JPH0376188A - Semiconductor laser array - Google Patents

Semiconductor laser array

Info

Publication number
JPH0376188A
JPH0376188A JP21193089A JP21193089A JPH0376188A JP H0376188 A JPH0376188 A JP H0376188A JP 21193089 A JP21193089 A JP 21193089A JP 21193089 A JP21193089 A JP 21193089A JP H0376188 A JPH0376188 A JP H0376188A
Authority
JP
Japan
Prior art keywords
waveguides
semiconductor laser
face
laser
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21193089A
Other languages
Japanese (ja)
Other versions
JP2798720B2 (en
Inventor
Nobuhiko Hayashi
伸彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1211930A priority Critical patent/JP2798720B2/en
Publication of JPH0376188A publication Critical patent/JPH0376188A/en
Application granted granted Critical
Publication of JP2798720B2 publication Critical patent/JP2798720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the effect of heat generation from a laser and to enable convergence of light by using a lens, etc., by making the spacing of adjacent waveguides at a central section wider than that of adjacent waveguides in the vicinity of at least one end face. CONSTITUTION:Three waveguides 1 in total are juxtaposed between both end faces 11, 12 in response to each semiconductor laser in a laser chip 10. The juxtaposed formation patterns of each waveguide 1 differ in three regions in the longitudinal direction of the laser chip 10, spacing between adjacent waveguides 1, 1 is narrowed in a region A in the vicinity of the end face 11, the waveguides 1 are spread radially in a central region B, and spacing betwe77 en adjacent waveguides 1, 1 is widened in a region C in the vicinity of the end face 12. The bent section of the waveguides 1 are formed in a circular shape in order to reduce radiation loss, and distances from the waveguides 1 at both ends to side faces in the region C can be lengthened as much as possible in order to improve heat dissipation from the waveguides 1, 1. When the spacing D1 of adjacent waveguides in the vicinity of the end face 11 is brought to 8mum or less, a laser beam can be converged to a point by use of a lens, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光情報処理またはレーザ加工等に使用する半
導体レーザアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser array used for optical information processing, laser processing, or the like.

〔従来の技術〕[Conventional technology]

一般に半導体レーザでは、光出力を高めるべく駆動電流
を増加させると、pn接合部が発熱し、しきい値電流密
度の増加と外部微分量子効率の低下とによって、光出力
が熱的に飽和する。各半導体レーザの最大光出力は、こ
の熱的飽和または光出力の増加に伴う光学的な端面破壊
により決定される。
Generally, in a semiconductor laser, when the drive current is increased to increase the optical output, the pn junction generates heat, and the optical output is thermally saturated due to the increase in the threshold current density and the decrease in the external differential quantum efficiency. The maximum optical output of each semiconductor laser is determined by this thermal saturation or optical end face destruction accompanying an increase in optical output.

半導体レーザから出射されるレーザ光の応用範囲の拡大
化に伴って、高出力なレーザ光の要求が高まっており、
高出力なレーザ光を得る手段として、導波路を有する複
数の半導体レーザを並設させてなる半導体レーザアレイ
がある(K、Ha□ada atat、 5olid−
5tate Electronics Vol、30+
 No、1 pp33−37.1987)。このような
半導体レーザアレイには、各半導体レーザからのレーザ
光の位相がそろった位相同期型のものと、各半導体レー
ザからのレーザ光の位相がそろっていない非位相同期型
のものとの2種類がある。
With the expansion of the application range of laser light emitted from semiconductor lasers, the demand for high-power laser light is increasing.
As a means of obtaining high-output laser light, there is a semiconductor laser array in which a plurality of semiconductor lasers each having a waveguide are arranged in parallel (K, Ha□ada atat, 5olid-
5tate Electronics Vol, 30+
No. 1 pp33-37.1987). There are two types of such semiconductor laser arrays: a phase-locked type in which the phases of the laser beams from each semiconductor laser are aligned, and a non-phase-locked type in which the phases of the laser beams from each semiconductor laser are not aligned. There are different types.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した位相同期型の半導体レーザアレイでは、各導波
路に発生したレーザ光が位相同期するために、隣合う導
波路間の距離を約5μm以下に設定する必要がある。と
ころがこのような構成では、各半導体レーザが密に並設
しているので、各半導体レーザから発生する熱に対して
相互に影響されやす<、pn接合部の温度上昇が大きい
ので、光出力の飽和が生じやすくなって高出力のレーザ
光が得られない。
In the phase-locked semiconductor laser array described above, in order to phase-lock the laser beams generated in each waveguide, the distance between adjacent waveguides must be set to about 5 μm or less. However, in such a configuration, since the semiconductor lasers are closely arranged in parallel, they are easily affected by the heat generated by each semiconductor laser, and the temperature rise at the pn junction is large, resulting in a decrease in optical output. Saturation tends to occur, making it impossible to obtain high-power laser light.

このような各半導体レーザ間相互からの発熱の影響を防
止するためには、アレイ内の各半導体レーザを数十μm
以上離隔させた構成(各半導体レーザ間において位相同
期はかけられない非位相同期型の半導体レーザアレイ)
とすればよい。ところがこの構成では、隣合う半導体レ
ーザが離れすぎているので、各半導体レーザから出射さ
れるビーム光を、レンズ等を用いて1点に集光させるこ
とができないという難点がある。
In order to prevent such heat generation from each other between the semiconductor lasers, each semiconductor laser in the array must be separated by several tens of micrometers.
A configuration in which the semiconductor lasers are spaced apart from each other (a non-phase synchronized semiconductor laser array in which phase synchronization cannot be applied between each semiconductor laser)
And it is sufficient. However, this configuration has the disadvantage that since the adjacent semiconductor lasers are too far apart, the beam light emitted from each semiconductor laser cannot be focused on one point using a lens or the like.

本発明はかかる事情に鑑みてなされたものであり、導波
路の間隔を、端面近傍では短くして中央部では長くする
ことにより、各半導体レーザからの発熱の影響を低減で
き、しかもレンズ等を用いて各半導体レーザからのビー
ム光を1点に集光させることができる半導体レーザアレ
イを提供することを目的とする。
The present invention has been made in view of the above circumstances, and by shortening the interval between the waveguides near the end face and increasing it at the center, it is possible to reduce the influence of heat generated from each semiconductor laser, and moreover, it is possible to reduce the influence of heat generation from each semiconductor laser, and moreover, it is possible to reduce the influence of heat generation from each semiconductor laser. An object of the present invention is to provide a semiconductor laser array that can be used to condense beam light from each semiconductor laser to one point.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体レーザアレイは、複数の導波路を並
設形威している半導体レーザアレイにおいて、少なくと
も一方の端面近傍における隣合った前記導波路の間隔よ
り、中央部における隣合った前記導波路の間隔が広くな
っていることを特徴とする。
In the semiconductor laser array according to the present invention, in a semiconductor laser array in which a plurality of waveguides are arranged in parallel, the distance between the adjacent waveguides in the center is smaller than the distance between the adjacent waveguides in the vicinity of at least one end face. It is characterized by wide spacing between the wave channels.

〔作用〕[Effect]

本発明の半導体レーザアレイにあっては、端面近傍では
隣合う導波路の間隔が狭く、各導波路を経て端面から出
射される各レーザ光はレンズ等により1点に集光される
。また中央部では隣合う導波路の間隔が広く、各半導体
レーザから発生される熱が隣合う半導体レーザに与える
影響は少なくなり、光出力は熱的に飽和され難<、光出
力を大きくできる。
In the semiconductor laser array of the present invention, the distance between adjacent waveguides is narrow near the end face, and each laser beam emitted from the end face after passing through each waveguide is focused at one point by a lens or the like. Further, in the central part, the distance between adjacent waveguides is wide, so that the heat generated from each semiconductor laser has less influence on the adjacent semiconductor lasers, so that the optical output is less likely to be thermally saturated, and the optical output can be increased.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る半導体レーザアレイの平面図、第
2図は第1図のn−n線における部分断面図である。
FIG. 1 is a plan view of a semiconductor laser array according to the present invention, and FIG. 2 is a partial sectional view taken along line nn in FIG. 1.

第1図において10はレーザチップを示し、このレーザ
チップ10は平面視で、両端面11.12間の長さ(共
振長)が750μm1幅が600μmである矩形状をな
し、各半導体レーザに対応させて計3木の導波路lを両
端面IL 12間に並設形威しである。
In FIG. 1, 10 indicates a laser chip, and this laser chip 10 has a rectangular shape with a length (resonance length) between both end faces 11 and 12 of 750 μm and a width of 600 μm in plan view, and corresponds to each semiconductor laser. A total of three waveguides l are arranged in parallel between both end faces IL12.

なお図中左側の端面11の反射率が90%、右側の端面
12の反射率が8%になるように、端面コーティングを
施している。
Note that the end faces are coated so that the reflectance of the end face 11 on the left side in the figure is 90%, and the reflectance of the end face 12 on the right side is 8%.

ここで第2図に基づき、本実施例の素子構造について説
明する。第2図において2はn−GaAs基板(Siド
ープ、  n = 2 XIO”cm−3)であり、基
板2上には、n−Gao、 58A10.4Jsクラフ
ト層(Seドープ。
Here, the element structure of this example will be explained based on FIG. In FIG. 2, 2 is an n-GaAs substrate (Si-doped, n = 2 XIO" cm-3), and on the substrate 2 is an n-Gao, 58A10.4Js craft layer (Se-doped).

n = 5 XIO”am−’、膜厚2..Oμm) 
3 、Gao、5J1o、。
n = 5 XIO"am-', film thickness 2.0μm)
3, Gao, 5J1o,.

As活性N(ノンドープ、WX膜厚、07/’ m) 
 4 、p−Gao、 5sAlo、 azAsクラッ
ド層(Znドープ、p = 2XIQ”cm−”膜厚1
,5.crm)  5、p−GaAsキャンプF! (
Znドープ。
As active N (non-doped, WX film thickness, 07/' m)
4, p-Gao, 5sAlo, azAs cladding layer (Zn doped, p = 2XIQ"cm-" film thickness 1
,5. crm) 5, p-GaAs camp F! (
Zn doped.

り = l XIO19am−’、膜厚0.5μm)6
がこの順に積層形成されている。p−クラッド層5及び
キャップ層6は、所定ピッチにて逆メサ状に除去されて
おり、この除去部分にn−GaAsブロック層(Seド
ープ、n= 5 ×1QIIC11−3.膜厚1.0μ
m)7が形成されている。本実施例では、各導波路1は
り、ツジ状のストライブをなしている。なお、各導波路
1において安定した基本横モードを得るために、ブロッ
ク層7下端から活性層4上面までの距離(1)をt =
 0.1〜0.2μmとし、導波路の幅(W)をW=3
〜4μmとした。
= l XIO19am-', film thickness 0.5 μm)6
are layered in this order. The p-cladding layer 5 and the cap layer 6 are removed in an inverted mesa shape at a predetermined pitch, and an n-GaAs block layer (Se-doped, n=5×1QIIC11-3, film thickness 1.0μ) is formed in the removed portion.
m) 7 is formed. In this embodiment, each waveguide 1 forms a zigzag stripe. In addition, in order to obtain a stable fundamental transverse mode in each waveguide 1, the distance (1) from the lower end of the block layer 7 to the upper surface of the active layer 4 is t =
0.1 to 0.2 μm, and the width (W) of the waveguide is W=3
~4 μm.

各導波路1の並設形成パターンは、レーザチップ10の
長手方向における3領域において異なっている。端面1
1近傍の領域Aでは隣合う導波路l。
The parallel formation patterns of each waveguide 1 are different in three regions in the longitudinal direction of the laser chip 10. End face 1
In a region A in one vicinity, adjacent waveguides l.

1間の間隔が狭くなっており、中央の領域Bでは導波路
1が放射状に拡がっており、端面12近傍の領域Cでは
隣合う導波路1.1間の間隔が広くなっている。導波路
lのリッジ状ストライプの具体的な形状は、以下の通り
である。
In the central region B, the waveguides 1 are expanding radially, and in the region C near the end face 12, the distance between adjacent waveguides 1.1 is wide. The specific shape of the ridge-like stripe of the waveguide l is as follows.

領域Aの長さLI=50μm。Length LI of region A = 50 μm.

領域Bの長さLz =550μm。Length Lz of region B = 550 μm.

領域Cの長さL3 = 150.crm。Length L3 of area C = 150. crm.

領域Aにおける導波路間距離り、=3μm。Distance between waveguides in region A = 3 μm.

領域Cにおける導波路間距離D2 = 100μmここ
で、導波路1の屈曲部(領域A、 B及びB。
Distance between waveguides D2 in region C = 100 μm Here, the bent portion of waveguide 1 (regions A, B and B).

Cの境界)は、放射損失を小さくするために円弧状をな
し、この円弧の曲率半径を少なくとも1〜2朋以上とす
ることが望ましい。また両端に位置する導波路1. 1
からの放熱を良好にするために、領域Cにおける両端の
導波路1から側面までの距離(第1図り、)はできるだ
け長<(150μm程度)することが望ましい。なお、
端面11近傍における隣合った導波路の間隔DIを8μ
m以下にすれば、レンズ等により各導波路からのレーザ
光を一点に集光できる。
It is preferable that the boundary (C) has a circular arc shape in order to reduce radiation loss, and the radius of curvature of this circular arc is at least 1 to 2 mm or more. In addition, the waveguides 1 located at both ends. 1
In order to improve heat dissipation from the region C, it is desirable that the distance from the waveguide 1 at both ends to the side surface (in the first diagram) be as long as possible (approximately 150 μm). In addition,
The distance DI between adjacent waveguides near the end face 11 is 8μ.
If it is less than m, the laser light from each waveguide can be focused on one point using a lens or the like.

次に、本発明例と従来例とにおける電流−光出力特性の
比較について説明する。第3図は両側の特性を示すグラ
フであり、図中(a)は第1,2図に示す前述した本発
明例の場合の特性を表し、図中(b)は第4図に示すよ
うな従来例の場合の特性を表している。第4図はここに
用いた従来例の平面図であり、端面間の距離が750μ
mのレーザチップ20には、3本の導波路21が両端面
間に並設形成されており、隣合う導波路21.21の間
隔はどの領域においても同じ(6μm)である。
Next, a comparison of current-light output characteristics between an example of the present invention and a conventional example will be explained. FIG. 3 is a graph showing the characteristics on both sides, in which (a) represents the characteristics in the case of the above-mentioned example of the present invention shown in FIGS. 1 and 2, and (b) in the graph shows the characteristics as shown in FIG. This shows the characteristics of a conventional example. Figure 4 is a plan view of the conventional example used here, and the distance between the end faces is 750 μm.
The three waveguides 21 are formed in parallel between both end faces of the laser chip 20 of 1.m, and the spacing between adjacent waveguides 21 and 21 is the same (6 μm) in all regions.

第3図から理解されるように、従来例(b)では光出力
が190mWにて飽和している。これに対して本発明例
(a)では、中央のレーザと両端のレーザとの間にて発
振にずれが生じるので、電流−光出力特性を示す曲線は
折れ曲がるが、240mWまで光出力は飽和しない。こ
のように本発明の半導体レーザアレイでは従来に比して
光出力が熱的に飽和されにくい。
As understood from FIG. 3, in the conventional example (b), the optical output is saturated at 190 mW. On the other hand, in Example (a) of the present invention, there is a shift in oscillation between the central laser and the lasers at both ends, so the curve showing the current-light output characteristics is bent, but the optical output does not saturate until 240 mW. . As described above, in the semiconductor laser array of the present invention, the optical output is less likely to be thermally saturated than in the prior art.

本発明の半導体レーザアレイでは、以上のように中央部
において隣合う導波路の間隔が広いので、各半導体レー
ザ相互間から放出される熱による影響を低減でき、光出
力を増加することができる。
In the semiconductor laser array of the present invention, since the interval between adjacent waveguides in the central portion is wide as described above, it is possible to reduce the influence of heat emitted from each semiconductor laser and increase optical output.

また端面近傍では隣合う導波路の間隔を狭くしているの
で、レンズ等を用いて各半導体レーザからのレーザ光を
一点に集光することができる。
Furthermore, since the distance between adjacent waveguides is narrowed near the end face, the laser light from each semiconductor laser can be focused on one point using a lens or the like.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体レーザアレイでは、端
面近傍では隣合う導波路の間隔を狭くし、中央部では導
波路を放射状に拡大しているので、レンズ等を使用して
各半導体レーザから出射されるレーザ光を一点に集光す
ることができると共に、光出力が熱的に飽和されにくく
なってレーザ光の高出力化を達成することができる・従
って・光情報処理、レーザ光加工における光源としての
応用範囲の一層の拡大を図れる等、本発明は優れた効果
を奏する。
As detailed above, in the semiconductor laser array of the present invention, the interval between adjacent waveguides is narrowed near the end facets, and the waveguides are expanded radially in the center. The emitted laser light can be focused on one point, and the optical output is less likely to be thermally saturated, making it possible to achieve high output laser light.Therefore, it is useful in optical information processing and laser beam processing. The present invention has excellent effects such as being able to further expand the range of application as a light source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体レーザアレイの平面図、第
2図は第1図のn−n線における部分断面図、第3図は
電流−光出力特性を示すグラフ、第4図は従来の半導体
レーザアレイの平面図である。 1・・・導波路 2・・・基板 3・・・n−クラッド
N4・・・活性層 5・・・p−クラッド層 6・・・
キャンプ層7・・・ブロック1 10・・・レーザチッ
プ 11.12・・・端面
FIG. 1 is a plan view of a semiconductor laser array according to the present invention, FIG. 2 is a partial cross-sectional view taken along line nn in FIG. 1, FIG. 3 is a graph showing current-light output characteristics, and FIG. 4 is a conventional FIG. 2 is a plan view of a semiconductor laser array of FIG. 1... Waveguide 2... Substrate 3... N-clad N4... Active layer 5... P-clad layer 6...
Camping layer 7...Block 1 10...Laser chip 11.12...End face

Claims (1)

【特許請求の範囲】 1、複数の導波路を並設形成している半導体レーザアレ
イにおいて、 少なくとも一方の端面近傍における隣合った前記導波路
の間隔より、中央部における隣合った前記導波路の間隔
が広くなっていることを特徴とする半導体レーザアレイ
[Claims] 1. In a semiconductor laser array in which a plurality of waveguides are formed in parallel, the distance between the adjacent waveguides in the central portion is greater than the distance between the adjacent waveguides in the vicinity of at least one end face. A semiconductor laser array characterized by wide spacing.
JP1211930A 1989-08-17 1989-08-17 Semiconductor laser array Expired - Fee Related JP2798720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211930A JP2798720B2 (en) 1989-08-17 1989-08-17 Semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211930A JP2798720B2 (en) 1989-08-17 1989-08-17 Semiconductor laser array

Publications (2)

Publication Number Publication Date
JPH0376188A true JPH0376188A (en) 1991-04-02
JP2798720B2 JP2798720B2 (en) 1998-09-17

Family

ID=16614032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211930A Expired - Fee Related JP2798720B2 (en) 1989-08-17 1989-08-17 Semiconductor laser array

Country Status (1)

Country Link
JP (1) JP2798720B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286287A (en) * 2004-03-04 2005-10-13 Hamamatsu Photonics Kk Semiconductor laser element and array thereof
JP2007033060A (en) * 2005-07-22 2007-02-08 Japan Radio Co Ltd Offset error calibration method in radar range finder
JP2010192603A (en) * 2009-02-17 2010-09-02 Seiko Epson Corp Light-emitting device
US8855161B2 (en) 2012-03-16 2014-10-07 Mitsubishi Electric Corporation Semiconductor laser device, method of manufacturing semiconductor laser device, and semiconductor laser array
EP2816680A1 (en) * 2013-06-18 2014-12-24 PBC Lasers GmbH Laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268188A (en) * 1986-05-15 1987-11-20 Canon Inc Semiconductor laser device
JPS6387780A (en) * 1986-09-30 1988-04-19 Nec Corp Array type semiconductor laser device
JPH01238086A (en) * 1988-03-17 1989-09-22 Mitsubishi Electric Corp Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268188A (en) * 1986-05-15 1987-11-20 Canon Inc Semiconductor laser device
JPS6387780A (en) * 1986-09-30 1988-04-19 Nec Corp Array type semiconductor laser device
JPH01238086A (en) * 1988-03-17 1989-09-22 Mitsubishi Electric Corp Semiconductor laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286287A (en) * 2004-03-04 2005-10-13 Hamamatsu Photonics Kk Semiconductor laser element and array thereof
JP2007033060A (en) * 2005-07-22 2007-02-08 Japan Radio Co Ltd Offset error calibration method in radar range finder
JP2010192603A (en) * 2009-02-17 2010-09-02 Seiko Epson Corp Light-emitting device
US8855161B2 (en) 2012-03-16 2014-10-07 Mitsubishi Electric Corporation Semiconductor laser device, method of manufacturing semiconductor laser device, and semiconductor laser array
EP2816680A1 (en) * 2013-06-18 2014-12-24 PBC Lasers GmbH Laser
US9160142B2 (en) 2013-06-18 2015-10-13 Pbc Lasers Gmbh Laser

Also Published As

Publication number Publication date
JP2798720B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
JPH084187B2 (en) Semiconductor laser
JPS6343908B2 (en)
JPH0376188A (en) Semiconductor laser array
JPS6173393A (en) Semiconductor stripe laser
JPH0431195B2 (en)
JP2846668B2 (en) Broad area laser
JPH03123092A (en) Semiconductor laser
JPS63150981A (en) Semiconductor laser
JP2777434B2 (en) Semiconductor laser
JPS58225681A (en) Semiconductor laser element
JPH029468B2 (en)
US10707651B2 (en) Semiconductor laser element
JP2515729B2 (en) Semiconductor laser device
JPH04199133A (en) Optical amplifier and optical integrated circuit
JPS61263185A (en) Semiconductor laser array device
JPS63164286A (en) Semiconductor laser array device
JPH039592A (en) Manufacture of semiconductor wafer
JPH01273378A (en) Semiconductor laser device
JPH08264884A (en) Gained guided semiconductor laser
JPS61222187A (en) Semiconductor laser array device
JPH03108390A (en) Broad area laser
JPH05206567A (en) Semiconductor laser
JPS60245191A (en) Single beam type semiconductor laser array
JPS58207691A (en) Semiconductor laser element
JPS59152686A (en) Semiconductor laser element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees