JPS6016489A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6016489A
JPS6016489A JP11637984A JP11637984A JPS6016489A JP S6016489 A JPS6016489 A JP S6016489A JP 11637984 A JP11637984 A JP 11637984A JP 11637984 A JP11637984 A JP 11637984A JP S6016489 A JPS6016489 A JP S6016489A
Authority
JP
Japan
Prior art keywords
laser
film
mode
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11637984A
Other languages
Japanese (ja)
Other versions
JPH0236073B2 (en
Inventor
Takaro Kuroda
崇郎 黒田
Takashi Kajimura
梶村 俊
Junichi Umeda
梅田 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11637984A priority Critical patent/JPH0236073B2/en
Publication of JPS6016489A publication Critical patent/JPS6016489A/en
Publication of JPH0236073B2 publication Critical patent/JPH0236073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive to increase the output by the radiation of a laser beam of uniform basic lateral modes by a method wherein a reflection plane corresponding to an active layer is provided with a photo absorption film with a hole of the shape of said mode bored. CONSTITUTION:A clad layer 12, the active layer 13, and a clad layer 14 of required thicknesses are epitaxially grown on a crystal substrate 11 successively. Next, a stripe conductive region 16 is formed in the clad layer 14 by means of a mask of a required width. A passivation film SiO2 1 is adhered to the end surface of a stripe structure planar type semiconductor laser thus formed. This element is incorporated in a sub mount system, and then a resist material 2 corresponding to photo distribution is formed by the heat at the end surface under laser generation. Thus, the part of the material 2 is changed into the photo absorption film of the hole of the shape of the mode. Then, the semiconductor laser is increased in the output by the radiation of the laser beam of uniform basic lateral modes.

Description

【発明の詳細な説明】 本発明は半導体レーザ装置に関し、更に詳述すればスト
ライプ電極を有したダブルへテロ型半導体レーザ装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device, and more specifically to a double hetero type semiconductor laser device having striped electrodes.

半導体レーザ装置は、接合領域における光の閉じ込めが
良好なダブルへテロ構造が一般的である。
Semiconductor laser devices generally have a double heterostructure with good light confinement in the junction region.

このダブルへテロ構造は、レーザ発振あるいは光変調が
行なわれる、所謂、活性領域の両側に屈折率が低くかつ
禁制帯エネルギーの大きい半導体層を形成させてなる。
This double heterostructure is formed by forming semiconductor layers with a low refractive index and a large forbidden band energy on both sides of a so-called active region where laser oscillation or optical modulation is performed.

この様な半導体レーザは、光通信、光情報端末、ビデオ
ディスク、計測等の幅広い分野に応用しうる光源として
期待されている。
Such a semiconductor laser is expected to be a light source that can be applied to a wide range of fields such as optical communications, optical information terminals, video disks, and measurement.

これらの応用に際しては、レーザの横モードを基本モー
ドに保ったまま、できるだけ高い光出力を得ることが望
ましい。一方、従来の横モード制御されたレーザの代表
例としては、 Bl(レーザ、C8Pレーザ等があるが
、これらはいずれもプロセスや顯晶成長に複雑な工程お
よび装置を要し、大量生産で安価な素子を作製する上で
問題がある。
In these applications, it is desirable to obtain as high an optical output as possible while keeping the transverse mode of the laser in the fundamental mode. On the other hand, typical examples of conventional transverse mode-controlled lasers include Bl (laser) and C8P laser, but all of these require complex processes and equipment for crystal growth, and cannot be mass-produced at low cost. There is a problem in producing such devices.

横基本モードで発振するレーザのうち、最も単純な構造
をもつものが、いわゆる°ナロー拳ストライプ(Nar
row 5tripe )構造”であって1第1図に示
したように、ストライプ電極16の幅Wこのタイプのレ
ーザでは、横基本モードで5mW程度の光出力が得られ
るが、実用上の難点としては、横方向の光ガイ+°がい
わゆる利得ガイドであるために、レーザビームの波面が
平面波とならず、非点収差を生ずる点がある。特に、レ
ーザビームを10μm以下のスポット径にしぼって使う
応用にはこのような非点収差のある光源は使用できない
。この点を改善するため、Narrow 5tripe
型レーザの光共振器を形成するレーザ端面に、基本モー
ドのみ透過し、高次横モードを吸収又は散乱させるよう
なモードフィルターを、ストライプ電極に対してセルフ
ァラインした形で作製する方法が知られている。そのた
めにまずいわゆる光記録形ビデオディスクで用いられて
いるようなテルル(Te)等の低融点薄膜を第2図(a
)のようにレーザ端面に蒸着する。次に、レーザ素子に
ノくルス大電流を流すと、Te膜のうちレーザ光を吸収
する部分が瞬時に蒸発して、レーザの発振モードの形を
した穴がTe膜にあく。第2図(b)に示したこの方法
は、モードフィルターをストライプ電極位置および光分
布に対してセルフアライメントに作製できるが、難点と
しては、Te膜を蒸発させるにはパルスで20mW以上
の光出力が必要なことである。このような高光出力状態
ではNarrowStripe型レーザの横モードは一
般に高次モード成分を含んでおり、出来たモードフィル
ターは必ずしも横基本モードのみ通過させるフィルター
とはなっていない。
Among the lasers that oscillate in the transverse fundamental mode, the one with the simplest structure is the so-called narrow fist stripe (Narrate stripe).
row 5tripe) structure, 1 As shown in Fig. 1, the width W of the stripe electrode 16 This type of laser can obtain an optical output of about 5 mW in the transverse fundamental mode, but the practical difficulty is that , since the lateral optical guide +° is a so-called gain guide, the wavefront of the laser beam does not become a plane wave, resulting in astigmatism.In particular, when the laser beam is narrowed down to a spot diameter of 10 μm or less, it is used. A light source with such astigmatism cannot be used in applications.To improve this point, Narrow 5tripe
A known method is to fabricate a mode filter that transmits only the fundamental mode and absorbs or scatters higher-order transverse modes on the laser end face that forms the optical resonator of a type laser, in a self-aligned manner with respect to the stripe electrode. ing. To do this, we first deposited a low melting point thin film such as tellurium (Te), which is used in so-called optical recording video disks, as shown in Figure 2 (a).
) is deposited on the laser end face. Next, when a large current is passed through the laser element, the portion of the Te film that absorbs the laser light is instantaneously evaporated, creating a hole in the Te film in the shape of the laser oscillation mode. This method shown in Figure 2(b) allows the mode filter to be fabricated in self-alignment with respect to the stripe electrode position and light distribution, but the drawback is that it requires a pulsed light output of 20 mW or more to evaporate the Te film. is necessary. In such a high optical output state, the transverse mode of the Narrow Stripe laser generally includes higher-order mode components, and the resulting mode filter does not necessarily pass only the transverse fundamental mode.

本発明の目的は上記欠点を除去して、プロセスや結晶成
長の容易な、横基本モードで発振する半導体レーザを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor laser that oscillates in a transverse fundamental mode and is easy to process and grow crystals.

上記目的を達成するための本発明の構成は、レーザ素子
の活性層に対応する反射面に、基本横モードの形の穴の
穿いた光吸収膜を設けることにある。この光吸収膜は、
基本横モード以外の高次の横モードを含むレーザ光すな
わち、必要以上に横にひろがったレーザ光を切り捨てる
作用をもつものであれば、光を吸収、散乱、反射するい
ずれのタイプの膜でもよい。このような、レーザ端面に
基本モードフィルターを形成して放射間口を狭ばめたレ
ーザでは、従来のNarrow 5tripe型につき
ものであった非点収差がなくなり、レーザ光を光学レン
ズ等により、きわめて容易に1μm程度のスポット径に
まで集光することができる。
The structure of the present invention for achieving the above object is to provide a light absorption film having holes in the shape of a fundamental transverse mode on a reflective surface corresponding to an active layer of a laser element. This light absorption film is
Any type of film that absorbs, scatters, or reflects light may be used as long as it has the effect of cutting off laser light that contains higher-order transverse modes other than the fundamental transverse mode, that is, laser light that spreads laterally more than necessary. . In a laser like this, in which the fundamental mode filter is formed on the laser end face to narrow the emission frontage, the astigmatism that was inherent in the conventional Narrow 5tripe type is eliminated, and the laser beam can be transmitted very easily by using an optical lens, etc. It is possible to focus light to a spot diameter of about 1 μm.

本発明のレーザ装置は、一旦ネガタイブのフォトレジス
ト膜を鏡面に被着させた尽レーザ光の放射を行ない(楕
円)スポット状に感光を行なう。
The laser device of the present invention emits laser light after a negative photoresist film is once deposited on a mirror surface, and exposes it in the form of an (elliptical) spot.

この感光される領域は、基本横モードの形にほぼ対応す
る。基本横モード以外の高次の横モード分は上記レジス
ト材に吸収されるか、あるいは強度が感光せしまるまで
強くないため、結局上述の様に基本横モードの形に感光
される。この感光された領域を残し、他の領域のレジス
ト材を除去して金属薄膜を上記鏡面に被着させる。のち
、有材溶剤などで上記感光されたホトレジストを除去す
れば、基本横モードの形の穴の穿いた光吸収膜を具えた
半導体レーザ装置が得られる。このように、新規なプロ
セス技術を用いることなく通常の半導体製造技術を用い
ることにより本発明のレーザ装置が極めて容易に形成さ
れる。以下実施例を用いて詳細に説明する。
This exposed area approximately corresponds to the shape of the fundamental transverse mode. Higher-order transverse modes other than the fundamental transverse mode are either absorbed by the resist material or are not strong enough to be exposed until they are exposed, so that they are eventually exposed in the form of the fundamental transverse mode as described above. Leaving this exposed area, the resist material in other areas is removed, and a metal thin film is deposited on the mirror surface. Afterwards, by removing the exposed photoresist using a material solvent or the like, a semiconductor laser device having a light absorption film having holes in the shape of the fundamental transverse mode is obtained. As described above, the laser device of the present invention can be formed extremely easily by using ordinary semiconductor manufacturing technology without using any new process technology. This will be explained in detail below using examples.

第3図(a)〜(C)は、本発明の一実施例としての半
導体レーザ装置およびその製造課程の概略を示した斜視
図である。
FIGS. 3A to 3C are perspective views schematically showing a semiconductor laser device and its manufacturing process as an embodiment of the present invention.

第3図(a)は、Siをドープしたキャリヤ濃度2X 
1018cm−3のGaAs (100)tj晶基板1
1上に、周知の液相エピタキシャル成長法により、厚さ
1.5μmのTe(テルル)ドープ、キャリヤ濃度lX
l0 cm のn −Ga、 7 AJo、 3 As
のクラッド層12、該層12上に、同様に厚さ0.1μ
mのアンドープGaAsの活性層13、該層13土に、
・同様に厚さ1.5μm1キヤリヤ濃度I X 101
8cm””のp −Ga o、 7 Al o、 a 
Asのクラッド層14を形成する。次いで、該クラッド
層14に、幅3〜4μInのストライプ状の開孔を有す
るSiO2膜によるマスクを形成し、ストライブ状導電
領域16を形成する。なお、必要ならば、上記クラッド
層14上に、n−GaAsのキャップ層を設け、該キャ
ップ層内にZn拡散によるp4Iit9i域を形成して
おいてもよい。この場合Znの選択拡散用マスクは除去
し、改めて厚さ5000人の5in2膜を形成する。
Figure 3(a) shows carrier concentration 2X doped with Si.
1018 cm-3 GaAs (100) TJ crystal substrate 1
1, by a well-known liquid phase epitaxial growth method, a 1.5 μm thick Te (tellurium) doped film with a carrier concentration lX
l0 cm of n-Ga, 7 AJo, 3 As
A cladding layer 12 with a thickness of 0.1 μm is similarly applied on the layer 12.
An active layer 13 of undoped GaAs of m, in the soil of the layer 13,
・Similarly, thickness 1.5 μm 1 carrier concentration I x 101
8 cm"" p-Ga o, 7 Al o, a
A cladding layer 14 of As is formed. Next, a mask made of an SiO2 film having stripe-shaped openings with a width of 3 to 4 μIn is formed on the cladding layer 14, and striped conductive regions 16 are formed. If necessary, an n-GaAs cap layer may be provided on the cladding layer 14, and a p4Iit9i region may be formed by Zn diffusion in the cap layer. In this case, the mask for selective diffusion of Zn is removed and a 5in2 film with a thickness of 5000 mm is formed again.

このSiO□膜に通常のフォトリソグラフィー技術を用
いて、前述のストライプ状導電領域と同様の開孔を設け
る。次いで全面にCrおよびAuを蒸着し、n側電極と
なす。なお、このn側電極部分は図示していない。又半
粒体基板11の裏面を形層し、軽く食刻した後Au −
Ge合金を蒸着し、n側電極(図示せず)となす。共振
器長は300μmとした。この様に形成された通常のス
トライプ構造プレーナ型半導体レーザの端面に、第3図
(a)に示したように、パッシベーション膜1をつける
Openings similar to those of the striped conductive regions described above are formed in this SiO□ film using a normal photolithography technique. Next, Cr and Au are deposited on the entire surface to form an n-side electrode. Note that this n-side electrode portion is not shown. In addition, after shaping the back surface of the semi-grain substrate 11 and lightly etching it, Au −
A Ge alloy is deposited to form an n-side electrode (not shown). The resonator length was 300 μm. As shown in FIG. 3(a), a passivation film 1 is applied to the end face of the conventional striped planar semiconductor laser thus formed.

(たとえばスパッタリングによる5io2膜など)λ ここで膜厚は5 X nにすることが肝要である。但し
、λは膜中のレーザ光の波長(普通4000〜8000
人)、nは整数である。そのあと、レーザ素子ヲサブマ
ウント、ステムに組んだのち、ネガ型ホトレジスト中に
つけて電流を流し、レーザ発振させる。この時のレーザ
は、3mW程度の低い光出力で、横基本モード発振して
いることを確かめておく必要がある。レーザの光と、端
面での熱発生のために、レーザの端面に、光分布に対応
した形状の感光レジスト部分が出来、レジスト現像波で
洗浄後、第3図(blのような硬化レジスト2が残る。
(For example, a 5io2 film formed by sputtering) λ Here, it is important that the film thickness is 5 x n. However, λ is the wavelength of the laser light in the film (usually 4000 to 8000
person), n is an integer. After that, the laser element is assembled into a submount and a stem, and then placed in a negative photoresist and a current is applied to cause laser oscillation. At this time, it is necessary to confirm that the laser oscillates in the transverse fundamental mode with a low optical output of about 3 mW. Due to the laser light and heat generation at the end face, a photosensitive resist part with a shape corresponding to the light distribution is formed on the end face of the laser, and after cleaning with a resist development wave, the hardened resist 2 as shown in Figure 3 (bl) is formed. remains.

次に、端面に、レーザ光の端面での反射率をわずかに変
えるような薄膜を蒸着あるいはスパッタリングでつける
。この様な膜として、光を吸収する様な金属膜(Au%
 AJなと)でも良いし、λ 透明な誘電体膜を7Xmまたはその近傍の膜21につけ
れば良い。但し、mは整数である。あるいは、光を散乱
させる微粒子状の均一な膜でもよい。
Next, a thin film that slightly changes the reflectance of the laser beam at the end face is applied by vapor deposition or sputtering to the end face. As such a film, a metal film (Au%) that absorbs light is used.
AJ) may be used, or a transparent dielectric film may be attached to the film 21 at or near 7Xm. However, m is an integer. Alternatively, it may be a uniform film in the form of fine particles that scatters light.

その後、リフトオフのやり方で、J100中にチップを
つけることにより硬化レジスト部分がとれ、第3図(C
)のような、端面に基本横モードの形の穴のあいた膜が
残る。この膜がモードフィルターとして作用することに
より、半導体レーザの横モードが20m1V程度の光出
力まで横基本モードに制限される。
After that, the hardened resist part was removed by attaching a chip to J100 using the lift-off method, as shown in Figure 3 (C
), a membrane with a hole in the shape of the fundamental transverse mode remains on the end face. Since this film acts as a mode filter, the transverse mode of the semiconductor laser is limited to the transverse fundamental mode up to an optical output of about 20 m1V.

以上詳述したように、本発明はレーザ素子鏡面の所定の
場所に基本横モードの形の穴の芽いた光吸収膜を設ける
ことにより、基本横モードのtT+ilったレーザ光を
放射することを容易ならしめた点工業的利益大なるもの
である。
As described in detail above, the present invention makes it possible to emit laser light with tT+il in the fundamental transverse mode by providing a light absorption film with holes in the fundamental transverse mode at a predetermined location on the mirror surface of the laser element. The fact that it has been made easy is of great industrial benefit.

本発明の実施例においては半導体材料がGa As−G
aA/As系のレーザについて説明を行なったが、この
材料に限らずGaAsP 、 InGaAsP など一
般の半導体材料を使用したダブルへテロ型し−ザ一般に
本発明が適用されることは当業者であれば容易に理解さ
れるであろう。
In the embodiment of the present invention, the semiconductor material is GaAs-G
Although the aA/As-based laser has been described, those skilled in the art will understand that the present invention is applicable not only to this material but also to double-hetero type lasers using general semiconductor materials such as GaAsP and InGaAsP. It will be easily understood.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の半導体レーザ装置の概略断
面図および斜視図、第3図は本発明の一実施例としての
半導体レーザ装置の概略斜視図である。 1・・・パッシベーション膜(Si02)Th2・・・
Vシスト材、3・・・光吸収膜(金属薄膜)。 第 1 図 第 2 日 第 3 図
1 and 2 are a schematic cross-sectional view and a perspective view of a conventional semiconductor laser device, and FIG. 3 is a schematic perspective view of a semiconductor laser device as an embodiment of the present invention. 1... Passivation film (Si02) Th2...
V cyst material, 3... light absorption film (metal thin film). Figure 1 Day 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、該基板上に形成された活性層と、該活性
層に順方向動作電流を供給するために形成されたストラ
イプ状電極と、レーザ光を発振させる光共振器を構成す
るために形成された互に平行な二つの反射面とを有する
半導体レーザ装置において、上記活性層に対応する反射
面に基本横モードの形の穴のあいた光吸収膜を設けたこ
とを特徴とする半導体レーザ装置。
A semiconductor substrate, an active layer formed on the substrate, a striped electrode formed to supply a forward operating current to the active layer, and an optical resonator formed to oscillate laser light. A semiconductor laser device having two mutually parallel reflecting surfaces, characterized in that the reflecting surface corresponding to the active layer is provided with a light absorption film having a hole in the shape of a fundamental transverse mode. .
JP11637984A 1984-06-08 1984-06-08 HANDOTAIREEZASOCHINOSEIZOHOHO Expired - Lifetime JPH0236073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11637984A JPH0236073B2 (en) 1984-06-08 1984-06-08 HANDOTAIREEZASOCHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11637984A JPH0236073B2 (en) 1984-06-08 1984-06-08 HANDOTAIREEZASOCHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6016489A true JPS6016489A (en) 1985-01-28
JPH0236073B2 JPH0236073B2 (en) 1990-08-15

Family

ID=14685539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11637984A Expired - Lifetime JPH0236073B2 (en) 1984-06-08 1984-06-08 HANDOTAIREEZASOCHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0236073B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249685A (en) * 1985-08-29 1987-03-04 Sharp Corp Semiconductor laser element
JPS6261385A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element
JPS6252962U (en) * 1985-09-20 1987-04-02
JPS6334991A (en) * 1986-07-29 1988-02-15 Ricoh Co Ltd Manufacture of mask semiconductor laser
JPS63224386A (en) * 1987-03-13 1988-09-19 Sharp Corp Semiconductor laser device
US7092423B2 (en) 1999-02-17 2006-08-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device, optical disk apparatus and optical integrated unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249685A (en) * 1985-08-29 1987-03-04 Sharp Corp Semiconductor laser element
JPS6261385A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element
JPH0584678B2 (en) * 1985-09-11 1993-12-02 Sharp Kk
JPS6252962U (en) * 1985-09-20 1987-04-02
JPS6334991A (en) * 1986-07-29 1988-02-15 Ricoh Co Ltd Manufacture of mask semiconductor laser
JPS63224386A (en) * 1987-03-13 1988-09-19 Sharp Corp Semiconductor laser device
US7092423B2 (en) 1999-02-17 2006-08-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device, optical disk apparatus and optical integrated unit
US7212556B1 (en) 1999-02-17 2007-05-01 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device optical disk apparatus and optical integrated unit
US7426227B2 (en) 1999-02-17 2008-09-16 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device, optical disk apparatus and optical integrated unit

Also Published As

Publication number Publication date
JPH0236073B2 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JP2692913B2 (en) Grating coupled surface emitting laser device and modulation method thereof
JPH0556036B2 (en)
JPS5940592A (en) Semiconductor laser element
JPS6016489A (en) Semiconductor laser device
US4297651A (en) Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power
JPS6225485A (en) Semiconductor laser device
JP2889626B2 (en) Semiconductor laser
JP2846668B2 (en) Broad area laser
US6734464B2 (en) Hetero-junction laser diode
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS58162090A (en) Semiconductor laser
JP3127635B2 (en) Semiconductor laser
JPH065984A (en) Semiconductor laser and manufacture thereof
JPS61263185A (en) Semiconductor laser array device
CA1118085A (en) Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power
JPS6140077A (en) Buried type surface plane laser oscillator
JPH04372185A (en) Semiconductor laser
JPH09246660A (en) Surface emission type semiconductor laser device
JPS6119187A (en) Optical integrated circuit element
JPH0582893A (en) Surface emitting semiconductor laser device
JPH04356001A (en) Production of diffraction grating
JPS6022392A (en) Semiconductor laser and manufacture thereof
JP2001257421A (en) Semiconductor laser element and its manufacturing method
JPH01140787A (en) Semiconductor laser element