JPS61263185A - Semiconductor laser array device - Google Patents

Semiconductor laser array device

Info

Publication number
JPS61263185A
JPS61263185A JP60105472A JP10547285A JPS61263185A JP S61263185 A JPS61263185 A JP S61263185A JP 60105472 A JP60105472 A JP 60105472A JP 10547285 A JP10547285 A JP 10547285A JP S61263185 A JPS61263185 A JP S61263185A
Authority
JP
Japan
Prior art keywords
laser array
semiconductor laser
phase mode
array element
concave mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60105472A
Other languages
Japanese (ja)
Other versions
JPH0337876B2 (en
Inventor
Kaneki Matsui
完益 松井
Mototaka Tanetani
元隆 種谷
Akihiro Matsumoto
晃広 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60105472A priority Critical patent/JPS61263185A/en
Publication of JPS61263185A publication Critical patent/JPS61263185A/en
Publication of JPH0337876B2 publication Critical patent/JPH0337876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the high-output laser beams of one far-field pattern up to a high injection region by mounting an external resonance surface, which selectively reflects outgoing beams at a 0 deg. phase mode to a position facing a cleavage end surface, on which a thin film reducing optical reflectivity is formed, and projects outgiong beams to an active waveguide again. CONSTITUTION:A laser array element 30 is brazed to a radiator 33 and fitted to a susceptor 34, and a concave mirror 35 is set up in an oppositely facing manner on the end surface side, which is coated with an Al2O3 film 31 and reflectivity thereof extends over several %. Positional relationship between the semiconductor laser array element 30 and the concave mirror 35 is set so that laser beams emitted from an active region in the element 30 are reflected by the concave mirror 35 and projected to the active region in the semiconductor laser array element 30 again at that time. Outgoing beams at a 0 deg. phase mode are returned to the active layer region approximately completely and selectively. Accordingly, the loss of a resonator surface at the 0 deg. phase mode is reduced, and oscillation threshold gains are also minimized.

Description

【発明の詳細な説明】 く技術分野〉 本発明は位相同期型半導体レーザアレイ装置の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to the structure of a phase-locked semiconductor laser array device.

〈従来技術とその問題点〉 半導体レーザを高出力動作させる場合、実用性全考慮す
ると単体の半導体レーザ素子では現在のところ、最大出
力は50mW程度が限界である。そこで、複数個の半導
体レーザを同一基板上に並べることによって大出力化を
図る半導体レーザアレイの研究が注目されるようになっ
てき友。第3図に屈折率導波路型半導体レーザアレイの
基本構造及び屈折率と電界強度分布を示す。n−GaA
s基板11KV字状のストライプ溝12が複数本並設さ
れ、この上にn−GaAtAsクラッド層13、レーザ
発振用のp−GaAs 活性層I L I)−GaAt
Asクラッド層15、p−GaAsキャップ層16が順
次堆積され、電流狭窄用絶縁膜17とn側電極!8及び
p側電極19が形成されて駆動用電流が注入される。
<Prior art and its problems> When operating a semiconductor laser at high output, the maximum output of a single semiconductor laser element is currently limited to about 50 mW, considering all practical aspects. Therefore, research into semiconductor laser arrays, which aims to increase output by arranging multiple semiconductor lasers on the same substrate, has been attracting attention. FIG. 3 shows the basic structure, refractive index, and electric field intensity distribution of a refractive index waveguide type semiconductor laser array. n-GaA
A plurality of KV-shaped stripe grooves 12 are arranged in parallel on the s-substrate 11, on which an n-GaAtAs cladding layer 13 and a p-GaAs active layer I L I)-GaAt for laser oscillation are formed.
An As clad layer 15 and a p-GaAs cap layer 16 are sequentially deposited to form a current confinement insulating film 17 and an n-side electrode! 8 and a p-side electrode 19 are formed, and a driving current is injected.

しかしながら、通常の屈折率導波路型半導体レーザアレ
イでは第3図(3)に示すように溝12の両側へにじみ
出几光はn−GaAs 基板11に吸収される結果、第
3図の)に示すような横方向の実効屈折率(neff)
分布が形成される。尚、発振領域及びこの中間領域の光
強度分布を夫々第3図(至)にA。
However, in a normal refractive index waveguide type semiconductor laser array, as shown in FIG. 3(3), the phosphorescence that oozes out to both sides of the groove 12 is absorbed by the n-GaAs substrate 11, as shown in FIG. 3(3). Transverse effective refractive index (neff)
A distribution is formed. The light intensity distributions of the oscillation region and the intermediate region are shown in Figure 3 (A).

Bで示している。ここで発振領域は溝12直上の活性層
14に対応しており、中間領域はその中間に位置する非
発振領域である。図よ!ll明らかなように中間領域は
損失領域となる。このとき、中間領域で光強度の割合が
少なくなるモードの発振閾値利得が最も小さくなる。従
って、第3図IC)に示すように隣ジ合っ几レーザ発振
領域の電界の位相が180°反転し、その中間領域で零
となる180゜位相モードの発振閾値利得は、第3図(
D)に示すような隣り合った半導体レーザの電界位相が
0 となり中間領域でも電界が存在する0 位相モード
に比べて小さくなる。その結果、p側電極19及びn側
電極18全介して注入電流全漸次増加するとまずこの1
80°位相モードが発振し、さらに注入電流を増加する
と0位相モードが発振することになる。
It is shown by B. Here, the oscillation region corresponds to the active layer 14 directly above the groove 12, and the intermediate region is a non-oscillation region located in between. Diagram! As is clear, the intermediate region becomes a loss region. At this time, the oscillation threshold gain of the mode in which the proportion of light intensity decreases in the intermediate region is the smallest. Therefore, the oscillation threshold gain of the 180° phase mode in which the phase of the electric field in adjacent laser oscillation regions is inverted by 180° and becomes zero in the intermediate region as shown in FIG.
The electric field phase of adjacent semiconductor lasers becomes 0 as shown in D), which is smaller than the 0 phase mode in which the electric field exists even in the intermediate region. As a result, when the total injection current gradually increases through both the p-side electrode 19 and the n-side electrode 18, this 1
The 80° phase mode oscillates, and if the injection current is further increased, the 0 phase mode oscillates.

上記半導体レーザアレイ装置における出射ビームの遠視
野像は第4図(A)03)の如くとなる0第4図(至)
は180°位相モード、第4図G3)は0°位相モード
を示す。すなわち、低注入領域でのレーザアレイの遠視
野像は第4図(3)に糸すようなものとなり、高注入領
域では第4図(3)と第4図[F])の両モードが混在
し几形状となる。180  位相モードはレンズ全周い
て集光した場合に2つのビーム位相が1800ずれてい
るため1個の微少なレーザスポットに集光することがで
きず、光デイスクシステム等の微少なレーザスポットT
h必要とする光情報処理システムの光源としては使用す
ることができない0 〈発明の目的〉 本発明は、同一基板上に形成された複数個のレーザ発振
領域が全て同一位相で同時に発振しかつ単一ピークの放
射パターンで大出力のレーザビーム金放射する半導体レ
ーザアレイ装置を提供することt目的とする。
The far-field image of the emitted beam in the above semiconductor laser array device is as shown in Figure 4 (A) 03).
indicates the 180° phase mode, and Fig. 4 G3) indicates the 0° phase mode. In other words, the far-field image of the laser array in the low injection region is similar to that shown in Fig. 4 (3), and in the high injection region both modes shown in Fig. 4 (3) and Fig. 4 [F]) are present. They are mixed and form a box shape. In the 180 phase mode, when the light is focused all around the lens, the two beam phases are out of 1800, so the light cannot be focused on one minute laser spot, and it is difficult to focus on a minute laser spot T in optical disk systems, etc.
It cannot be used as a light source for an optical information processing system that requires 0. <Objective of the Invention> The present invention provides an object in which a plurality of laser oscillation regions formed on the same substrate all oscillate simultaneously with the same phase and a single laser oscillation region. An object of the present invention is to provide a semiconductor laser array device that emits a high-output laser beam with a one-peak radiation pattern.

〈発明の構成〉 本発明は複数の活性導波路を有する半導体アレイ装置に
おいて、少なくとも一方の共振劈開面反射率全臂開時の
値よりも低減させかつ、この劈開面に相対面する位置に
限定され次開口の反射鏡を設置し、0位相モードで放射
され之レーザ光が°主にこの反射鏡で反射されてレーザ
アレイ素子に再入射するように構成することにより、半
導体レーザアレイ装置t−0°位相で同期発振させるよ
うに設定したことを特徴としている。
<Structure of the Invention> In a semiconductor array device having a plurality of active waveguides, the present invention reduces the reflectance of at least one resonant cleavage plane compared to the value when the arms are fully open and is limited to a position facing the cleavage plane. A semiconductor laser array device is constructed by installing a reflecting mirror with an aperture in the 0-phase mode and configuring the laser beam emitted in 0-phase mode to be mainly reflected by this reflecting mirror and re-entering the laser array element. It is characterized by being set to oscillate synchronously with a 0° phase.

〈実施例〉 以下、ここでは第3図囚に示すような平坦な活性層をも
つGaAs−GaAtAs系半導体レーザアレイを例に
とって本発明の1実施例を説明する。第3図(イ)に示
す半導体レーザアレイ装置は、次のようにして製作され
る。n−GaAs 基板!l上に幅WのV字状ストライ
プ溝+2全平行にピッチDでエツチングにより計5本形
成する。この溝12會有する基板11面上にn−GaA
tAsクラッド層13、p(又はn)−GaAs(又は
GaAtAs)活性層14、p−GaAtAsクラッド
層15及びp−GaAs キャップ層16からなるダブ
ルへテロ接合構造のレーザ動作用多層結晶層上エピタキ
シャル成長させる0その後、オーミックコンタクトをと
るためのp−GaAsキャップ層16上に電流狭窄のた
めの5t3N4から成る絶縁膜17をパターン形成した
後、A u + G e + N 1等の金属から成る
n側電極18及びp側電極19をそれぞれGaAs基板
11及びキャップ層16上に形成する。
<Embodiment> Hereinafter, one embodiment of the present invention will be described using a GaAs-GaAtAs semiconductor laser array having a flat active layer as shown in FIG. 3 as an example. The semiconductor laser array device shown in FIG. 3(A) is manufactured as follows. n-GaAs substrate! 1, a total of five V-shaped stripe grooves of width W +2 are formed by etching at a pitch of D in parallel to each other. On the 11th surface of the substrate having 12 grooves, n-GaA
Epitaxial growth is performed on a multilayer crystal layer for laser operation with a double heterojunction structure consisting of a tAs cladding layer 13, a p (or n)-GaAs (or GaAtAs) active layer 14, a p-GaAtAs cladding layer 15, and a p-GaAs cap layer 16. After that, an insulating film 17 made of 5t3N4 for current confinement is patterned on the p-GaAs cap layer 16 for making ohmic contact, and then an n-side electrode made of metal such as A u + G e + N 1 is formed. 18 and a p-side electrode 19 are formed on the GaAs substrate 11 and the cap layer 16, respectively.

以上により得られた半導体レーザアレイウェハー全共振
器長が250 pmになるように劈開し、骨間端面でフ
ァブリ・ベロー共振器を形成する。次に、一方の劈開面
に膜厚がλ/4(λ:発振波長)程度になるようにAt
203膜全電子ビ一ム蒸着法で被覆する。この劈開面の
反射率は約数%となる。
The semiconductor laser array wafer obtained above is cleaved so that the total resonator length is 250 pm, and a Fabry-Bello resonator is formed at the interosseous end surface. Next, at one cleavage plane, At
203 film is coated by all-electron beam evaporation method. The reflectance of this cleavage plane is about several percent.

次に反対側の劈開面にはλ/2の膜厚のAt203膜蒸
着し、この劈開面の反射率全豹30%とする。
Next, an At203 film having a thickness of λ/2 is deposited on the cleavage plane on the opposite side, and the total reflectance of this cleavage plane is set to 30%.

尚、劈開面に被覆する薄膜としてはAt203以外の酸
化膜やアモルファスシリコン膜全利用することもできる
。更に各半導体レーザアレイ素子単位に分割する。以上
により、本実施例に用いられる半導体レープアレイ装置
の基本素子が作製される。
Note that any oxide film other than At203 or an amorphous silicon film may be used as the thin film covering the cleavage plane. Furthermore, it is divided into individual semiconductor laser array elements. Through the above steps, the basic elements of the semiconductor rape array device used in this example are manufactured.

第1図は、上記工程を介して作製され次半導体し−ザア
レイ素子金組み込んだ本発明の1実施例を示す半導体レ
ーザアレイ装置の基本構成図であるO 上記工程全弁して作製され九半導体レーザアレイ素子3
0の共振方向の劈開面にはλ/4の膜厚のAt203膜
31と人/2の膜厚のAt203膜32が被覆されてい
る。このレーザアレイ素子30を銅ま几はダイヤモンド
等の熱伝導率の良好な放熱体33にインジウムでロウ付
けし支持台34に取り付ける。次に反射率が数%の劈開
面即ちλ/4の膜厚のAt203膜31が被覆された端
面側に凹面鏡35を相対面して設置する。この場合、半
導体レーザアレイ素子30の活性領域から出射し友レー
ザ光が凹面鏡35によって反射され、再度半導体レーザ
アレイ素子30の活性領域に再入射するように精度良く
半導体レーザアレイ素子30と凹面鏡35の位置関係を
設定する0凹面鏡35の大きさは、活性領域からみた開
口角が半導体レーザアレイ素子30のP−N接合面に平
行方向で約4 、垂直方向で約50  とすることによ
ってO位相モードの出射光をほぼ完全にま比選択的に活
性層領域に戻すことができる。このため、0位相モード
の共振器面の損失は180  位相モードの共振器面の
損失に比べてはるかに少なくなる。その結果、0 位相
モードのレーザアレイ素子30内部での基板吸収による
損失は180膜位相モードに比べて太きいが、外部共振
器によって構成される全体としての損失は180 位相
モードに比べて少なくなり・発振閾値利得も小さくなる
FIG. 1 is a basic configuration diagram of a semiconductor laser array device showing one embodiment of the present invention, which is fabricated through the above process and then incorporates a semiconductor and an array element. Laser array element 3
The cleavage plane in the resonance direction of 0 is coated with an At203 film 31 having a thickness of λ/4 and an At203 film 32 having a thickness of λ/2. This laser array element 30 is attached to a support 34 by brazing with indium to a heat sink 33 having good thermal conductivity such as copper or diamond. Next, a concave mirror 35 is installed to face the cleaved surface having a reflectance of several percent, that is, the end surface covered with the At203 film 31 having a thickness of λ/4. In this case, the semiconductor laser array element 30 and the concave mirror 35 are accurately aligned so that the companion laser light emitted from the active region of the semiconductor laser array element 30 is reflected by the concave mirror 35 and re-enters the active region of the semiconductor laser array element 30. The size of the 0 concave mirror 35 that sets the positional relationship is such that the aperture angle seen from the active region is approximately 4 degrees in the direction parallel to the P-N junction surface of the semiconductor laser array element 30 and approximately 50 degrees in the perpendicular direction. Almost all of the emitted light can be selectively returned to the active layer region. Therefore, the loss in the resonator surface in the 0 phase mode is much smaller than the loss in the resonator surface in the 180 phase mode. As a result, the loss due to substrate absorption inside the laser array element 30 in the 0 phase mode is larger than that in the 180 film phase mode, but the overall loss constituted by the external resonator is smaller than in the 180 phase mode. -The oscillation threshold gain also becomes smaller.

第2図(3)(B)は本発明の他の実施例ヶ示す半導体
レーザアレイ装置の構成図であり、第2図囚は側面図、
第2図の)は平面図である。本実施例では先の実施例で
使用した凹面鏡の代わりに凸レンズ36と平面鏡37?
用いて同様な作用効果を得ている。
FIG. 2(3)(B) is a configuration diagram of a semiconductor laser array device showing another embodiment of the present invention, and FIG. 2(3) is a side view;
) in FIG. 2 is a plan view. In this embodiment, instead of the concave mirror used in the previous embodiment, a convex lens 36 and a plane mirror 37?
Similar effects have been obtained using the same method.

第2図(イ)に半導体レーザアレイ素子のP−N接合に
垂直方向の出射光の光路、同図(B)にP−N接合に平
行方向の出射光の光路全示す。半導体レーザアレイ素子
30から出射したレーザ光は凸レンズ36會通過して平
行光束となり、平面鏡37で反射されて元の光路を逆に
進行し、レーザアレイ素子30へ帰還される。このよう
に凸レンズ36と平面鏡37を使用しても本発明の半導
体レーザアレイ装置?構成することができるQ活性層が
5本で、活性導波路幅Wが4μm1 中M:領域幅W8
が1μm1一方の劈開面の反射率が約30%、他方の反
射率が約3%、凹面鏡の反射率が約95%に設定した半
導体レーザアレイ装置を炸裂し、その特性を調べると発
振閾値電流は約150mAであジ1光出力150mWま
で0 位相モードで発振し、!80゜位相モードの発振
全抑制することができft。
FIG. 2(A) shows the optical path of the emitted light in a direction perpendicular to the P-N junction of the semiconductor laser array element, and FIG. 2(B) shows the entire optical path of the emitted light in the direction parallel to the P-N junction. The laser light emitted from the semiconductor laser array element 30 passes through a convex lens 36 to become a parallel beam of light, is reflected by a plane mirror 37, travels the original optical path in the opposite direction, and is returned to the laser array element 30. Is it possible to use the semiconductor laser array device of the present invention even if the convex lens 36 and plane mirror 37 are used in this way? There are 5 Q active layers that can be configured, and the active waveguide width W is 4 μm1 Medium M: region width W8
1μm1 A semiconductor laser array device with one cleavage plane having a reflectance of approximately 30%, the other having a reflectance of approximately 3%, and a concave mirror having a reflectance of approximately 95% was exploded, and its characteristics were examined to find the oscillation threshold current. oscillates in 0 phase mode at approximately 150 mA and up to 150 mW optical output, and! The 80° phase mode oscillation can be completely suppressed.ft.

尚、本発明の半導体アレイは上述したGaAs−GaA
tAs系に限らず、InP−InGaAsP系その他の
材料?用い九半導体レーザアレイ装置に適用することが
できる。
Incidentally, the semiconductor array of the present invention is made of the above-mentioned GaAs-GaA
Not limited to tAs-based materials, but also InP-InGaAsP-based and other materials? It can be applied to nine semiconductor laser array devices.

〈発明の効果〉 本発明は以上詳説した如く半導体レーザアレイ素子にお
いて、一方の劈開面の反射率全低減しかつこの劈開面に
相対面して0位相モードの出射光を選択的に反射し、活
性領域へ再入射させることができる外部共振面を形成し
たものであり、θ。
<Effects of the Invention> As explained in detail above, the present invention provides a semiconductor laser array element in which the reflectance of one cleavage plane is completely reduced and the emitted light in the 0-phase mode is selectively reflected by facing opposite to this cleavage plane. It forms an external resonant surface that allows the light to re-enter the active region, and θ.

位相モードの共振器ミラー損失金180 位相モードの
共振器ミラー損失に比べて大幅に低減することができ、
0 位相モードの損失全夏80 位相モードに比べて少
なくできるため、0位相モードの発振閾値電流全180
 位相モードに比べて小さくすることができるOこの結
果、0°位相で同期したレーザ元金放射する半導体レー
ザアレイ装置が実現でき、高注入領域まで第4図@)に
示すような1本の遠視野像の高出力レーザ光を得ること
が可能となる。
Phase mode resonator mirror loss Gold 180 can be significantly reduced compared to phase mode resonator mirror loss,
Loss in 0 phase mode is 80% compared to phase mode, so the oscillation threshold current in 0 phase mode is 180%
As a result, it is possible to realize a semiconductor laser array device that emits the laser source synchronized with the 0° phase, and it is possible to realize a semiconductor laser array device that emits the laser source synchronized with the 0° phase. It becomes possible to obtain a high-power laser beam with a visual field image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例金示す半導体レーザアレイ装
置の基本構成図である。第2図(A)03)は本発明の
他の実施例を示す半導体レーザアレイ装置の側面図及び
平面図である。第3図(A)[F]>(C)■)は屈折
率導波型半導体レーザアレイ素子の基本構造及び屈折率
と電界強度分布を示す説明図である。第4図(イ)[F
])は活性層に平行方向の遠視野像上水す説明図である
。 11・・・GaAs基板 12・・・溝 13・・・n
−クラッド層 14・・・活性層 15・・・p−クラ
ッド層16・・・キャップ層 30・・・半導体レーザ
アレイ素子 31.32・・・At203膜 35・・
・凹面鏡 36・・・凸レンズ 37・・・平面鏡 代理人 弁理士 福 士 愛 彦′(他2名)第1図 (C)         詣繕
FIG. 1 is a basic configuration diagram of a semiconductor laser array device showing one embodiment of the present invention. FIG. 2(A) 03) is a side view and a plan view of a semiconductor laser array device showing another embodiment of the present invention. FIG. 3(A)[F]>(C)■) is an explanatory diagram showing the basic structure, refractive index, and electric field intensity distribution of a refractive index waveguide type semiconductor laser array element. Figure 4 (a) [F
]) is an explanatory diagram showing a far-field image in a direction parallel to the active layer. 11...GaAs substrate 12...groove 13...n
- Cladding layer 14... Active layer 15... P-cladding layer 16... Cap layer 30... Semiconductor laser array element 31.32... At203 film 35...
・Concave mirror 36...Convex lens 37...Plane mirror Agent Patent attorney Aihiko Fukushi (and 2 others) Figure 1 (C) Pilgrimage

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ発振用共振器を構成する一対の劈開端面間に
複数本の平行な活性導波路を並設し、一方の前記劈開端
面に光反射率を低減する薄膜を形成しかつ該劈開端面に
対面する位置に0°位相モードの出射光を選択的に反射
して前記活性導波路へ再入射せしめる外部共振面を付設
したことを特徴とする半導体レーザアレイ装置。
1. A plurality of parallel active waveguides are arranged in parallel between a pair of cleaved end faces constituting a laser oscillation resonator, a thin film that reduces light reflectance is formed on one of the cleaved end faces, and a thin film is formed on the cleaved end face. A semiconductor laser array device characterized in that an external resonant surface is provided at a facing position to selectively reflect the emitted light in the 0° phase mode and cause it to re-enter the active waveguide.
JP60105472A 1985-05-16 1985-05-16 Semiconductor laser array device Granted JPS61263185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105472A JPS61263185A (en) 1985-05-16 1985-05-16 Semiconductor laser array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105472A JPS61263185A (en) 1985-05-16 1985-05-16 Semiconductor laser array device

Publications (2)

Publication Number Publication Date
JPS61263185A true JPS61263185A (en) 1986-11-21
JPH0337876B2 JPH0337876B2 (en) 1991-06-06

Family

ID=14408533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105472A Granted JPS61263185A (en) 1985-05-16 1985-05-16 Semiconductor laser array device

Country Status (1)

Country Link
JP (1) JPS61263185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950622A (en) * 1988-04-28 1990-08-21 Korea Advanced Institute Of Science And Technology Method for manufacturing a surface emitting type AlGaAs/GaAs semiconductor laser diode
CN110412544A (en) * 2019-08-23 2019-11-05 上海禾赛光电科技有限公司 Laser transmitting system and laser radar including the laser transmitting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950622A (en) * 1988-04-28 1990-08-21 Korea Advanced Institute Of Science And Technology Method for manufacturing a surface emitting type AlGaAs/GaAs semiconductor laser diode
CN110412544A (en) * 2019-08-23 2019-11-05 上海禾赛光电科技有限公司 Laser transmitting system and laser radar including the laser transmitting system

Also Published As

Publication number Publication date
JPH0337876B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
JP3154200B2 (en) Multi-beam semiconductor laser
US5396511A (en) Semiconductor laser apparatus with curved waveguide
JPS60124983A (en) Semiconductor laser
US4772082A (en) Semiconductor laser array device
US4747109A (en) Semiconductor laser array device
US4791651A (en) Semiconductor laser array device
US5563901A (en) Semiconductor laser array
JPS61263185A (en) Semiconductor laser array device
US4811351A (en) Semiconductor laser array device
JPH054835B2 (en)
JP2798720B2 (en) Semiconductor laser array
US4764936A (en) Semiconductor laser array device
JPH0319292A (en) Semiconductor laser
US4815088A (en) Semiconductor laser array device
US4764937A (en) Semiconductor laser array device
JPH1041582A (en) Light waveguide path type semiconductor laser device
JPS6016489A (en) Semiconductor laser device
JPH01175280A (en) Semiconductor laser array device
US4823353A (en) Semiconductor laser array apparatus
JPH09214047A (en) Surface emitting semiconductor laser
JPH0268975A (en) Semiconductor laser
JPS61222187A (en) Semiconductor laser array device
JPH04199133A (en) Optical amplifier and optical integrated circuit
JPS63164286A (en) Semiconductor laser array device
JPS6393187A (en) Distributed feedback semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees