジを有する基板上に、活性層を含む各層が
形成されていることを特徴とする半導体レーザアレイ装
置。
A layer of a conductivity type opposite to the one conductivity type is formed on the surface of a semiconductor substrate of one conductivity type having striped protrusions, and a plurality of layers have a depth reaching the protrusion from the surface of the layer of the opposite conductivity type. A striped groove is formed, and two ridges parallel to each other are formed on both sides of the two outermost grooves so that the width becomes narrow near both end surfaces of the substrate, and the ridge is A semiconductor laser array device characterized in that each layer including an active layer is formed on a substrate having a semiconductor laser array.
JP11100286A 1986-05-15 1986-05-15 Semiconductor laser array Pending JPS62266888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11100286A JPS62266888A (en) 1986-05-15 1986-05-15 Semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11100286A JPS62266888A (en) 1986-05-15 1986-05-15 Semiconductor laser array

Publications (1)

Publication Number Publication Date
JPS62266888A true JPS62266888A (en) 1987-11-19

Family

ID=14549909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11100286A Pending JPS62266888A (en) 1986-05-15 1986-05-15 Semiconductor laser array

Country Status (1)

Country Link
JP (1) JPS62266888A (en)

Similar Documents

Publication Publication Date Title
JPS6050983A (en) Manufacture of semiconductor laser element
US4841532A (en) Semiconductor laser
JPS6343908B2 (en)
JPS62266888A (en) Semiconductor laser array
JPS62142383A (en) Semiconductor laser device
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPH02116187A (en) Semiconductor laser
JPS62296576A (en) Semiconductor laser array device
US4745611A (en) Buried twin ridge substrate laser
JPS62296581A (en) Semiconductor laser array device
JPH029468B2 (en)
JP2561802Y2 (en) Semiconductor laser
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS6297384A (en) Semiconductor laser device
JPH0856044A (en) Semiconductor laser device
JP2558745B2 (en) Semiconductor laser device
GB2188775A (en) A window semiconductor laser device and an epitaxial growth process for its production
JP3422365B2 (en) Ridge stripe type semiconductor laser device
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPS5968989A (en) Semiconductor laser device
JPH08307009A (en) Semiconductor laser element
JPS6112399B2 (en)
JPH01218087A (en) Semiconductor laser device
JPS631092A (en) Semiconductor laser device
JPH0856051A (en) Semiconductor laser element