JPS62293053A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS62293053A
JPS62293053A JP13333586A JP13333586A JPS62293053A JP S62293053 A JPS62293053 A JP S62293053A JP 13333586 A JP13333586 A JP 13333586A JP 13333586 A JP13333586 A JP 13333586A JP S62293053 A JPS62293053 A JP S62293053A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
refrigerant
air conditioner
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13333586A
Other languages
Japanese (ja)
Inventor
育雄 赤嶺
寿夫 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13333586A priority Critical patent/JPS62293053A/en
Publication of JPS62293053A publication Critical patent/JPS62293053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明はヒートポンプ式冷凍サイクルによる空気調和機
に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an air conditioner using a heat pump type refrigeration cycle.

従来の技術 従来のヒートポンプ式冷凍サイクルによる空気調和機の
一例について図面を参照しながら説明する。
2. Description of the Related Art An example of an air conditioner using a conventional heat pump type refrigeration cycle will be described with reference to the drawings.

第5図は従来の空気調和機における冷凍サイクル図を示
す。
FIG. 5 shows a refrigeration cycle diagram in a conventional air conditioner.

第5図において1は圧縮機、2は四方弁、3は室内熱交
換器、4は減圧機構、5は室外熱交換器、6はアキュー
ムレータで順次冷媒配管7で環状に接続され冷凍サイク
ルを構成している。8は室内熱交換器用ファン、9は室
外熱交換器用ファンである。
In Fig. 5, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reduction mechanism, 5 is an outdoor heat exchanger, and 6 is an accumulator, which are sequentially connected in a ring with refrigerant piping 7 to form a refrigeration cycle. are doing. 8 is an indoor heat exchanger fan, and 9 is an outdoor heat exchanger fan.

以上のような冷凍サイクルにより構成された空気調和機
について、以下その動作について説明する。今、暖房運
転時を例にとって説明すると、第5図の実線の矢印で示
されるように圧縮機1において断熱圧縮された高温高圧
の冷媒ガスは四方弁2を通って室内熱交換器3へと流入
する。暖房時、室内熱交換器3は凝縮器となっており、
流入した冷媒ガスは周囲室内空気へ熱を放出することに
よって凝縮液化され、減圧機構4によって断熱膨張して
低温低圧のガス・液二相状態となり室外熱交換器5へと
流入する。この時室外熱交換器5は蒸発器となっている
ため二相状態の冷媒は周囲室外空気から熱を奪って蒸発
気化し低温低圧の冷媒ガスとなりアキュームレータ6に
流入し、再び圧縮機1へと吸入される。このように凝縮
器である室内熱交換器3において、高温高圧の冷媒ガス
と室内空気とを熱交換することによって室内の暖房を行
なうことができる。一方冷房運転時には、第5図の破線
の矢印で示すように四方弁2を切換えて逆循環させて冷
房を行なうものである。
The operation of the air conditioner configured with the above-described refrigeration cycle will be described below. Now, taking heating operation as an example, as shown by the solid arrow in FIG. Inflow. During heating, the indoor heat exchanger 3 acts as a condenser,
The inflowing refrigerant gas is condensed and liquefied by releasing heat to the surrounding indoor air, and is adiabatically expanded by the pressure reduction mechanism 4 to become a low-temperature, low-pressure gas/liquid two-phase state and flows into the outdoor heat exchanger 5. At this time, since the outdoor heat exchanger 5 is an evaporator, the two-phase refrigerant absorbs heat from the surrounding outdoor air, evaporates, and becomes a low-temperature, low-pressure refrigerant gas, which flows into the accumulator 6 and returns to the compressor 1. Inhaled. In this way, the indoor heat exchanger 3, which is a condenser, can heat the room by exchanging heat between the high-temperature, high-pressure refrigerant gas and the room air. On the other hand, during cooling operation, cooling is performed by switching the four-way valve 2 to reverse circulation as shown by the broken line arrow in FIG.

このような空気1凋和機において、四方弁2は暖房時に
通電型となっているものが多く、従って暖房終了時に運
転停止スイッチを切にすると圧縮機1等の運転が停止す
ると同時に、四方弁2も非通電となって切換わってしま
う。このため室内熱交換器a内に存在していた高温高圧
の液冷媒が、低圧となっていたアキュームレータ6に逆
流して瞬時に圧力バランスしてしまう。その結果、冷凍
サイクル内へ封入した冷媒の多くはアキュームレータ6
内に滞留したままで、また次の暖房開始時まで長時間放
置されると冷媒配管7を通って圧縮機1内の潤滑油に冷
媒が溶は込んでいく、いわゆる寝込み現象も発生してく
る。このような状態の下で再び暖房運転を開始すると、
封入冷媒の多くは圧縮機1やアキュームレータ6に存在
しているため、冷凍サイクル中を循環する冷媒量が少な
く、従って室内熱交換器3や室外熱交換器5において周
囲空気との熱交換量も少なく立上りが悪くなっている。
In many such air 1 cooling machines, the four-way valve 2 is energized during heating. Therefore, when the operation stop switch is turned off at the end of heating, the operation of the compressor 1, etc. is stopped and the four-way valve 2 is turned off at the same time. 2 is also de-energized and switched. Therefore, the high-temperature, high-pressure liquid refrigerant that was present in the indoor heat exchanger a flows back into the accumulator 6, which was at a low pressure, and the pressure is instantly balanced. As a result, most of the refrigerant sealed in the refrigeration cycle is stored in the accumulator 6.
If the refrigerant remains in the compressor 1 and is left for a long time until the next heating starts, the so-called stagnation phenomenon occurs in which the refrigerant passes through the refrigerant pipe 7 and enters the lubricating oil in the compressor 1. . If you start heating operation again under these conditions,
Since most of the enclosed refrigerant exists in the compressor 1 and accumulator 6, the amount of refrigerant circulating in the refrigeration cycle is small, and therefore the amount of heat exchanged with the surrounding air in the indoor heat exchanger 3 and outdoor heat exchanger 5 is also small. The start-up is getting worse.

また、圧縮機1起動後の激しい撹拌作用によって圧縮機
1内の潤滑油中に溶は込んでいた冷媒が発泡してくる、
いわゆるフォーミング現象が発生し、潤滑油が圧縮機1
外へと突出していく。
In addition, the refrigerant dissolved in the lubricating oil in the compressor 1 foams due to the intense stirring action after the compressor 1 is started.
A so-called forming phenomenon occurs, and lubricating oil leaks into compressor 1.
It sticks out to the outside.

さらには、アキュームレータ6内に滞留していた液冷媒
が圧縮機1へ吸入され液圧縮現象を発生したりする。
Furthermore, the liquid refrigerant that has accumulated in the accumulator 6 is sucked into the compressor 1, causing a liquid compression phenomenon.

発明が解決しようとする問題点 以上述べてきたように、従来のヒートポンプ式冷凍サイ
クルによる空気調和機においては、始動初期の冷媒循環
潰が少ないため室外周囲空気からの吸熱及び室内周囲空
気への放熱が小さく、また圧縮機仕事量の増加も緩やか
で、その結果高圧タイプの圧縮機の場合には発熱量が小
さく圧縮機の温度がなかなか上界してこない。このよう
に冷凍サイクルが定常状態に達するまでかなりの時間が
かかり、この間十分な暖房能力が得られないことから温
風がなかなか吹き出してこないとか、部屋全体の温度上
昇が遅いとかいった問題点を有していた。さらには、始
動初期におけるフォーミング現象や液圧縮現象が発生す
る等信頼性にも影響を与えるといった問題点を有してい
た。
Problems to be Solved by the Invention As mentioned above, in air conditioners using conventional heat pump refrigeration cycles, there is little refrigerant circulation collapse in the initial stage of startup, so heat is absorbed from the outdoor ambient air and heat is radiated to the indoor ambient air. is small, and the increase in compressor work is slow.As a result, in the case of a high-pressure type compressor, the amount of heat generated is small and the temperature of the compressor does not easily reach its upper limit. In this way, it takes a considerable amount of time for the refrigeration cycle to reach a steady state, and during this time, sufficient heating capacity is not obtained, resulting in problems such as the hot air not blowing out easily or the temperature of the entire room rising slowly. had. Furthermore, there have been problems in that forming phenomena and liquid compression phenomena occur during the initial stage of startup, which affects reliability.

本発明は上記問題点に鑑みてなされたもので、暖房始動
時における温風吹出し、及び冷房始動時における冷風吹
出しを早くし、立上り(立下り)の早いヒートポンプ式
空気調和機を提供すると共に信頼性の面での向上も図る
ものである。
The present invention has been made in view of the above-mentioned problems, and provides a heat pump type air conditioner that quickly blows out warm air when starting heating and blowing cold air when starting cooling, and which has a quick start-up (fall) and is reliable. It also aims to improve sexual performance.

問題点を解決するための手段 上記問題点を7!l!決するために本発明のヒートポン
プ式空気調和機は、圧縮機、四方弁、室内熱交換器、減
圧機構及び室外熱交換器を順次冷媒配管で環状に接続し
、前記室内熱交換器の出口側と前記室外熱交換器の入口
側の間の流路中に開閉機構を設けるとともに、前記圧縮
機の吐出側と前記四方弁の間の流路中に逆止弁を設けて
冷凍サイクルを構成し、さらに室内熱交換器用ファン、
室外熱交換器用ファン及び物理承検出装置を設け、運転
の停止信号発生時に前記開閉機溝は閉動作を行ない、前
記圧縮機は前記物理用険出装置の検出結果が一定値にな
るまで運転した後オフにするとともに、前記四方弁は次
の運転開始信号が発生するまでそのサイクルを維持した
まま、運転を停止させる制御装置を設けたものである。
Means to solve the problems 7! l! In order to solve this problem, the heat pump type air conditioner of the present invention connects a compressor, a four-way valve, an indoor heat exchanger, a pressure reduction mechanism, and an outdoor heat exchanger in order in a ring shape with refrigerant piping, and connects the outlet side of the indoor heat exchanger with the outdoor heat exchanger. A refrigeration cycle is configured by providing an opening/closing mechanism in the flow path between the inlet side of the outdoor heat exchanger and a check valve in the flow path between the discharge side of the compressor and the four-way valve, In addition, fans for indoor heat exchangers,
An outdoor heat exchanger fan and a physical pressure detection device were provided, and when a stop signal was generated, the opening/closing machine groove was closed, and the compressor was operated until the detection result of the physical pressure detection device reached a constant value. The four-way valve is equipped with a control device that stops the operation of the four-way valve while maintaining the cycle until the next operation start signal is generated.

作  用 本発明は上記構成によって、暖房(冷房)運転終了時に
開閉機溝を閉にすると同時に、物理量検出装置の検出結
果が一定値に達するまで圧縮機を運転した後オフし、ま
た四方弁は暖房(冷房)運転を維持させたまま運転停止
することにより、封入冷媒の大半を暖房時には開閉機溝
と逆圧弁によって室内熱交換器に貯留したまま、次の暖
房運転を開始することができる。その結果、暖房始動時
において室内熱交換器から室外熱交換器へと多くの冷媒
が閉環し、室外熱交換器における吸熱量の増大につなが
る。また、室外熱交換器における冷媒不足現象が緩和さ
れるため低圧の落ち込みが小さく、従って密度の大きい
冷媒ガスを圧縮段が吸入することになり圧縮段における
圧縮吐出量も大きくなり仕事量も大となる。このように
、室外熱交換器における吸熱量の増大と、圧縮機におけ
る仕事量の増大によって、室内熱交換器における放熱量
が大となり暖房能力の増大につながり、立上りの早い空
気調和機となる。一方、大半の冷媒が始動前において室
内熱交換器に存在しているため、圧縮日内の潤滑油への
寝込み現象が緩和されると共に、アキュームレータ内に
もあまり冷媒が存在しないために、始動後におけるフォ
ーミング現象や液圧縮現象が従来に比べて緩和され信碩
性の面でも向上する。
According to the above-mentioned configuration, the present invention closes the opening/closing machine groove at the end of heating (cooling) operation, simultaneously turns off the compressor after operating it until the detection result of the physical quantity detection device reaches a certain value, and turns off the four-way valve. By stopping the heating (cooling) operation while maintaining it, the next heating operation can be started while most of the enclosed refrigerant is stored in the indoor heat exchanger via the switchgear groove and the back pressure valve during heating. As a result, a large amount of refrigerant is ring-closed from the indoor heat exchanger to the outdoor heat exchanger when heating starts, leading to an increase in the amount of heat absorbed in the outdoor heat exchanger. In addition, since the refrigerant shortage phenomenon in the outdoor heat exchanger is alleviated, the drop in low pressure is small, and the compression stage sucks refrigerant gas with a high density, resulting in a large compression discharge amount in the compression stage and a large amount of work. Become. In this way, due to the increase in the amount of heat absorbed in the outdoor heat exchanger and the increase in the amount of work in the compressor, the amount of heat released in the indoor heat exchanger increases, leading to an increase in heating capacity, resulting in an air conditioner that starts up quickly. On the other hand, since most of the refrigerant is present in the indoor heat exchanger before startup, the phenomenon of stagnation in lubricating oil during compression is alleviated, and since there is not much refrigerant in the accumulator, Forming phenomena and liquid compression phenomena are alleviated compared to conventional methods, and reliability is also improved.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて、図面を参照しながら説明する。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例におけるヒートポンプ式
空気調和機の冷凍サイクルを示すものである。第1図に
おいて、1は圧縮機、11は逆止弁、2は四方弁、3は
室内熱交換器、1oは開閉機構の一例である電磁開閉弁
、4は減圧条溝、5は室外熱交換器、6はアキュームレ
ータで順次冷媒配管7で環状に接続し冷凍サイクルを構
成している。8は室内熱交換器用ファン、9は室外熱交
換器用ファン、13と14はそれぞれ室外熱交換器用と
室外熱交換器用の配管センサーである。
FIG. 1 shows a refrigeration cycle of a heat pump air conditioner according to a first embodiment of the present invention. In Fig. 1, 1 is a compressor, 11 is a check valve, 2 is a four-way valve, 3 is an indoor heat exchanger, 1o is an electromagnetic on-off valve which is an example of an on-off mechanism, 4 is a pressure reducing groove, and 5 is an outdoor heat exchanger. The exchanger 6 is an accumulator which is successively connected in an annular manner through a refrigerant pipe 7 to form a refrigeration cycle. 8 is a fan for the indoor heat exchanger, 9 is a fan for the outdoor heat exchanger, and 13 and 14 are piping sensors for the outdoor heat exchanger and the outdoor heat exchanger, respectively.

第2図は本発明の第1の実施例における制御回路である
。第2図において、2oは庖源、21は運転スイッチ、
22と27はそれぞれ四方弁2用のリレーとコイル、2
3と28はそれぞれ電磁開閉弁10用のり七−とコイル
、26と31はそれぞれ圧縮機1用のリレーと駆動用モ
ータ、32は各種リレー等の開閉制御を組み込んだ制御
装置で、物理量検出装置の一つである温度検出装置15
を接続している。さらに、温度検出装置15には物理量
の一つである冷媒配管温度を検出するための、室内熱交
換器用配管センサー13と室外熱交換器用配管センサー
14が接続されている。
FIG. 2 shows a control circuit in the first embodiment of the present invention. In Fig. 2, 2o is the source, 21 is the operation switch,
22 and 27 are the relay and coil for the four-way valve 2, respectively.
3 and 28 are the glue and coil for the electromagnetic on-off valve 10, respectively, 26 and 31 are the relay and drive motor for the compressor 1, respectively, and 32 is a control device that incorporates opening/closing control of various relays, etc., and is a physical quantity detection device. Temperature detection device 15, which is one of the
are connected. Furthermore, an indoor heat exchanger piping sensor 13 and an outdoor heat exchanger piping sensor 14 are connected to the temperature detection device 15 to detect the refrigerant piping temperature, which is one of the physical quantities.

以上のように構成されたヒートポンプ式空気調和機につ
いて、以下第3図に示すタイムチャートを用いてその動
作を暖房時を例にとって説明する。
The operation of the heat pump type air conditioner configured as described above will be explained below using the time chart shown in FIG. 3, taking heating time as an example.

暖房運転時では、圧縮機1において断熱圧縮された高温
高圧の冷媒ガスは逆止弁11及び四方弁2を通って、暖
房時に凝縮器となる室内熱交換器3に流入し、周囲室内
空気との熱交換により凝縮熱を放出して凝縮液化する。
During heating operation, the high-temperature, high-pressure refrigerant gas that has been adiabatically compressed in the compressor 1 passes through the check valve 11 and the four-way valve 2, flows into the indoor heat exchanger 3 that serves as a condenser during heating, and is mixed with the surrounding indoor air. Heat exchange causes condensation heat to be released and condensation to liquefy.

そして、電磁開閉弁1oを通って減圧条溝4により断熱
膨張した後、低温低下の気液二相状態となって暖房時に
蒸発器となる室外熱交換器5へと流入する。そこで、周
囲室外空気との熱交換により蒸発熱を吸収して蒸発気化
し、アキュームレータ6を通過して再び圧縮機1へと吸
入される。こうして、室内熱交換器3から冷媒の凝縮熱
が温風となって吹出し、暖房能力を発生させ室内空気を
昇温させるものである。
Then, after passing through the electromagnetic on-off valve 1o and undergoing adiabatic expansion by the pressure reducing groove 4, it becomes a gas-liquid two-phase state with a lower temperature and flows into the outdoor heat exchanger 5, which serves as an evaporator during heating. There, the heat of evaporation is absorbed by heat exchange with the surrounding outdoor air, and the air is evaporated, passed through the accumulator 6, and sucked into the compressor 1 again. In this way, the heat of condensation of the refrigerant is blown out from the indoor heat exchanger 3 as warm air, generating heating capacity and raising the temperature of the indoor air.

今、暖房運転を終了させるために運転停止ボタンが押さ
れると(第3図においてで1の時)運転停止信号が発生
し、これを制御装置32が検知して下記の動作を行なう
。運転停止信号発生と同時に制御装置32は、リレー2
3を開接点とし゛電磁開閉弁10用のコイル28を非通
電として、それまで開状態であった流路を閉状態とする
。圧縮機1は運転し続けるが、この間暖房時に低圧側と
なる室外熱交換器5に配設された配管センサー14と温
度検出装置15によって、室外熱交換器5の配管温度が
常時検出されるようになっている。その後、上記配管温
度があらかじめ設定あるいは記憶されていた一定値(第
3図においてol )に達すると(第3図においてτ2
の時)、圧縮機1用リレー26が開接点となり、圧縮機
1の運転が停止する。同時に運転スイッチ21も間接点
となり暖房運転がすべて停止する。但しこの時、四方弁
2用のリレー22だけは閉接点を維持し続けるよう制御
装置32によって制御されており、その結果、四方弁2
には通電されたままで暖房サイクルを維持し続けること
になる。その後、数時間経過した後再び暖房運転を開始
するために、運転停止ボタンが押されると(第3図にお
いてτ3の時)運転スイッチ21が閉接点となると同時
に、圧縮機1用リレー26や電磁開閉弁10用リレー2
3等が閉接点となって、電磁開閉弁10に通電され流路
が開となって圧縮機1等の運転が始まり暖房運転が再開
される。
Now, when the operation stop button is pressed to end the heating operation (at 1 in FIG. 3), an operation stop signal is generated, and the control device 32 detects this and performs the following operations. At the same time as the operation stop signal is generated, the control device 32 controls the relay 2
3 is used as an opening point, the coil 28 for the electromagnetic on-off valve 10 is de-energized, and the flow path, which was previously open, is closed. The compressor 1 continues to operate, but during this time the temperature of the pipes of the outdoor heat exchanger 5 is constantly detected by the pipe sensor 14 and temperature detection device 15 installed on the outdoor heat exchanger 5 which is on the low pressure side during heating. It has become. Thereafter, when the pipe temperature reaches a preset or stored constant value (ol in Figure 3), (τ2 in Figure 3)
), the relay 26 for the compressor 1 becomes an open contact, and the operation of the compressor 1 is stopped. At the same time, the operation switch 21 also becomes a contact point and all heating operations are stopped. However, at this time, only the relay 22 for the four-way valve 2 is controlled by the control device 32 to keep the closed contact, and as a result, the relay 22 for the four-way valve 2
The power will remain energized and the heating cycle will continue. After that, when the operation stop button is pressed to restart the heating operation after several hours have passed (at time τ3 in Fig. 3), the operation switch 21 becomes a closed contact, and at the same time the relay 26 for the compressor 1 and the electromagnetic Relay 2 for on-off valve 10
3 and the like become closed contacts, the electromagnetic on-off valve 10 is energized, the flow path is opened, the compressor 1 and the like start operating, and the heating operation is restarted.

ここで、圧縮機1を停止させる時期として、低圧側の配
管温度に対して一定値01を設定したのは次の理由によ
るものである。つまり配管温度が一定値θ1に達する時
には、低圧側に存在する冷媒は少なくほとんどが高圧側
の室内熱交換器3に貯留されていることと、また、配管
温度がそれ以下になると低圧圧力もかなり低下し、大気
圧以下になり空気等の混入の可能性があるためである。
Here, the reason why a constant value 01 is set for the pipe temperature on the low pressure side as the timing to stop the compressor 1 is as follows. In other words, when the pipe temperature reaches a certain value θ1, there is only a small amount of refrigerant on the low-pressure side, and most of it is stored in the indoor heat exchanger 3 on the high-pressure side, and when the pipe temperature falls below that, the low-pressure pressure also increases considerably. This is because the pressure drops to below atmospheric pressure and there is a possibility that air etc. may be mixed in.

以上暖房時について説明を行なってきたが、冷房時も同
様である。ただし、冷房時では四方弁2が切換って凝縮
器が室外熱交換器5に蒸発器が室内熱交換器aになるた
め、配管温度検出は室内熱交換233用の配管センサー
13を用いることになる。
Although the explanation has been given above regarding heating, the same applies to cooling. However, during cooling, the four-way valve 2 switches and the condenser becomes the outdoor heat exchanger 5 and the evaporator becomes the indoor heat exchanger a, so the pipe temperature detection uses the pipe sensor 13 for the indoor heat exchanger 233. Become.

以上のように本実施例によれば、暖房謬了時に電磁開閉
弁10により流路を閉としてから、室外熱交換器の配管
温度が一定値(第3図における01)に達した後に圧縮
機1の運転を停止する。
As described above, according to this embodiment, after the flow path is closed by the electromagnetic on-off valve 10 when heating fails, and after the pipe temperature of the outdoor heat exchanger reaches a certain value (01 in FIG. 3), the compressor Stop operation of 1.

また、この時四方弁2は暖房サイクルを維持したままで
あるから、封入冷媒の大半は電磁開閉弁10と逆止弁1
1によって凝縮器である室内熱交換器3に貯留されたま
ま保持されている。その結果、暖房運転再開時に室内熱
交換器3から室外熱交換器5への冷媒循環量が多く、従
って室外熱交換器での吸熱量が増大する。同時に、室外
熱交換器5での冷媒不足が緩和されるため低圧の落ち込
みが小さく、圧縮機1での仕事量も増大する。このよう
に、吸熱量も仕事量も増大するため放熱量も増大し、暖
房能力の早期立上りが可能となる。
In addition, since the four-way valve 2 is still maintaining the heating cycle at this time, most of the refrigerant is contained in the electromagnetic on-off valve 10 and the check valve 1.
1 and is retained in an indoor heat exchanger 3 which is a condenser. As a result, when the heating operation is resumed, the amount of refrigerant circulating from the indoor heat exchanger 3 to the outdoor heat exchanger 5 is large, and therefore the amount of heat absorbed by the outdoor heat exchanger increases. At the same time, the shortage of refrigerant in the outdoor heat exchanger 5 is alleviated, so the drop in low pressure is small, and the amount of work in the compressor 1 is also increased. In this way, since the amount of heat absorbed and the amount of work increase, the amount of heat released also increases, making it possible to quickly ramp up the heating capacity.

また、本発明の第2の実施例を第4図に示す。Further, a second embodiment of the present invention is shown in FIG.

開閉機構と減圧機構の替わりに全閉可能型の電動膨張弁
12を設けたものである。このように、流路を全閉でき
かつ減圧機構の役目も兼ね備えたものであれば、本発明
の効果は十分に引き出すことが可能であり何ら差しつか
えはない。
A fully closable electric expansion valve 12 is provided in place of the opening/closing mechanism and the pressure reducing mechanism. As described above, as long as the flow path can be completely closed and the device also functions as a pressure reducing mechanism, the effects of the present invention can be fully brought out and there is no problem.

また、本発明の第1の実施例における物理量検出装置は
冷凍サイクルの低圧側となる冷媒配管温度の検出を行な
う温度検出装置としたが、本実施例以外の物理量として
低圧側の冷媒子方の検出を行なう圧力検出装置としても
よい。
In addition, although the physical quantity detection device in the first embodiment of the present invention is a temperature detection device that detects the temperature of the refrigerant pipe on the low pressure side of the refrigeration cycle, physical quantities other than this embodiment include the temperature of the refrigerant on the low pressure side. It may also be a pressure detection device that performs detection.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、暖
房(冷房)終了時に凝縮器である室内(室外)熱交換器
内に冷媒を貯留し、次の暖房(冷房)開始時までその状
態を維持したまま運転を再開すると、凝縮器から蒸発器
である室外(室内)熱交換器への冷媒循環量が多く、蒸
発器における吸熱量が増大する。また、それに伴って圧
縮機での仕事量も増大するため、凝縮器での放熱量が増
大し、この結果早期に冷凍サイクルが定常に達するため
温風(冷風)の吹出しが甲<、従って立上り(立下り)
の早い空気調和機を提供することが可能となる。また、
封入冷媒の大半が開閉機構と逆止弁とによって室内(室
外)熱交換器に存在しているため、圧縮機内のオイルへ
の寝込み量が小さく始動後のフォーミング現象が緩和さ
れると共に、アキュームレータにも冷媒があまり滞留し
ていないために液圧縮現象も緩和される等信碩性の面に
おいても擾れた効果を発揮するものである。
Effects of the Invention As described above, the heat pump type air conditioner of the present invention stores refrigerant in the indoor (outdoor) heat exchanger, which is a condenser, when heating (cooling) ends, until the next heating (cooling) starts. If the operation is restarted while maintaining this state, the amount of refrigerant circulating from the condenser to the outdoor (indoor) heat exchanger that is the evaporator increases, and the amount of heat absorbed in the evaporator increases. In addition, the amount of work in the compressor increases accordingly, so the amount of heat dissipated in the condenser increases, and as a result, the refrigeration cycle reaches steady state earlier, so the hot air (cold air) blows out less than before. (Falling)
This makes it possible to provide a quick air conditioner. Also,
Most of the sealed refrigerant is present in the indoor (outdoor) heat exchanger through the opening/closing mechanism and check valve, so the amount of stagnation in the oil in the compressor is small, which alleviates the forming phenomenon after startup, and also reduces the amount of oil trapped in the accumulator. In addition, since the refrigerant does not stagnate much, the liquid compression phenomenon is also alleviated, and it also exhibits an excellent effect in terms of reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例におけるヒートポンプ式
空気調和國の冷凍サイクル図、第2図は第1図の制御回
路図、第3図は第1の実施例におけるタイムチャート図
、第4図は本発明の第2の実施例における冷凍サイクル
図、第S図は従来のヒートポンプ式空気調和機の冷凍サ
イクル図である。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内熱交換器、4・・・・・・減圧浅溝、5・
・・・・・室外熱交換器、7・・・・・・冷媒配管、8
・・・・・・室内熱交換器用ファン、9・・・・・・室
外熱交換器用ファン、10・・・・・・開閉機溝、11
・・・・・・逆止弁、15・・・・・・物理量検出装置
、32・・・・・・制御装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
rIJ 第 3 凶 第5図
Fig. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to the first embodiment of the present invention, Fig. 2 is a control circuit diagram of Fig. 1, and Fig. 3 is a time chart diagram of the first embodiment. FIG. 4 is a refrigeration cycle diagram in the second embodiment of the present invention, and FIG. S is a refrigeration cycle diagram of a conventional heat pump type air conditioner. 1... Compressor, 2... Four-way valve, 3...
... Indoor heat exchanger, 4 ... Decompression shallow groove, 5.
...Outdoor heat exchanger, 7...Refrigerant piping, 8
...Indoor heat exchanger fan, 9...Outdoor heat exchanger fan, 10...Switcher groove, 11
. . . Check valve, 15 . . . Physical quantity detection device, 32 . . . Control device. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
rIJ 3rd Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室内熱交換器、減圧機構及び室
外熱交換器を順次冷媒配管で環状に接続し、前記室内熱
交換器の出口側と前記室外熱交換器の入口側の間の流路
中に開閉機構を設けるとともに、前記圧縮機の吐出側と
前記四方弁の間の流路中に逆止弁を設けて冷凍サイクル
を構成し、さらに室内熱交換器用ファン、室外熱交換器
用ファン及び物理量検出装置を設け、運転の停止信号発
生時に前記開閉機構は閉動作を行ない、前記圧縮機は前
記物理量検出装置の検出結果が一定値になるまで運転し
た後オフにするとともに、前記四方弁は次の運転開始信
号が発生するまでそのサイクルを維持したまま、運転を
停止させる制御装置を設けたヒートポンプ式空気調和機
(1) A compressor, a four-way valve, an indoor heat exchanger, a pressure reduction mechanism, and an outdoor heat exchanger are sequentially connected in a ring with refrigerant piping, and between the outlet side of the indoor heat exchanger and the inlet side of the outdoor heat exchanger. A refrigeration cycle is constructed by providing an opening/closing mechanism in the flow path of the compressor and a check valve in the flow path between the discharge side of the compressor and the four-way valve. A dexterous fan and a physical quantity detection device are provided, the opening/closing mechanism performs a closing operation when an operation stop signal is generated, the compressor is operated until the detection result of the physical quantity detection device becomes a constant value, and then turned off, and the The four-way valve is a heat pump type air conditioner equipped with a control device that stops operation while maintaining the cycle until the next operation start signal is generated.
(2)物理量検出装置は、前記冷凍サイクルの低圧側と
なる冷媒配管温度または冷媒圧力の検出を行なう装置と
した特許請求の範囲第1項に記載のヒートポンプ式空気
調和機。
(2) The heat pump air conditioner according to claim 1, wherein the physical quantity detection device is a device that detects the refrigerant pipe temperature or refrigerant pressure on the low-pressure side of the refrigeration cycle.
JP13333586A 1986-06-09 1986-06-09 Heat pump type air conditioner Pending JPS62293053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13333586A JPS62293053A (en) 1986-06-09 1986-06-09 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13333586A JPS62293053A (en) 1986-06-09 1986-06-09 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS62293053A true JPS62293053A (en) 1987-12-19

Family

ID=15102312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13333586A Pending JPS62293053A (en) 1986-06-09 1986-06-09 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS62293053A (en)

Similar Documents

Publication Publication Date Title
KR100465723B1 (en) A cooling drive method of air-conditioner
KR100772217B1 (en) Control method of air conditioner
US4799363A (en) Room air conditioner
JPH07139857A (en) Air conditioner
JPS62293053A (en) Heat pump type air conditioner
JPS63129258A (en) Heat pump type air conditioner
JPS62293056A (en) Heat pump type air conditioner
JPS61213556A (en) Method of starting compression type refrigerator
JP2962978B2 (en) Air conditioner
JPS62293055A (en) Heat pump type air conditioner
JPS62293054A (en) Heat pump type air conditioner
JPS62293052A (en) Heat pump type air conditioner
KR100543606B1 (en) driving mode conversion method for dehumidification air conditioner
JPH03211380A (en) Air conditioner
JPS6015849B2 (en) air conditioner
JP2814642B2 (en) Heating and cooling machine
JPS6346350B2 (en)
JPS5833500Y2 (en) air conditioner
JP2615853B2 (en) Air conditioner
JPH0718938Y2 (en) air conditioner
JPS63169450A (en) Heat pump type air conditioner
EP0153557A2 (en) Refrigeration cycle apparatus
JPS59191859A (en) Heat pump device
JP2762605B2 (en) Heating and cooling machine
JP2006138611A (en) Heat pump system