JPH02177583A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH02177583A JPH02177583A JP33369388A JP33369388A JPH02177583A JP H02177583 A JPH02177583 A JP H02177583A JP 33369388 A JP33369388 A JP 33369388A JP 33369388 A JP33369388 A JP 33369388A JP H02177583 A JPH02177583 A JP H02177583A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- heat sink
- laser element
- heat
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 39
- 239000000758 substrate Substances 0.000 abstract description 25
- 238000000034 method Methods 0.000 abstract description 5
- 230000002542 deteriorative effect Effects 0.000 abstract description 2
- 230000000630 rising effect Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 101100369915 Drosophila melanogaster stas gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体レーザ装置に関し、特に高出力動作が可
能な半導体レーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device capable of high output operation.
(従来の技術)
半導体レーザ素子を100mW以上の高出力で動作させ
るために、複数本のレーザ発襲ストライプを並べたレー
ザアレイや、レーザ発振領域のストライプ播を広げたブ
ロードエリアレーザの研究が盛んに行われている。この
ような高出力半導体レーザ素子1よ、YAGレーザ等の
固体レーザの励起光源として使用されたり、非線形光学
材料から第2高調波を発生させるための光源として使用
されている0本発明者等は高出力半導体レーザ素子の一
例として第3図に示すように複数のVSIS(V−ch
anneled 5ubstrate Inner 5
tripe)レーザを同一基板上に並置したレーザ素子
を報善している(J、 Appl、 Phys、 58
(7)、 10ctober 1985)。(Prior art) In order to operate a semiconductor laser device at a high output of 100 mW or more, research is actively being conducted on laser arrays in which multiple laser firing stripes are lined up and broad area lasers in which the stripe distribution of the laser oscillation region is widened. is being carried out. Such a high-output semiconductor laser device 1 is used as a pumping light source for a solid-state laser such as a YAG laser, or as a light source for generating second harmonics from a nonlinear optical material. As an example of a high-power semiconductor laser device, as shown in FIG.
anneled 5ubstrate Inner 5
(J, Appl, Phys, 58).
(7), October 1985).
この高出力半導体レーザ素子は次のようにして製造され
る。先ず、p−GaAs基板1上にn−A 1 @、I
G al、gA S電流狭窄層2を液相エピタキシャル
法により成長させる。電流狭窄層2の表面から基板1に
達する複数の溝3の列をフォトリソグラフィと化学エツ
チングによって形成する。液晶エピタキシャル法によっ
て、p−Al1,33G as、atA Sクラッド層
4を成長させ、溝3の列を平坦に埋め込み、その上にp
A196@G a @、g2A s活性層5、n
−A I 9,33G a m、stASクラッド層6
及びn −G a A sキャップ層7を成長させる。This high-power semiconductor laser device is manufactured as follows. First, n-A 1 @, I is deposited on the p-GaAs substrate 1.
Gal, gA S current confinement layer 2 is grown by liquid phase epitaxial method. A plurality of rows of grooves 3 extending from the surface of the current confinement layer 2 to the substrate 1 are formed by photolithography and chemical etching. A p-Al1,33G as, atA S cladding layer 4 is grown by the liquid crystal epitaxial method, the rows of grooves 3 are filled flat, and p-Al
A196@G a @, g2A s active layer 5, n
-AI 9,33G am, stAS cladding layer 6
and grow an n-GaAs cap layer 7.
p−GaAs基板1の表面にn側電極8を、n−GaA
sキャップ層7の表面にn側電極9を設ける。璧開によ
って互いに平行な1対の反射面を形成し、半導体レーザ
素子A(共振器長250μm)を得る。An n-side electrode 8 is provided on the surface of the p-GaAs substrate 1.
An n-side electrode 9 is provided on the surface of the s-cap layer 7. A pair of mutually parallel reflecting surfaces are formed by cracking, and a semiconductor laser device A (cavity length 250 μm) is obtained.
このようにして形成された半導体レーザ素子Aの動作を
説明する。n側電極8とn側電極9との間に電圧を印加
すると溝3の列から活性層5に電流が注入され、レーザ
発振が生じる。このように、複数列の溝3によって活性
層5に対する電流注入が行われるので、活性層5を伝搬
する導波光は溝3の列に対応して広がって分布し、活性
層5に於ける光密度が低減されている。また、谷溝3に
対応する導波光が互いに一定の位相関係で同期発振する
ので、高出力まで安定したレーザ発振が得られる。The operation of the semiconductor laser device A formed in this way will be explained. When a voltage is applied between the n-side electrode 8 and the n-side electrode 9, a current is injected into the active layer 5 from the row of grooves 3, causing laser oscillation. In this way, current is injected into the active layer 5 through the plurality of rows of grooves 3, so that the guided light propagating through the active layer 5 is spread out and distributed in correspondence with the rows of the grooves 3, and the light in the active layer 5 is Density is reduced. Furthermore, since the guided lights corresponding to the valley grooves 3 oscillate synchronously with each other in a constant phase relationship, stable laser oscillation can be obtained up to high output.
このような半導体レーザ素子Aでは、通常の単一スドラ
イブレーザに比べて注入電流がかなり多いために、連続
動作させると発生する熱量が多くなり、高注入状態では
光出力が飽和したり、高温動作が不可能になる。従って
、例示の素子のような高出力レーザに於いては、注入電
流によって発生した熱を効率よく放熱することが重要な
課題である。In this type of semiconductor laser device A, the injection current is considerably higher than that of a normal single stripe laser, so a large amount of heat is generated when it is operated continuously. operation becomes impossible. Therefore, in a high-power laser such as the illustrated device, it is an important issue to efficiently dissipate the heat generated by the injection current.
このため、従来に於いては、第3図に示すように、半導
体レーザ素子Aを予め電極11が表面に形成されている
Cuヒートシンク10上にInハンダ材12によって熱
融着することが行われている。第3図の半導体レーザ装
置では、レーザ素子Aの活性層5に近い結晶成長表面を
ヒートシンク10に融着するジャンクションダウンマウ
ント法が採用されている。この構成では、レーザ素子A
の活性層5及びその近傍で発生した非発光再結合による
熱の内、ヒートシンク10側に流れたものはヒートシン
ク10に効率良く吸収され、放熱は良好に行われる。し
かし、基板1側に流れた熱については、基板1の熱伝導
率がヒートシンク10に比較して小さいため、放熱の効
率は悪い、尚、図中の矢印は熱の流れを示している。For this reason, conventionally, as shown in FIG. 3, the semiconductor laser element A is thermally fused onto a Cu heat sink 10 on which an electrode 11 is formed on the surface using an In solder material 12. ing. The semiconductor laser device shown in FIG. 3 employs a junction down mount method in which the crystal growth surface of the laser element A near the active layer 5 is fused to the heat sink 10. In this configuration, laser element A
Of the heat due to non-radiative recombination generated in the active layer 5 and its vicinity, the heat flowing toward the heat sink 10 is efficiently absorbed by the heat sink 10, and heat radiation is performed satisfactorily. However, regarding the heat flowing to the substrate 1 side, since the thermal conductivity of the substrate 1 is lower than that of the heat sink 10, the efficiency of heat radiation is poor.The arrows in the figure indicate the flow of heat.
また、注入電流が多い場合には、レーザ素子の抵抗に起
因するジュール熱が問題になる。上述のレーザ素子Aに
於いて幅4μmの?113を5μmの周期で10本形成
した場合(即ち、10本の発振ストライブを構成する場
合)の、注入電流に対する光出力、無効電力、及び注入
電力(光出力と無効電力との和)の変化の様子を第4図
に示す、無効電力の内の素子抵抗によるジュール熱の注
入電流に対する変化も第4図に示されている。第4図か
ら明らかなように、ジュール熱は電流の増大に対してそ
の自乗の割合で急激に増大する0例えば、電流が0.7
Aであれば、光出力が0. 36W、無効電力が1.1
6Wであるのに対して、素子抵抗によるジュール熱は0
.4Wにもなる。また、このような構成に於けるレーザ
素子Aの最大光出力は0.7Wである。Furthermore, when the injection current is large, Joule heat caused by the resistance of the laser element becomes a problem. In the above laser element A, the width of 4 μm is ? Optical output, reactive power, and injected power (sum of optical output and reactive power) with respect to injection current when 113 is formed with a period of 5 μm (that is, when 10 oscillation stripes are formed). The state of change is shown in FIG. 4. Also shown in FIG. 4 is the change in Joule heat due to the element resistance of the reactive power with respect to the injection current. As is clear from Figure 4, Joule heat increases rapidly at the rate of the square of the increase in current.
If A, the optical output is 0. 36W, reactive power is 1.1
6W, whereas the Joule heat due to element resistance is 0.
.. It also becomes 4W. Further, the maximum optical output of laser element A in such a configuration is 0.7W.
(発明が解決しようとする課題)
素子抵抗としては、成長層側の抵抗だけではなく、基板
の抵抗も考慮しなければならない、成長層の厚さに比べ
て基板は厚いので、基板の抵抗は比較的大きなものにな
る。基板の抵抗に起因して基板側で生じた熱は、空気中
へは放散し難い、従って、その熱によって、レーザ素子
の活性層及びその近傍の温度が上昇し、レーザ素子の特
性が悪化する。(Problem to be solved by the invention) Regarding element resistance, it is necessary to consider not only the resistance on the growth layer side but also the resistance of the substrate.Since the substrate is thick compared to the thickness of the growth layer, the resistance of the substrate is It will be relatively large. The heat generated on the substrate side due to the resistance of the substrate is difficult to dissipate into the air. Therefore, the heat increases the temperature of the active layer of the laser element and its vicinity, deteriorating the characteristics of the laser element. .
本発明は、半導体レーザ素子で発生した熱を効率よく放
熱させることができ、従ってレーザ素子を高出力で動作
させても素子の温度上昇が小さく、特性の悪化を防止す
ることのできる半導体レーザ装置を提供することを目的
とする。The present invention is a semiconductor laser device that can efficiently dissipate heat generated in a semiconductor laser element, so that even when the laser element is operated at high output, the temperature rise of the element is small and deterioration of characteristics can be prevented. The purpose is to provide
(課題を解決するための手段)
本発明の半導体レーザ装置は、ヒートシンクと、一方の
表面が該ヒートシンクに取り付けられた半導体レーザ素
子と、該半導体レーザ素子の他方の表面に取り付けられ
た他のヒートシンクとを備えており、そのことにより上
記目的が達成される。(Means for Solving the Problems) A semiconductor laser device of the present invention includes a heat sink, a semiconductor laser element whose one surface is attached to the heat sink, and another heat sink attached to the other surface of the semiconductor laser element. The above objective is thereby achieved.
また、本発明の半導体レーザ装置は、前記半導体レーザ
素子の他方の表面に凹所が形成されており、前記他のヒ
ートシンクが該凹所に適合した凸部を有している構成と
することもできる。Further, the semiconductor laser device of the present invention may be configured such that a recess is formed on the other surface of the semiconductor laser element, and the other heat sink has a convex portion that fits the recess. can.
(作用)
本発明の半導体レーザ装置に於いては、半導体レーザ素
子の活性層及びその近傍で発生した熱は、成長層側に取
り付けられた一方のヒートシンクと基板側に取り付けら
れた他方のヒートシンクとの両方によって吸収される。(Function) In the semiconductor laser device of the present invention, heat generated in the active layer of the semiconductor laser element and its vicinity is transferred to one heat sink attached to the growth layer side and the other heat sink attached to the substrate side. absorbed by both.
更に、基板抵抗に基づいて発生した熱は該他方のヒート
シンクによって吸収される。従って、半導体レーザ素子
の温度上昇が低減され、出力特性が改善され、高出力動
作が可能となる。Furthermore, heat generated due to substrate resistance is absorbed by the other heat sink. Therefore, the temperature rise of the semiconductor laser element is reduced, the output characteristics are improved, and high output operation is possible.
(実施例) 本発明を実施例について以下に説明する。(Example) The invention will now be described with reference to examples.
第1図に本発明の一実施例を示す4本実施例は、前述の
第3図に示す従来例と同様の構造の半導体レーザ素子A
を用いている0本実施例の作製手順を説明する。先ず、
半導体レーザ素子Aを前述と同様の工程で作製した。た
だし、基板1の厚さは化学エツチングによって70μm
とした。尚、渭3は従来例と同じく5μmの周期で10
本形成した。直方体状のCuヒートシンク21(福50
0B m X JJ行500μmX高さ200μm)の
底面に電極22を形成し、この電極22と素子Aの基板
側の電極8とをInハンダ材23を介して熱融、着した
。その後、素子Aの結晶成長層側の電極9とCuヒート
シンク10のtallとをInハンダ材12を介して熱
融着して本実施例装置を得た。FIG. 1 shows an embodiment of the present invention. This embodiment is a semiconductor laser device A having a structure similar to that of the conventional example shown in FIG.
The manufacturing procedure of this example using the following will be described. First of all,
Semiconductor laser device A was manufactured using the same process as described above. However, the thickness of the substrate 1 is 70 μm due to chemical etching.
And so. In addition, Wei 3 has a period of 5 μm and 10
The book was formed. Rectangular parallelepiped Cu heat sink 21 (Fuku 50
An electrode 22 was formed on the bottom surface of the 0B m x JJ row 500 μm x height 200 μm), and this electrode 22 and the electrode 8 on the substrate side of the element A were heat-fused and attached via an In solder material 23 . Thereafter, the electrode 9 on the crystal growth layer side of the element A and the tall of the Cu heat sink 10 were thermally fused via the In solder material 12 to obtain the device of this example.
本実施例に於いて、レーザ素子Aに電流を注入して最大
光出力を測定したところ、1.0Wであり、従来例に於
ける0、7Wに比べて大きく向上したものであった。更
に、高温雰囲気中(50℃)で光出力を200mWとし
て、前述の従来例と本実施例とに対して信頼性試験を行
った。従来例に於ける素子は約300時間で発振を停止
したのに対して、本実施例に於ける素子は約1000時
間以上安定して発振した。In this example, when a current was injected into the laser element A and the maximum optical output was measured, it was 1.0 W, which was significantly improved compared to 0.7 W in the conventional example. Furthermore, a reliability test was conducted on the conventional example and the present example in a high temperature atmosphere (50° C.) with an optical output of 200 mW. While the device in the conventional example stopped oscillating after about 300 hours, the device in this example oscillated stably for about 1000 hours or more.
尚、基板1が薄い程、放熱効果が増大し、しかも基板で
発生するジュール熱は減少するので、基板1の厚さは上
述のように出来るだけ薄い方が好ましい。Note that the thinner the substrate 1 is, the greater the heat dissipation effect is, and the more the Joule heat generated in the substrate is reduced, so it is preferable that the thickness of the substrate 1 be as thin as possible, as described above.
第2図に本発明の他の実施例を示す0本実施例では、レ
ーザ素子Bの基板1には、レーザ発振方向に両出射端面
間を沿伸する溝状の逆台形断面の凹所13(幅100μ
m×深さ40μm)を化学エツチングによって形成した
。素子Bの基板側の電極8に熱融着されているヒートシ
ンク24には、凹所13に対応した形状を有する、すな
わち凹所13に嵌合する凸部25を設けた。従って、レ
ーザ素子Bの電[8はヒートシンク24の電極22にI
nハンダ材23を介して全面的に熱融着した。FIG. 2 shows another embodiment of the present invention. In this embodiment, the substrate 1 of the laser element B has a groove-like recess 13 with an inverted trapezoidal cross section extending between both emission end faces in the laser oscillation direction. (width 100μ
m×depth 40 μm) was formed by chemical etching. A heat sink 24 that is thermally fused to the electrode 8 on the substrate side of the element B is provided with a protrusion 25 having a shape corresponding to the recess 13, that is, a protrusion 25 that fits into the recess 13. Therefore, the voltage [8] of the laser element B is connected to the electrode 22 of the heat sink 24.
The entire surface was thermally fused via n solder material 23.
本実施例では、レーザ素子Bのレーザストライプからヒ
ートシンク24迄の距離は30μmと短いので、半導体
レーザ素子の活性領域で発生した熱はより効率良くヒー
トシンク24に吸収される。In this embodiment, since the distance from the laser stripe of laser element B to the heat sink 24 is as short as 30 μm, the heat generated in the active region of the semiconductor laser element is more efficiently absorbed by the heat sink 24.
更に、活性領域近傍の基板1の厚さが小さくされている
ので、基板抵抗が減少し、それに応じて発熱も減少する
。従って、第1図の実施例よりも高出力で動作可能であ
る0本実施例では、レーザ素子Bの最大光出力は1.2
Wであり、50℃、200mWに於ける信頼性試験では
約2000時間以上安定して発振した。Furthermore, since the thickness of the substrate 1 in the vicinity of the active region is reduced, the substrate resistance is reduced and heat generation is accordingly reduced. Therefore, in this embodiment, which can operate at a higher output than the embodiment shown in FIG. 1, the maximum optical output of laser element B is 1.2
W, and in a reliability test at 50° C. and 200 mW, it oscillated stably for about 2000 hours or more.
凹所13はレーザ素子の出射端面近傍にのみ設けるよう
にすることもできる。或いは、凹所13は、基板1表面
の中央領域のみに形成されたものであってもよい、これ
らの場合には、ヒートシンク24の凸部25の形状は該
凹所の形状に適合したものとされるのは当然である。ま
た、凹所13は基板1に形成したが、素子の成長層側に
凹所を形成するようにしてもよい、この場合には、レー
ザ素子は第2図に示すレーザ素子の上下関係を逆にして
配設される。The recess 13 can also be provided only near the emission end face of the laser element. Alternatively, the recess 13 may be formed only in the central region of the surface of the substrate 1. In these cases, the shape of the convex portion 25 of the heat sink 24 may be adapted to the shape of the recess. It is natural that it will be done. Further, although the recess 13 is formed in the substrate 1, the recess may be formed on the growth layer side of the device. In this case, the laser device is formed with the vertical relationship of the laser device shown in FIG. 2 reversed. It is arranged as follows.
前述の各実施例の装置では、半導体レーザ素子としては
VSIS構造のレーザアレイを用いているが、他の導波
構造のレーザアレイを用いることもできる。また、単一
発振スドライブを有するレーザ素子を用いてもよい。In the apparatuses of the embodiments described above, a laser array with a VSIS structure is used as the semiconductor laser element, but a laser array with another waveguide structure can also be used. Alternatively, a laser element having a single oscillation drive may be used.
(発明の効果)
本発明の半導体レーザ装置は、このように、半導体レー
ザ素子で発生した熱を効率よく放熱させることができる
。従って、半導体レーザ索子の温度上昇が小さく、レー
ザ素子の特性の悪化を防止することができ、高出力で動
作させることができる。(Effects of the Invention) As described above, the semiconductor laser device of the present invention can efficiently radiate the heat generated by the semiconductor laser element. Therefore, the temperature rise of the semiconductor laser element is small, the deterioration of the characteristics of the laser element can be prevented, and the laser element can be operated at high output.
、・ ゝt;8
第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図、第3図は従来例の断面図
、第4図はその従来例の出力特性を示すグラフである。,・t;8 FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, FIG. 3 is a sectional view of a conventional example, and FIG. 4 is a graph showing the output characteristics of the conventional example.
A、B・・・半導体レーザ素子、10.21.24・・
・ヒートシンク、13・・・凹所、25・・・凸部。A, B... Semiconductor laser element, 10.21.24...
- Heat sink, 13... recess, 25... protrusion.
以上that's all
Claims (1)
り付けられた半導体レーザ素子と、該半導体レーザ素子
の他方の表面に取り付けられた他のヒートシンクとを備
えた半導体レーザ装置。 2、前記半導体レーザ素子の他方の表面に凹所が形成さ
れており、前記他のヒートシンクが該凹所に適合した凸
部を有している請求項1に記載の半導体レーザ装置。[Claims] 1. A semiconductor laser device comprising a heat sink, a semiconductor laser element having one surface attached to the heat sink, and another heat sink attached to the other surface of the semiconductor laser element. 2. The semiconductor laser device according to claim 1, wherein a recess is formed on the other surface of the semiconductor laser element, and the other heat sink has a convex portion that fits the recess.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33369388A JPH02177583A (en) | 1988-12-28 | 1988-12-28 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33369388A JPH02177583A (en) | 1988-12-28 | 1988-12-28 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02177583A true JPH02177583A (en) | 1990-07-10 |
Family
ID=18268910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33369388A Pending JPH02177583A (en) | 1988-12-28 | 1988-12-28 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02177583A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537089A (en) * | 1991-07-25 | 1993-02-12 | Mitsubishi Electric Corp | Semiconductor laser device |
US5454002A (en) * | 1994-04-28 | 1995-09-26 | The Board Of Regents Of The University Of Oklahoma | High temperature semiconductor diode laser |
US5835515A (en) * | 1996-10-25 | 1998-11-10 | Lucent Technologies Inc. | High power semiconductor laser array |
GB2373636A (en) * | 2000-11-29 | 2002-09-25 | Mitsubishi Chem Corp | Semiconductor light emitting device with two heat sinks in contact with each other |
US8031751B2 (en) | 2007-09-21 | 2011-10-04 | Sharp Kabushiki Kaisha | Nitride semiconductor laser device |
-
1988
- 1988-12-28 JP JP33369388A patent/JPH02177583A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537089A (en) * | 1991-07-25 | 1993-02-12 | Mitsubishi Electric Corp | Semiconductor laser device |
US5454002A (en) * | 1994-04-28 | 1995-09-26 | The Board Of Regents Of The University Of Oklahoma | High temperature semiconductor diode laser |
US5629097A (en) * | 1994-04-28 | 1997-05-13 | The Board Of Regents Of The University Of Oklahoma | Apparatus for fabricating semiconductor lasers |
US5776794A (en) * | 1994-04-28 | 1998-07-07 | The Board Of Regents Of The University Of Oklahoma | Method for fabricating semiconductor laser |
US5835515A (en) * | 1996-10-25 | 1998-11-10 | Lucent Technologies Inc. | High power semiconductor laser array |
GB2373636A (en) * | 2000-11-29 | 2002-09-25 | Mitsubishi Chem Corp | Semiconductor light emitting device with two heat sinks in contact with each other |
GB2373636B (en) * | 2000-11-29 | 2004-09-08 | Mitsubishi Chem Corp | Semiconductor light emitting device with two heat sinks in contact with each other |
US6791181B2 (en) | 2000-11-29 | 2004-09-14 | Mitsubishi Chemical Corporation | Semiconductor light emitting device |
US8031751B2 (en) | 2007-09-21 | 2011-10-04 | Sharp Kabushiki Kaisha | Nitride semiconductor laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5394426A (en) | Diode laser bar assembly | |
CN101960682B (en) | Edge-emitting semiconductor laser chip having at least one current barrier | |
US4369513A (en) | Semiconductor laser device | |
JP3348024B2 (en) | Semiconductor laser device | |
US8031751B2 (en) | Nitride semiconductor laser device | |
KR100634538B1 (en) | Semiconductor light emitting device having an effective cooling structure and a method of fabricating the same | |
US4675875A (en) | Surface emitting semiconductor laser | |
JPS63318188A (en) | Semiconductor laser array device | |
WO2008085273A1 (en) | Frequency-doubled edge-emitting semiconductor lasers | |
JP2008277471A (en) | Semiconductor laser apparatus, and method for mounting the same | |
JP3990745B2 (en) | Semiconductor optical module | |
JPS6343908B2 (en) | ||
JPH02177583A (en) | Semiconductor laser device | |
US7646797B1 (en) | Use of current channeling in multiple node laser systems and methods thereof | |
US4380075A (en) | Mode stable injection laser diode | |
KR102103515B1 (en) | Laser diode structure and manufacturing method | |
US4841535A (en) | Semiconductor laser device | |
US20210367406A1 (en) | Semiconductor laser, operating method for a semiconductor laser, and method for determining the optimum fill factor of a semiconductor laser | |
US4745611A (en) | Buried twin ridge substrate laser | |
JPH0376188A (en) | Semiconductor laser array | |
RU2153745C1 (en) | Semiconductor laser | |
JP2563482B2 (en) | Semiconductor laser array device | |
Jansen et al. | Monolithic two‐dimensional surface‐emitting diode laser arrays mounted in the junction‐down configuration | |
JP2001257417A (en) | Semiconductor laser element | |
JP2001308445A (en) | Semiconductor laser element |