JPS62296581A - Semiconductor laser array device - Google Patents
Semiconductor laser array deviceInfo
- Publication number
- JPS62296581A JPS62296581A JP14068486A JP14068486A JPS62296581A JP S62296581 A JPS62296581 A JP S62296581A JP 14068486 A JP14068486 A JP 14068486A JP 14068486 A JP14068486 A JP 14068486A JP S62296581 A JPS62296581 A JP S62296581A
- Authority
- JP
- Japan
- Prior art keywords
- mesa
- ridges
- crystal
- active layer
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 abstract description 18
- 230000003287 optical effect Effects 0.000 abstract description 17
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 239000007791 liquid phase Substances 0.000 abstract description 6
- 238000005530 etching Methods 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
産業上の利用分野
本発明は光ディスクの記録・消去や、医療用そ2べ一゛
の他の高出力赤外レーザ光源として用いられる半導体レ
ーザアレイ装置に関するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a semiconductor laser used as a high-power infrared laser light source for recording and erasing optical discs, medical applications, etc. This invention relates to array devices.
従来の技術
近年半導体レーザ装置は、CDを始めとする光デイスク
上の信号の読み取りや、レーザビームプリンタの光源、
そして光通信にと、光産業の中心的なデバイスとして脚
光を浴びるに至っている。2. Description of the Related Art In recent years, semiconductor laser devices have been used to read signals on optical disks such as CDs, and as light sources for laser beam printers.
In optical communications, it has come into the limelight as a central device in the optical industry.
これらの光情報機器においては、レーザの光出力に対す
る要望は10〜20mW以下がほとんどであった。しか
し、光ディスクの記録・消去やプリンタの高速化、そし
て医療機器用にと高出力(2omW以上)のレーザ装置
に対する要望が近年共々増えている。In most of these optical information devices, the requirement for the optical output of the laser is 10 to 20 mW or less. However, in recent years, there has been an increase in demand for high-output (2 ohmW or more) laser devices for use in recording and erasing optical disks, speeding up printers, and medical equipment.
発明が解決しようとする問題点
半導体レーザの高出力化を進めるにあたっての障害は2
つある。その1つは、出力を上げると、レーザ結晶内の
光密度の増大に伴なって結晶内を伝搬する光電界のモー
ドが基本モードから高次モードへ移り易くなることであ
る。高次モードで発振すると、結晶端面から出射される
レーザビームの強度分布が単峰性とならず、複数のピー
クを持ち、実用」−大きな障害となる。この問題は、レ
ーザ結晶内の発振領域(活性層)の膜厚を薄くすること
で解決された。そしていわゆるBuriθd Twin
Ridge 5ubstrate v−ザにおいては、
活性層の薄層化と電流注入効率の向上により200mW
以上の連続発振出力が得られている。(電子通信学会技
術研究報告lCD84−94(1984))第2の点は
、レーザ結晶端面において光密度の増大に伴々い、端面
近傍で劣化が進みレーザの寿命が短くなることである。Problems that the invention aims to solve There are two obstacles to increasing the output power of semiconductor lasers.
There is one. One of them is that when the output is increased, the mode of the optical electric field propagating within the crystal tends to shift from the fundamental mode to the higher-order mode as the optical density within the laser crystal increases. When oscillating in a higher-order mode, the intensity distribution of the laser beam emitted from the crystal end face is not single-peaked, but has multiple peaks, which poses a major obstacle in practical use. This problem was solved by reducing the thickness of the oscillation region (active layer) within the laser crystal. And the so-called Buriθd Twin
In Ridge 5ubstrate v-the,
200mW due to thinning of the active layer and improvement of current injection efficiency
The above continuous oscillation output was obtained. (Institute of Electronics and Communication Engineers Technical Research Report 1CD84-94 (1984)) The second point is that as the optical density increases at the end face of a laser crystal, deterioration progresses in the vicinity of the end face, shortening the life of the laser.
レーザ端面部では、結晶内部に比べて熱の放散が悪く、
端面近傍の発振領域においては局所的に200’C以上
にも々ることか轟らによって報告されている。(ジャー
ナルオプアプライドフィジックス、58 、Pl 12
4(1985))この局所的な発熱は、結晶内で転位の
発生増殖を促し、転位が非発光中心となってレーザ光を
吸収して更に発熱するという悪循環(熱暴走)を繰り返
し寿命を著しく縮めることとなる。At the laser end face, heat dissipates poorly compared to inside the crystal.
It has been reported by Todoroki et al. that the temperature locally reaches 200'C or more in the oscillation region near the end face. (Journal Op Applied Physics, 58, Pl 12
4 (1985)) This local heat generation promotes the generation and proliferation of dislocations within the crystal, which repeats a vicious cycle (thermal runaway) in which the dislocations become non-emissive centers, absorb laser light, and generate further heat, significantly shortening the lifespan. It will be shortened.
本発明は半導体レーザの結晶端面においてレーザ光の光
密度を下げると共に、端面における熱の発生を少なくし
、端面の熱による破壊や、レーザ動作において熱暴走に
よる信頼性の悪化を防ぎ、長寿命の半導体レーザアレイ
装置を提供するものである。The present invention lowers the optical density of laser light at the crystal end face of a semiconductor laser, reduces the generation of heat at the end face, prevents damage to the end face due to heat and deterioration of reliability due to thermal runaway during laser operation, and extends the life of the laser. A semiconductor laser array device is provided.
問題点を解決するだめの手段
上記問題点を解決するために、本発明の半導体レーザア
レイ装置は、レーザ結晶の両共振器端面部の活性層の膜
厚を結晶内部よりも薄くし、かつ端面部に電流を流さな
いようにしている。Means for Solving the Problems In order to solve the above problems, in the semiconductor laser array device of the present invention, the thickness of the active layer at the end faces of both resonators of the laser crystal is made thinner than that inside the crystal, and This prevents current from flowing through the parts.
作用
端面部の活性層を薄くすることにより、端面部でのレー
ザ光のビーム径が大きくなり、光密度が減少する。また
端面部に電流を流さ々いことによって端面近傍の結晶内
部での発熱をなくし、温度上昇を防いでいる。との2つ
の作用により、レーザ端面における劣化の発生が抑えら
れ、高出力で長寿命のレーザアレイ装置が実現できるこ
とになる0
実施例
51・−゛
以下、本発明の一実施例について、図面を参照しながら
説明する。By making the active layer thinner at the working end face, the beam diameter of the laser beam at the end face becomes larger and the light density decreases. Furthermore, by passing current through the end face, heat generation inside the crystal near the end face is eliminated and temperature rise is prevented. Due to these two effects, the occurrence of deterioration at the laser end face is suppressed, and a laser array device with high output and long life can be realized.Example 51・-゛Hereinafter, an example of the present invention will be described with reference to the drawings. I will explain while referring to it.
第1図は本発明の実施例における半導体レーザアレイ装
置の断面を示すものである。第1図においてaは端面近
傍の断面を示し、bはそれより内部での断面を示す。P
型GaAs基板1上のn型GaAs層2は電流を阻止す
るためにあり、このため端面近傍(a図参照)では電流
が流れない。結晶内部ではb図の断面でわかるように、
GaAS基板1上にメサ9があり、GaAs電流ブロッ
ク層2に設けた3本の溝10がメサ9に達しており、溝
10から電流が活性層4に注入される。ブロック層のリ
ッジ11は液相エピタキシャル成長において、活性層4
の膜厚制御を容易にするためにある。FIG. 1 shows a cross section of a semiconductor laser array device in an embodiment of the present invention. In FIG. 1, a shows a cross section near the end face, and b shows a cross section inside the end face. P
The n-type GaAs layer 2 on the type GaAs substrate 1 is provided to block current, and therefore no current flows near the end face (see figure a). Inside the crystal, as shown in the cross section of figure b,
There is a mesa 9 on the GaAS substrate 1, and three grooves 10 provided in the GaAs current blocking layer 2 reach the mesa 9, and current is injected into the active layer 4 from the grooves 10. The ridge 11 of the block layer is formed in the active layer 4 during liquid phase epitaxial growth.
This is to facilitate film thickness control.
即ち1、リッジ11上では液相成長において、結晶成長
速度が遅くなることを利用している。That is, 1. The crystal growth rate on the ridge 11 is slow in liquid phase growth, which is utilized.
第2図に、本発明の半導体レーザアレイ装置の製造工程
の一部を示す。P型GILAI!!基板1上に、エツチ
ングによってメサ9を形成する。メサの長さは200μ
m、高さは3μm2幅は30μmと6 べ、
する。メサの前後の部分で襞間により共振器端面を形成
することに々る。(第2図1)次に液相エピタキシャル
成長法によりメサを埋め尽し、表面が平担になるように
第1回目の成長を行なう。FIG. 2 shows a part of the manufacturing process of the semiconductor laser array device of the present invention. P-type GILAI! ! A mesa 9 is formed on the substrate 1 by etching. Mesa length is 200μ
m, the height is 3 μm, and the width is 30 μm. The resonator end face is often formed between the folds at the front and rear portions of the mesa. (FIG. 2, 1) Next, the mesa is filled up by liquid phase epitaxial growth, and the first growth is performed so that the surface becomes flat.
(第2図2)メサ上でのn型GaAS層2の膜厚は1.
0μmとする。エツチングによってリッジ11及び3本
の溝1oを形成する。(第2図3)溝の深さは1.5μ
mとし、溝の巾は2μm1溝間隔は3μmとする。メサ
9のある部分では、溝がメサに達しているようにする。(FIG. 2) The thickness of the n-type GaAS layer 2 on the mesa is 1.
It is set to 0 μm. A ridge 11 and three grooves 1o are formed by etching. (Figure 2 3) The depth of the groove is 1.5μ
m, the width of the groove is 2 μm, and the interval between each groove is 3 μm. In the part where the mesa 9 is located, the groove should reach the mesa.
かくしてメサのある部分では溝から電流が流れ込み、な
い部分では電流が流れなくすることができる。この時、
リッジ11の幅を、メサのない部分では狭くなるように
する。即ち、溝の片側でメサのある部分では100μm
1ない部分では40μmとする。そして第2図3で示す
基板上に2回目の液相エピタキシャル成長を行い、第1
図すで示す多層構造を成長させる。この時、リッジの上
の成長速度が、リッジの幅が狭くなる程遅くなるので、
結晶内部に比べて、リッジの幅が狭い端面部では活性層
が薄くなる。In this way, current can flow from the groove in areas where there are mesas, and no current can flow in areas where there are no mesas. At this time,
The width of the ridge 11 is made narrower in the part where there is no mesa. That is, 100 μm on one side of the groove where there is a mesa.
In the part without 1, it is 40 μm. Then, a second liquid phase epitaxial growth is performed on the substrate shown in FIG.
Grow the multilayer structure shown in the figure. At this time, the growth rate on the ridge becomes slower as the width of the ridge becomes narrower.
The active layer is thinner at the end face portion where the ridge width is narrower than inside the crystal.
7ノ・−
活性層が薄いと光の閉じ込めが悪くなり、端面近傍では
レーザ光のビーム径が大きく々る。従って光密度を減少
させることができる。電極7.8を蒸着した後襞間によ
って共振器端面を作成するのであるが、この特装開位置
はメサと端面間の距離が20μm程度となるようにする
。No. 7: If the active layer is thin, light confinement will be poor, and the beam diameter of the laser beam will increase near the end facet. Therefore, the light density can be reduced. After the electrodes 7.8 are deposited, a resonator end face is created between the folds, and the special opening position is such that the distance between the mesa and the end face is about 20 μm.
第3図に端面部電流非注入でリッジの幅を狭くしたレー
ザアレイ装置と、これらの対策を施さないレーザアレイ
装置の電流対光出力特性を示す。FIG. 3 shows the current vs. optical output characteristics of a laser array device in which the width of the ridge is narrowed by not injecting current at the end facet, and a laser array device in which these measures are not taken.
端面部での光密度の減少と、熱の発生が抑えられている
ために飽和パワーの著しい上昇がみられる。A significant increase in saturation power is observed due to the decrease in optical density at the end face and the suppression of heat generation.
第4図には、先出カ一定駆動における動作電流の経時変
化を示す。本発明による対策を施さないレーザアレイ装
置では、高出力での寿命は短いが、本発明による素子で
は十分実用的な寿命が得られている。FIG. 4 shows the change over time of the operating current in constant first output drive. A laser array device that does not take the measures according to the present invention has a short life at high output, but the element according to the present invention has a sufficiently long life for practical use.
発明の効果
以上のように本発明は、電流非注入領域を端面近傍に設
け、かつ端面部の活性層を薄くすることにより、半導体
レーザアレイ装置の寿命を著しく延ばすととができ、そ
の実用的効果は犬なるものがある。Effects of the Invention As described above, the present invention can significantly extend the life of a semiconductor laser array device by providing a current non-injection region near the end facet and thinning the active layer at the end facet, thereby improving its practical use. The effect is like a dog.
第1図は本発明の実施例における半導体レーザアレイ装
置の断面図、第2図は製造工程の一部を示す斜視図、第
3図は半導体レーザアレイ装置の電流と光出力の関係を
示す特性図、第4図は一定光出力で駆動した時の半導体
レーザアレイ装置の動作電流の経時変化を示す特性図で
ある。
1・・・・・・P型GaAs基板、2・・・・・・n型
GaA3ブロック層、3・・・・・・P型Ga、、Al
yASクラッド層、4・・・・・・Ga、−xA#xA
s活性層、6・・山・n型Ga、−yAlyAsり7ラ
ド層、6−・・−・n型GaAs層、7.8・・・・・
・電極、9・・・・・・メサ、10・・山・溝、11・
・・・・・リッジ。FIG. 1 is a cross-sectional view of a semiconductor laser array device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a part of the manufacturing process, and FIG. 3 is a characteristic showing the relationship between current and optical output of the semiconductor laser array device. 4 are characteristic diagrams showing changes over time in the operating current of a semiconductor laser array device when driven with a constant optical output. 1...P-type GaAs substrate, 2...n-type GaA3 block layer, 3...P-type Ga, Al
yAS cladding layer, 4...Ga, -xA#xA
s active layer, 6... mountain n-type Ga, -yAlyAs 7 rad layer, 6-... n-type GaAs layer, 7.8...
・Electrode, 9...Mesa, 10...Mountain/Groove, 11...
·····ridge.
Claims (1)
する両端面近傍は除いてストライプ状の突起が形成され
、前記半導体基板の表面に前記一導電型と反対の導電型
の層が形成され、前記反対導電型の層の表面から、前記
突起部直上では前記突起部に達し、前記突起部のない前
記両端面近傍では前記半導体基板に達しない深さのスト
ライプ状の溝が複数個形成されるとともに、前記複数個
の溝の最外側の2本の溝の外側に、たがいに平行な二つ
のリッジが、前記両端面近傍で幅が狭くなるように形成
され、前記リッジを有する基板上に活性層を含む各層が
形成されていることを特徴とする半導体レーザアレイ装
置。Striped protrusions are formed on the surface of a semiconductor substrate of one conductivity type except near opposite end faces of the semiconductor substrate, and a layer of a conductivity type opposite to the one conductivity type is formed on the surface of the semiconductor substrate. , a plurality of striped grooves are formed from the surface of the layer of the opposite conductivity type to a depth that reaches the protrusion immediately above the protrusion and does not reach the semiconductor substrate near both end surfaces where the protrusion does not exist. At the same time, two ridges parallel to each other are formed on the outside of the two outermost grooves of the plurality of grooves so that the width becomes narrow near the both end faces, and the substrate having the ridges is A semiconductor laser array device characterized in that each layer including an active layer is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14068486A JPS62296581A (en) | 1986-06-17 | 1986-06-17 | Semiconductor laser array device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14068486A JPS62296581A (en) | 1986-06-17 | 1986-06-17 | Semiconductor laser array device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62296581A true JPS62296581A (en) | 1987-12-23 |
Family
ID=15274348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14068486A Pending JPS62296581A (en) | 1986-06-17 | 1986-06-17 | Semiconductor laser array device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62296581A (en) |
-
1986
- 1986-06-17 JP JP14068486A patent/JPS62296581A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61190993A (en) | Manufacture of semiconductor laser element | |
US4841532A (en) | Semiconductor laser | |
JPS6343908B2 (en) | ||
JPH0518473B2 (en) | ||
JPS62296581A (en) | Semiconductor laser array device | |
JPS62142383A (en) | Semiconductor laser device | |
US4841535A (en) | Semiconductor laser device | |
US4745611A (en) | Buried twin ridge substrate laser | |
JPH10209553A (en) | Semiconductor laser element | |
JPS62296576A (en) | Semiconductor laser array device | |
JP2000133879A (en) | Semiconductor laser and optical data processing device provided therewith | |
JPH029468B2 (en) | ||
JPH0671121B2 (en) | Semiconductor laser device | |
JPS62266888A (en) | Semiconductor laser array | |
JP2783218B2 (en) | Driving method of semiconductor laser | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JPH0268975A (en) | Semiconductor laser | |
JPS59198786A (en) | Distributed feedback type semiconductor laser | |
JPS6018988A (en) | Semiconductor laser | |
JP3792434B2 (en) | Self-oscillation type semiconductor laser | |
JPH0642578B2 (en) | Semiconductor laser device | |
JP2763781B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS6297384A (en) | Semiconductor laser device | |
JPS6054796B2 (en) | semiconductor laser | |
JP2804533B2 (en) | Manufacturing method of semiconductor laser |