JP2006138611A - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
JP2006138611A
JP2006138611A JP2004331184A JP2004331184A JP2006138611A JP 2006138611 A JP2006138611 A JP 2006138611A JP 2004331184 A JP2004331184 A JP 2004331184A JP 2004331184 A JP2004331184 A JP 2004331184A JP 2006138611 A JP2006138611 A JP 2006138611A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
side heat
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004331184A
Other languages
Japanese (ja)
Inventor
Kazuaki Shikichi
千明 式地
Kunimori Sekigami
邦衛 関上
Koji Sato
晃司 佐藤
Masahisa Otake
雅久 大竹
Hiroshi Mukoyama
洋 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004331184A priority Critical patent/JP2006138611A/en
Publication of JP2006138611A publication Critical patent/JP2006138611A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a cooling/heating (hot water supply) system by using supercritical refrigerant without using a four-way switch valve, and to realize reduction of liquid back in starting by liquefied refrigerant (flooded refrigerant) condensed and accumulated in a heat source-side heat exchanger in stopping the operation. <P>SOLUTION: When a heating or hot water supplying operation is started, a switch valve 7 between the heat source-side heat exchanger 11 and a high-pressure gas pipe 3 is opened, a switch valve 8 between the heat source-side heat exchanger 11 and a low-pressure gas pipe 6 is closed, a switch valve 9 between a use-side heat exchanger 12 and the high-pressure gas pipe 3 is closed, a switch valve 10 between the use-side heat exchanger 12 and the low-pressure gas pipe 6 is opened, and expansion valves 15, 16 respectively between each of heat exchangers 11, 12 and a liquid pipe 17 are opened. An inverse cycle is started for a short time, a pressure of the refrigerant is raised to a supercritical state by using a high-pressure sensor 21, and then the operation is switched to a normal operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、冷暖房(給湯を含む)システム等のヒートポンプシステムに係わり、特に冷媒に二酸化炭素等の超臨界冷媒を使用したヒートポンプシステムに関するものである。   The present invention relates to a heat pump system such as an air conditioning (including hot water supply) system, and more particularly to a heat pump system using a supercritical refrigerant such as carbon dioxide as a refrigerant.

従来、フルオロカーボン(フロン)冷媒による冷暖房システムでは、圧縮機吐出管と吸込管に取り付けた4方向切換弁で、冷房と暖房の切換制御を行っていた。一方、二酸化炭素(炭酸ガス)のような超臨界冷媒は、高圧側がフルオロカーボン冷媒より3〜4倍高く、高圧側と低圧側の差圧が非常に大きくなるが、4方向切換弁は面シールを用いているので高圧側と低圧側の差圧が大きくなると、どうしてもリーク等の不具合が発生し、シール技術が非常に困難となるので、現在の技術では、この超高圧に不具合なく対応できる4方向切換弁は存在しない。   Conventionally, in a cooling / heating system using a fluorocarbon (fluorocarbon) refrigerant, switching control between cooling and heating is performed by a four-way switching valve attached to a compressor discharge pipe and a suction pipe. On the other hand, supercritical refrigerants such as carbon dioxide (carbon dioxide) are 3 to 4 times higher on the high pressure side than fluorocarbon refrigerants, and the differential pressure between the high pressure side and the low pressure side is very large. If the pressure difference between the high-pressure side and the low-pressure side increases, problems such as leakage will inevitably occur and the sealing technology will become very difficult. There is no switching valve.

そこで、二酸化炭素冷媒等の超臨界冷媒を使用し、圧縮機の吐出管に接続された高圧ガス管と圧縮機の吸込管に接続された低圧ガス管にそれぞれ切換弁を介して熱源側熱交換器と利用側熱交換器の一端側が接続され、各熱交換器の他端側が膨張弁を介してそれぞれ液管に接続され、前記圧縮機と各切換弁や各膨張弁等を制御手段で制御して冷房運転や暖房運転あるいは給湯運転を行うようにしたヒートポンプシステム(冷凍装置)が既に提案されている(例えば、特許文献1参照)。   Therefore, using a supercritical refrigerant such as carbon dioxide refrigerant, heat source side heat exchange via a switching valve to the high pressure gas pipe connected to the discharge pipe of the compressor and the low pressure gas pipe connected to the suction pipe of the compressor And one end of each heat exchanger are connected to each other, and the other end of each heat exchanger is connected to a liquid pipe via an expansion valve, and the compressor, each switching valve, each expansion valve, etc. are controlled by control means. Thus, there has already been proposed a heat pump system (refrigeration apparatus) that performs cooling operation, heating operation, or hot water supply operation (see, for example, Patent Document 1).

上記特許文献1に記載のものは、二酸化炭素冷媒等の超臨界冷媒を使用し、4方向切換弁を用いずに電磁開閉弁による切換弁を用いて、高圧ガス管と低圧ガス管と液管の3本配管(3WAY)で、熱源側熱交換器として室外熱交換器を有する室外ユニットと、利用側熱交換器として室内熱交換器を有する複数の室内ユニットと給湯ユニットを備えた冷凍装置で、給湯ユニットを運転しながら、複数の室内ユニットを同時に冷房運転もしくは暖房運転可能とし、または、これらの冷房運転と暖房運転とを混在して実施可能とすると共に、高圧ガス管内が冷凍装置の運転中は超臨界圧力で運転されるため、冷媒が、高圧ガス管内で凝縮することがなく、フロン冷媒のように、液化して高圧ガス管内に寝込む(凝縮滞留する)ことがなくなる。
特開2004−226018号公報
The thing of the said patent document 1 uses a supercritical refrigerant | coolant, such as a carbon dioxide refrigerant | coolant, and uses the switching valve by an electromagnetic on-off valve not using a four-way switching valve, but a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe. In this refrigeration system, an outdoor unit having an outdoor heat exchanger as a heat source side heat exchanger, a plurality of indoor units having an indoor heat exchanger as a use side heat exchanger, and a hot water supply unit In addition, while operating the hot water supply unit, a plurality of indoor units can be cooled or heated at the same time, or these cooling and heating operations can be performed in combination, and the inside of the high-pressure gas pipe can be operated as a refrigeration system. Since the inside is operated at a supercritical pressure, the refrigerant does not condense in the high-pressure gas pipe and does not liquefy and stagnate (condensate and stay) in the high-pressure gas pipe like the chlorofluorocarbon refrigerant.
JP 2004-226018 A

しかしながら、上記特許文献1に記載されたような超臨界冷媒を使用したシステムでも、運転停止時、室内より室外温度が低いと冷媒は熱源側熱交換器に凝縮滞留する(寝込む)。この状態でそのまま暖房あるいは給湯運転モードで起動すると、熱源側熱交換器内の凝縮液化冷媒が一気に液バックして、圧縮機の吸込管にアキュムレータ(気液分離器)が備えられていても、それをオーバーフローして圧縮機に流入するので、圧縮機のオイル挙動が不安定になり、耐久性に悪影響を及ぼす。また、液バックが起こると、その分、暖房運転等の立ち上がりも遅くなる。   However, even in a system using a supercritical refrigerant as described in Patent Document 1, when the operation is stopped, the refrigerant condenses and stays in the heat source side heat exchanger (sleeps) if the outdoor temperature is lower than the room. In this state, when starting in the heating or hot water supply operation mode as it is, the condensed liquefied refrigerant in the heat source side heat exchanger is backed up at once, and even if an accumulator (gas-liquid separator) is provided in the suction pipe of the compressor, Since it overflows and flows into the compressor, the oil behavior of the compressor becomes unstable and adversely affects durability. In addition, when the liquid back occurs, the start-up of the heating operation or the like is delayed accordingly.

そこで、本願発明はこのような課題を解決するためになされたものであり、超臨界冷媒を使用して、4方向切換弁を用いずに冷暖房(給湯)システムを実現できると共に、運転停止時に熱源側熱交換器内に凝縮滞留する液化冷媒(寝込み冷媒)による起動時の液バック量減少化を実現できるヒートポンプシステムを提供することを目的とするものである。   Accordingly, the present invention has been made to solve such problems, and can use a supercritical refrigerant to realize a cooling / heating (hot water supply) system without using a four-way switching valve, and can also provide a heat source when the operation is stopped. It is an object of the present invention to provide a heat pump system that can realize a reduction in the amount of liquid back at the time of startup by a liquefied refrigerant (stagnation refrigerant) that condenses and stays in the side heat exchanger.

上記のような目的を達成するために、本願発明は、超臨界冷媒を使用し、圧縮機の吐出管に接続された高圧ガス管と圧縮機の吸込管に接続された低圧ガス管にそれぞれ切換弁を介して熱源側熱交換器と利用側熱交換器の一端側が接続され、各熱交換器の他端側が膨張弁を介してそれぞれ液管に接続され、前記圧縮機と各切換弁や各膨張弁等を制御手段で制御して冷房運転や暖房運転あるいは給湯運転を行うようにしたヒートポンプシステムにおいて、暖房あるいは給湯運転開始時、前記熱源側熱交換器と高圧ガス管との間の切換弁を開とし、低圧ガス管との間の切換弁を閉とするとともに、前記利用側熱交換器と高圧ガス管との間の切換弁を閉とし、低圧ガス管との間の切換弁を開とし、両熱交換器と液管との間の膨張弁を開として、短時間逆サイクル起動し、通常運転に切り換えることを特徴とするものである。   In order to achieve the above object, the present invention uses a supercritical refrigerant and switches to a high pressure gas pipe connected to the discharge pipe of the compressor and a low pressure gas pipe connected to the suction pipe of the compressor. One end side of the heat source side heat exchanger and the use side heat exchanger is connected via a valve, and the other end side of each heat exchanger is connected to a liquid pipe via an expansion valve, and the compressor, each switching valve, and each In a heat pump system in which an expansion valve or the like is controlled by a control means to perform cooling operation, heating operation or hot water supply operation, a switching valve between the heat source side heat exchanger and the high pressure gas pipe at the start of heating or hot water supply operation Is opened, the switching valve between the low pressure gas pipe is closed, the switching valve between the use side heat exchanger and the high pressure gas pipe is closed, and the switching valve between the low pressure gas pipe is opened. And open the expansion valve between both heat exchangers and the liquid pipe for a short time. Cycles started, is characterized in that the switching to normal operation.

また、前記冷媒の超臨界状態を検出する検出手段を備え、前記検出手段を用いて冷媒を超臨界状態まで昇圧させてから、通常運転に切り換えることを特徴とするものである。   In addition, a detection unit that detects a supercritical state of the refrigerant is provided, and the refrigerant is boosted to the supercritical state using the detection unit, and then switched to a normal operation.

さらに、前記液管内を流れる冷媒を気液分離し、分離した気相冷媒を前記圧縮機に供給するための中間圧レシーバを備えたことを特徴とするものである。   Furthermore, an intermediate pressure receiver is provided for gas-liquid separation of the refrigerant flowing in the liquid pipe and supplying the separated gas-phase refrigerant to the compressor.

また、前記冷媒の超臨界状態を検出する検出手段として圧力センサを用いたことを特徴とするものである。   Further, a pressure sensor is used as detection means for detecting the supercritical state of the refrigerant.

また、前記超臨界冷媒として二酸化炭素冷媒を使用したことを特徴とするものである。   In addition, a carbon dioxide refrigerant is used as the supercritical refrigerant.

本願発明によれば、超臨界冷媒を使用して、4方向切換弁を用いずに冷暖房(給湯)システムを実現できると共に、暖房あるいは給湯運転開始時に短時間逆サイクル起動し、通常運転に切り換えることにより、運転停止時に熱源側熱交換器内に凝縮滞留する液化冷媒(寝込み冷媒)による起動時の液バック量減少化を実現でき、これにより圧縮機の耐久性向上とともに、立ち上がりスピードも速くなる。   According to the present invention, it is possible to realize a cooling / heating (hot water supply) system using a supercritical refrigerant without using a four-way switching valve, and at the start of heating or hot water supply operation, a short-cycle reverse cycle is activated to switch to normal operation. As a result, it is possible to reduce the amount of liquid back at the time of start-up by the liquefied refrigerant (sleeping refrigerant) that condenses and stays in the heat source side heat exchanger when the operation is stopped.

また、冷媒の超臨界状態を検出する検出手段を備えて、冷媒を超臨界状態まで昇圧させてから、通常運転に切り換えることにより、運転停止時に熱源側熱交換器内に凝縮滞留する液化冷媒(寝込み冷媒)による起動時の液バック量減少化をより確実に実現できる。   Also, a liquefied refrigerant (condensed and retained in the heat source side heat exchanger when the operation is stopped) is provided by detecting means for detecting the supercritical state of the refrigerant, boosting the refrigerant to the supercritical state, and switching to normal operation. It is possible to more reliably realize a reduction in the amount of liquid back at the time of start-up due to the stagnation refrigerant.

さらに、液管に、冷媒を気液分離し、分離した気相冷媒を圧縮機に供給するための中間圧レシーバを備えたことにより、液管から膨張弁には飽和液線のエンタルピを有する液相冷媒が流入するので、利用側熱交換器又は熱源側熱交換器が蒸発器として機能するときに、その入口と出口との間のエンタルピ差は大きくしながら、圧縮機の圧縮仕事量を小さくすることができ、二酸化炭素冷媒による冷凍サイクルの冷凍能力を大きくすることができると共に、その成績係数を向上させることができる。   Furthermore, the liquid pipe is provided with an intermediate pressure receiver for gas-liquid separation of the refrigerant and supplying the separated gas-phase refrigerant to the compressor, so that the liquid pipe has a saturated liquid line enthalpy from the liquid pipe to the expansion valve. Since the phase refrigerant flows in, when the use side heat exchanger or the heat source side heat exchanger functions as an evaporator, the compression work of the compressor is reduced while the enthalpy difference between the inlet and the outlet is increased. It is possible to increase the refrigeration capacity of the refrigeration cycle with the carbon dioxide refrigerant and improve the coefficient of performance.

また、冷媒の超臨界状態を検出する検出手段として圧力センサを用いたことにより、冷媒の超臨界状態をほぼ確実に検出できる。   Further, by using the pressure sensor as the detecting means for detecting the supercritical state of the refrigerant, the supercritical state of the refrigerant can be detected almost certainly.

また、超臨界冷媒として二酸化炭素冷媒を使用したことにより、自然系冷媒の中でも二酸化炭素冷媒は毒性や可燃性がないため,除害設備を設ける必要もない利点がある。   In addition, since carbon dioxide refrigerant is used as a supercritical refrigerant, carbon dioxide refrigerant is not toxic or flammable among natural refrigerants, and there is an advantage that it is not necessary to provide an abatement facility.

以下、本願発明の実施形態を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本願発明の一実施形態に係るヒートポンプシステムの冷媒回路図、図2はその作用を示すモリエル線図(圧力−エンタルピ線図)である。   FIG. 1 is a refrigerant circuit diagram of a heat pump system according to an embodiment of the present invention, and FIG. 2 is a Mollier diagram (pressure-enthalpy diagram) showing its operation.

図1に示す冷媒回路には、冷媒として自然系冷媒で高圧側が超臨界状態で運転される二酸化炭素(炭酸ガス)冷媒が用いられている。二酸化炭素冷媒は、約73気圧以上、約31℃以上で、液体でも気体でもないが、それらの特性を併せ持った超臨界状態となる。   In the refrigerant circuit shown in FIG. 1, a carbon dioxide (carbon dioxide) refrigerant that is a natural refrigerant and is operated in a supercritical state on the high pressure side is used as the refrigerant. The carbon dioxide refrigerant is not less than about 73 atm and not less than about 31 ° C. and is neither a liquid nor a gas, but is in a supercritical state having both of these characteristics.

上記二酸化炭素冷媒を圧縮する圧縮機1は高圧圧縮が可能な2段圧縮式のもので、その高段圧縮要素側の吐出管2は高圧ガス管3に接続され、低段圧縮要素側の吸込管4はアキュムレータ(気液分離器)5を介して低圧ガス管6に接続されている。   The compressor 1 for compressing the carbon dioxide refrigerant is of a two-stage compression type capable of high-pressure compression. The discharge pipe 2 on the high-stage compression element side is connected to the high-pressure gas pipe 3 and the suction on the low-stage compression element side. The pipe 4 is connected to a low-pressure gas pipe 6 via an accumulator (gas-liquid separator) 5.

高圧ガス管3と低圧ガス管6には、それぞれ切換弁(電磁開閉弁)7,8,9,10を介して熱源側熱交換器11と利用側熱交換器12の一端側が接続されている。熱源側熱交換器11は具体的には室外熱交換器等で、外気との熱交換を促進するための送風ファン13が備えられている。また、利用側熱交換器12は具体的には室内熱交換器等で、室内空気との熱交換を促進すると共に冷風や温風を吹き出すための送風ファン14が備えられている。   One end side of the heat source side heat exchanger 11 and the use side heat exchanger 12 is connected to the high pressure gas pipe 3 and the low pressure gas pipe 6 through switching valves (electromagnetic on-off valves) 7, 8, 9, 10 respectively. . The heat source side heat exchanger 11 is specifically an outdoor heat exchanger or the like, and is provided with a blower fan 13 for promoting heat exchange with the outside air. Moreover, the use side heat exchanger 12 is specifically an indoor heat exchanger or the like, and is provided with a blower fan 14 for promoting heat exchange with room air and blowing out cold air and hot air.

上記各熱交換器11,12の他端側は、電子制御弁から成る膨張弁(減圧弁)15,16を介してそれぞれ液管(細管)17に接続されており、上述した圧縮機1と各切換弁7〜10や各ファン13,14や各膨張弁15,16等を図示しないマイコン等から成る制御手段で制御することにより、冷房運転や暖房運転等を行うことができるように構成されている。なお、利用側熱交換器12として、前述した特許文献1に記載されているように室内熱交換器を有する複数の室内ユニットと給湯ユニットを備えれば、給湯ユニットを運転しながら、複数の室内ユニットを同時に冷房運転もしくは暖房運転可能となり、または、これらの冷房運転と暖房運転とを混在して実施可能となる。   The other end side of each of the heat exchangers 11 and 12 is connected to a liquid pipe (narrow pipe) 17 via expansion valves (reducing valves) 15 and 16 each consisting of an electronic control valve. Each switching valve 7-10, each fan 13, 14, each expansion valve 15, 16, etc. are controlled by a control means comprising a microcomputer (not shown) so that a cooling operation or a heating operation can be performed. ing. In addition, if the use side heat exchanger 12 includes a plurality of indoor units and a hot water supply unit having an indoor heat exchanger as described in Patent Document 1 described above, a plurality of indoor units can be operated while operating the hot water supply unit. The unit can be cooled or heated at the same time, or these cooling and heating operations can be mixed.

さらに、本実施形態においては、液管17内を流れる冷媒を気液分離し、分離した気相冷媒を圧縮機1に供給するための中間圧レシーバ18が備えられている。この中間圧レシーバ18は液管17を流れる気液混合冷媒の双方向の流れに対応したもので、例えば多数の貫通孔が形成された仕切板19により双方向の気液分離を実現できる。この中間圧レシーバ18で分離された気相冷媒は、2段圧縮式の圧縮機1における高段圧縮要素の吸入側に供給されるように構成されている。   Further, in the present embodiment, an intermediate pressure receiver 18 for separating the refrigerant flowing in the liquid pipe 17 into gas and liquid and supplying the separated gas-phase refrigerant to the compressor 1 is provided. This intermediate pressure receiver 18 corresponds to the bidirectional flow of the gas-liquid mixed refrigerant flowing through the liquid pipe 17. For example, bidirectional gas-liquid separation can be realized by the partition plate 19 in which a large number of through holes are formed. The gas phase refrigerant separated by the intermediate pressure receiver 18 is configured to be supplied to the suction side of the high-stage compression element in the two-stage compression compressor 1.

また、圧縮機1の吐出管2には、二酸化炭素冷媒の超臨界状態を検出するための高圧センサ21が取り付けられており、この高圧センサ21の検出出力が図示しない制御手段を構成するマイコンに入力されるようになっている。   The discharge pipe 2 of the compressor 1 is provided with a high-pressure sensor 21 for detecting the supercritical state of the carbon dioxide refrigerant, and the detection output of the high-pressure sensor 21 is supplied to a microcomputer constituting control means (not shown). It is designed to be entered.

以上の構成において、冷房運転時には、図1の熱源側熱交換器11の高圧側切換弁7が開、低圧側切換弁8が閉、利用側熱交換器12の高圧側切換弁9が閉、低圧側切換弁10が開となり、膨張弁15,16は絞り作用で運転される。   In the above configuration, during the cooling operation, the high pressure side switching valve 7 of the heat source side heat exchanger 11 of FIG. 1 is opened, the low pressure side switching valve 8 is closed, and the high pressure side switching valve 9 of the use side heat exchanger 12 is closed. The low pressure side switching valve 10 is opened, and the expansion valves 15 and 16 are operated by a throttle action.

これにより、圧縮機1で圧縮されて高温高圧となった冷媒は超臨界状態となって(図2のa−b−c−d)、吐出管2から高圧ガス管3を通り高圧側切替弁7を介して熱源側熱交換器11に流入する。熱源側熱交換器11に流入した冷媒は、ファン13による送風によって外気と熱交換して冷却されるが超臨界状態であるので凝縮はしない(図2のd−e)。   As a result, the refrigerant that has been compressed by the compressor 1 and becomes high temperature and high pressure is in a supercritical state (abcd in FIG. 2), and passes from the discharge pipe 2 through the high pressure gas pipe 3 to the high pressure side switching valve. 7 flows into the heat source side heat exchanger 11. The refrigerant flowing into the heat source side heat exchanger 11 is cooled by exchanging heat with the outside air by the air blown by the fan 13, but is not condensed because it is in a supercritical state (de in FIG. 2).

熱源側熱交換器11で冷却された超臨界状態の冷媒は、絞り作用の膨張弁15を介して減圧膨張して中間圧レシーバ18に流入する(図2のe−f)。この間に冷媒は飽和液腺SLを通過し超臨界状態を脱して一部が液化し気液混合冷媒となって中間圧レシーバ18に流入する。中間圧レシーバ18に流入した気液混合冷媒は、ここで気相冷媒と液相冷媒に分離され、分離した気相冷媒は圧縮機1の高段圧縮要素の吸入側に供給される(図2のf−c)。一方、気相冷媒が分離された液相冷媒は、気相冷媒のエンタルピ分が失われて飽和液腺SLまでエンタルピが低下する(図2のf−g)。   The supercritical refrigerant cooled by the heat source side heat exchanger 11 is decompressed and expanded through the expansion valve 15 having a throttle action, and flows into the intermediate pressure receiver 18 (ef in FIG. 2). During this time, the refrigerant passes through the saturated liquid gland SL, gets out of the supercritical state, partially liquefies and becomes a gas-liquid mixed refrigerant and flows into the intermediate pressure receiver 18. The gas-liquid mixed refrigerant flowing into the intermediate pressure receiver 18 is separated into a gas-phase refrigerant and a liquid-phase refrigerant here, and the separated gas-phase refrigerant is supplied to the suction side of the high-stage compression element of the compressor 1 (FIG. 2). Fc). On the other hand, in the liquid phase refrigerant from which the gas phase refrigerant has been separated, the enthalpy content of the gas phase refrigerant is lost and the enthalpy is reduced to the saturated liquid gland SL (fg in FIG. 2).

中間圧レシーバ18で気相冷媒が分離された液相冷媒は、絞り作用の膨張弁16を介して減圧膨張して利用側熱交換器12に流入する(図2のg−h)。利用側熱交換器12では、液相冷媒がファン14による送風によって室内空気と熱交換して蒸発気化し、冷却された空気が冷風となって室内に吹き出される一方、飽和蒸気線SVを超えて完全に気相となった冷媒は利用側熱交換器12から低圧側切換弁10を介して低圧ガス管6、吸込管4に設けられたアキュムレータ5を通して圧縮機1に吸入される(図2のh−a)。そして、上述した冷凍サイクルが繰り返される。   The liquid-phase refrigerant from which the gas-phase refrigerant has been separated by the intermediate-pressure receiver 18 is decompressed and expanded via the expansion valve 16 having a throttle action, and flows into the use-side heat exchanger 12 (gh in FIG. 2). In the use-side heat exchanger 12, the liquid-phase refrigerant exchanges heat with room air by blowing air from the fan 14 to evaporate, and the cooled air is blown into the room as cold air, while exceeding the saturated vapor line SV. The refrigerant that is completely in the gas phase is sucked into the compressor 1 through the accumulator 5 provided in the low pressure gas pipe 6 and the suction pipe 4 from the use side heat exchanger 12 through the low pressure side switching valve 10 (FIG. 2). H-a). And the refrigeration cycle mentioned above is repeated.

一方、暖房(あるいは給湯)運転の場合は、運転停止中に熱源側熱交換器11内に凝縮滞留した液化冷媒(寝込み冷媒)の液バック防止対策として、起動時短時間、図1の熱源側熱交換器11の高圧側切換弁7を開、低圧側切換弁8を閉、利用側熱交換器12の高圧側切換弁9を閉、低圧側切換弁10を開とし、膨張弁15,16は開状態で運転する(逆サイクル起動)。この逆サイクル起動中は、熱源側熱交換器11のファン13は停止、利用側熱交換器12のファン14は停止もしくは冷風が吹き出さない程度の微風で運転される。   On the other hand, in the case of heating (or hot water supply) operation, as a measure for preventing liquid back of the liquefied refrigerant (sleeping refrigerant) condensing and staying in the heat source side heat exchanger 11 during operation stop, the heat source side heat shown in FIG. The high pressure side switching valve 7 of the exchanger 11 is opened, the low pressure side switching valve 8 is closed, the high pressure side switching valve 9 of the use side heat exchanger 12 is closed, the low pressure side switching valve 10 is opened, and the expansion valves 15 and 16 are Operate in the open state (reverse cycle start). During the reverse cycle startup, the fan 13 of the heat source side heat exchanger 11 is stopped, and the fan 14 of the use side heat exchanger 12 is stopped or operated with a light breeze that does not blow cold air.

これにより、圧縮機1から吐出された冷媒は、吐出管2から高圧ガス管3を通り、高圧側切替弁7を介して熱源側熱交換器11に流入し、熱源側熱交換機11内の寝込み冷媒が追い出される。追い出された寝込み冷媒は、開状態の膨張弁15を通り、液管17,中間圧レシーバ18に流れ込み、さらに開状態の膨張弁16を通って利用側熱交換器12に流れ込む。このまま圧縮機1を運転継続すると、圧縮機1の吐出圧力は徐々に上昇し、熱源側熱交換機11内の冷媒は超臨界状態となる。   Thereby, the refrigerant discharged from the compressor 1 passes through the high pressure gas pipe 3 from the discharge pipe 2 and flows into the heat source side heat exchanger 11 via the high pressure side switching valve 7, and stagnation in the heat source side heat exchanger 11. The refrigerant is expelled. The purged sleeping refrigerant flows through the expansion valve 15 in the open state, flows into the liquid pipe 17 and the intermediate pressure receiver 18, and then flows into the use-side heat exchanger 12 through the expansion valve 16 in the open state. If the operation of the compressor 1 is continued as it is, the discharge pressure of the compressor 1 gradually increases, and the refrigerant in the heat source side heat exchanger 11 enters a supercritical state.

従って、熱源側熱交換器11内は凝縮液がほとんどない状態となり内部冷媒量は減少する。余剰冷媒は中間圧レシーバ18に保有される。上記熱源側熱交換機11内の冷媒の超臨界状態は、圧縮機1の吐出圧力の上昇を圧縮機吐出管2に備えられた高圧センサ21で検出し、二酸化炭素冷媒の超臨界圧力である約73気圧以上になったのを制御手段を構成するマイコンで検知することにより、冷媒の超臨界状態をほぼ確実に検出することができる。   Therefore, there is almost no condensate in the heat source side heat exchanger 11, and the amount of internal refrigerant decreases. Excess refrigerant is held in the intermediate pressure receiver 18. The supercritical state of the refrigerant in the heat source side heat exchanger 11 is detected by the high pressure sensor 21 provided in the compressor discharge pipe 2 when the discharge pressure of the compressor 1 is increased, and is approximately the supercritical pressure of the carbon dioxide refrigerant. The supercritical state of the refrigerant can be detected almost certainly by detecting that the pressure is 73 atm or higher by the microcomputer constituting the control means.

その後、一旦圧縮機1を止め、各切換弁7〜10を閉とし、膨張弁15,16は開の状態で圧力バランスしてから通常運転に入る。圧力バランスしてから通常運転に入るのは、高圧冷媒と低圧冷媒の衝突による大きな切換冷媒音の発生を防ぐためである。   Thereafter, the compressor 1 is stopped once, the switching valves 7 to 10 are closed, and the expansion valves 15 and 16 are in an open state to balance the pressure, and then enter a normal operation. The reason why the normal operation is started after the pressure is balanced is to prevent generation of a large switching refrigerant sound due to a collision between the high-pressure refrigerant and the low-pressure refrigerant.

上記圧力バランス時にも、熱源側熱交換器11内の冷媒は、開状態の膨張弁15を通り、液管17,中間圧レシーバ18に流れ込み、さらに開状態の膨張弁16を通って利用側熱交換器12に流れ込むので、熱源側熱交換器11の内部冷媒量は一層減少し、圧縮機1への液バック量はより少なくなり、圧縮機1の耐久性向上とともに、立ち上がりスピードも速くなる。   Even during the pressure balance, the refrigerant in the heat source side heat exchanger 11 passes through the expansion valve 15 in the open state, flows into the liquid pipe 17 and the intermediate pressure receiver 18, and further passes through the expansion valve 16 in the open state to use side heat. Since the refrigerant flows into the exchanger 12, the amount of the internal refrigerant in the heat source side heat exchanger 11 is further reduced, the amount of liquid back to the compressor 1 is further reduced, the durability of the compressor 1 is improved, and the rising speed is also increased.

通常暖房(あるいは給湯)運転に入るときは、図1の熱源側熱交換器11の高圧側切換弁7が閉、低圧側切換弁8が開、利用側熱交換器12の高圧側切換弁9が開、低圧側切換弁10が閉となり、膨張弁15,16は絞り作用で運転される。   When entering the normal heating (or hot water supply) operation, the high pressure side switching valve 7 of the heat source side heat exchanger 11 in FIG. 1 is closed, the low pressure side switching valve 8 is opened, and the high pressure side switching valve 9 of the use side heat exchanger 12 is opened. Is opened, the low-pressure side switching valve 10 is closed, and the expansion valves 15 and 16 are operated by a throttle action.

これにより、圧縮機1で圧縮されて高温高圧となった冷媒は超臨界状態となって(図2のa−b−c−d)、吐出管2から高圧ガス管3を通り高圧側切替弁9を介して利用側熱交換器12に流入する。利用側熱交換器12では、ファン14による送風によって室内空気と熱交換して加熱された空気が温風となって室内に吹き出される一方、冷媒は冷却されるが超臨界状態であるので凝縮はしない(図2のd−e)。   As a result, the refrigerant that has been compressed by the compressor 1 and becomes high temperature and high pressure is in a supercritical state (abcd in FIG. 2), and passes from the discharge pipe 2 through the high pressure gas pipe 3 to the high pressure side switching valve. It flows into the use side heat exchanger 12 through 9. In the use-side heat exchanger 12, the air heated by air exchanged with the room air by the fan 14 is heated and blown into the room while the refrigerant is cooled but condensed in a supercritical state. (De in FIG. 2).

熱源側熱交換器12で冷却された超臨界状態の冷媒は、絞り作用の膨張弁16を介して減圧膨張して中間圧レシーバ18に流入する(図2のe−f)。この間に冷媒は飽和液腺SLを通過し超臨界状態を脱して一部が液化し気液混合冷媒となって中間圧レシーバ18に流入する。中間圧レシーバ18に流入した気液混合冷媒は、ここで気相冷媒と液相冷媒に分離され、分離した気相冷媒は圧縮機1の高段圧縮要素の吸入側に供給される(図2のf−c)。一方、気相冷媒が分離された液相冷媒は、気相冷媒のエンタルピ分が失われて飽和液腺SLまでエンタルピが低下する(図2のf−g)。   The supercritical refrigerant cooled by the heat source side heat exchanger 12 is decompressed and expanded through the expansion valve 16 having a throttle action and flows into the intermediate pressure receiver 18 (ef in FIG. 2). During this time, the refrigerant passes through the saturated liquid gland SL, gets out of the supercritical state, partially liquefies and becomes a gas-liquid mixed refrigerant and flows into the intermediate pressure receiver 18. The gas-liquid mixed refrigerant flowing into the intermediate pressure receiver 18 is separated into a gas-phase refrigerant and a liquid-phase refrigerant here, and the separated gas-phase refrigerant is supplied to the suction side of the high-stage compression element of the compressor 1 (FIG. 2). Fc). On the other hand, in the liquid phase refrigerant from which the gas phase refrigerant has been separated, the enthalpy content of the gas phase refrigerant is lost and the enthalpy is reduced to the saturated liquid gland SL (fg in FIG. 2).

中間圧レシーバ18で気相冷媒が分離された液相冷媒は、絞り作用の膨張弁15を介して減圧膨張して熱源側熱交換器11に流入する(図2のg−h)。熱源側熱交換器12では、液相冷媒がファン13による送風によって外気と熱交換して蒸発気化し、飽和蒸気線SVを超えて完全に気相となった冷媒は熱源側熱交換器11から低圧側切換弁8を介して低圧ガス管6、吸込管4に設けられたアキュムレータ5を通して圧縮機1に吸入される(図2のh−a)。そして、上述した冷凍サイクルが繰り返される。   The liquid-phase refrigerant from which the gas-phase refrigerant has been separated by the intermediate pressure receiver 18 is decompressed and expanded via the expansion valve 15 having a throttle action, and flows into the heat source side heat exchanger 11 (gh in FIG. 2). In the heat source side heat exchanger 12, the liquid phase refrigerant exchanges heat with the outside air by blowing air from the fan 13 to evaporate, and the refrigerant that has completely changed to the vapor phase beyond the saturated vapor line SV is transferred from the heat source side heat exchanger 11. It is sucked into the compressor 1 through the accumulator 5 provided in the low pressure gas pipe 6 and the suction pipe 4 through the low pressure side switching valve 8 (ha in FIG. 2). And the refrigeration cycle mentioned above is repeated.

このように、本システムでは、暖房(あるいは給湯)運転の運転開始時に、上述したように短時間逆サイクル起動することにより、熱源側熱交換器11内の寝込み冷媒は、液管17を通り、中間圧レシーバ18から利用側熱交換器12に保有され、熱源側熱交換器11内の冷媒量を起動時少なくできる。そして、圧力センサ21を用いて冷媒圧を超臨界状態まで昇圧させることにより、熱源側熱交換器11内は凝縮液がほとんどない状態となって保有冷媒量がさらに減少し、通常の暖房(あるいは給湯)運転起動時の液バック量減少化を確実に実現でき、圧縮機1の耐久性向上とともに、立ち上がりスピードも速くなる。   Thus, in the present system, at the start of the heating (or hot water supply) operation, the reverse refrigerant is activated for a short time as described above, so that the sleeping refrigerant in the heat source side heat exchanger 11 passes through the liquid pipe 17, It is held in the use side heat exchanger 12 from the intermediate pressure receiver 18 and the amount of refrigerant in the heat source side heat exchanger 11 can be reduced at the time of startup. Then, by using the pressure sensor 21 to increase the refrigerant pressure to the supercritical state, the heat source side heat exchanger 11 is almost free of condensate, and the amount of refrigerant retained is further reduced. It is possible to surely reduce the amount of liquid back at the time of starting the hot water supply, improving the durability of the compressor 1 and increasing the startup speed.

また、本実施形態においては、液管17に上述したような双方向の中間圧レシーバ18を備えたことにより、液管17から膨張弁15,16には、図2に示したように飽和液線SLのエンタルピを有する液相冷媒が流入するので、利用側熱交換器12又は熱源側熱交換器11が蒸発器として機能するときに、その入口と出口との間のエンタルピ差を大きくすることができる。また、中間圧レシーバ18で分離された中間圧を有する気相冷媒が2段圧縮式の圧縮機1における高段圧縮要素の吸入側に導かれるので、圧縮機1の圧縮仕事量を小さくすることができる。   In the present embodiment, since the liquid pipe 17 is provided with the bidirectional intermediate pressure receiver 18 as described above, a saturated liquid is provided from the liquid pipe 17 to the expansion valves 15 and 16 as shown in FIG. Since the liquid refrigerant having the enthalpy of the line SL flows in, when the use side heat exchanger 12 or the heat source side heat exchanger 11 functions as an evaporator, the difference in enthalpy between the inlet and the outlet is increased. Can do. Further, since the gas-phase refrigerant having the intermediate pressure separated by the intermediate pressure receiver 18 is guided to the suction side of the high-stage compression element in the two-stage compression compressor 1, the compression work of the compressor 1 is reduced. Can do.

従って、利用側熱交換器12又は熱源側熱交換器11が蒸発器として機能するときに、その入口と出口との間のエンタルピ差は大きくしながら、圧縮機1の圧縮仕事量を小さくすることができるので、二酸化炭素冷媒による冷凍サイクルの冷凍能力を大きくすることができると共に、その成績係数を向上させることができる。   Therefore, when the use side heat exchanger 12 or the heat source side heat exchanger 11 functions as an evaporator, the compression work of the compressor 1 is reduced while the enthalpy difference between the inlet and the outlet is increased. Therefore, the refrigeration capacity of the refrigeration cycle with the carbon dioxide refrigerant can be increased and the coefficient of performance can be improved.

また、2段圧縮式の圧縮機1を用いているので、上述した作用効果を1台の圧縮機で実現でき、省スペース化や低コスト化を図ることができる。   Further, since the two-stage compression type compressor 1 is used, the above-described operation and effect can be realized by a single compressor, and space saving and cost reduction can be achieved.

なお、上記実施形態では、冷媒の超臨界状態を検出する検出手段として高圧センサ21を用いて超臨界状態をほぼ確実に検出できるようにしたが、各種条件下において超臨界状態となる冷媒温度や経過時間を実験等により予め測定しておいて、その値にある程度の余裕を設けて温度センサやタイマにより超臨界状態を検出することも考えられる。   In the above embodiment, the supercritical state can be detected almost certainly by using the high-pressure sensor 21 as the detecting means for detecting the supercritical state of the refrigerant. It is also conceivable that the elapsed time is measured in advance by an experiment or the like, and a supercritical state is detected by a temperature sensor or timer with a certain margin in the value.

また、高圧側が超臨界状態で運転される冷媒には、二酸化炭素冷媒のほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられるが、自然系冷媒の中でも二酸化炭素冷媒は毒性や可燃性がないため,除害設備を設ける必要もない利点がある。   In addition to the carbon dioxide refrigerant, for example, ethylene, diborane, ethane, nitric oxide and the like are listed as refrigerants operated on the high pressure side in a supercritical state. Among natural refrigerants, carbon dioxide refrigerant is toxic and flammable. Therefore, there is an advantage that it is not necessary to install a detoxification facility.

本願発明の一実施形態に係るヒートポンプシステムの冷媒回路図。The refrigerant circuit figure of the heat pump system which concerns on one Embodiment of this invention. その作用を示すモリエル線図。The Mollier diagram which shows the effect | action.

符号の説明Explanation of symbols

1 圧縮機
2 吐出管
3 高圧ガス管
4 吸込管
5 アキュムレータ
6 低圧ガス管
7〜10 切換弁
11 熱源側熱交換器
12 利用側熱交換器
13,14 送風ファン
15,16 膨張弁
17 液管
18 中間圧レシーバ
21 高圧センサ



























DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge pipe 3 High pressure gas pipe 4 Suction pipe 5 Accumulator 6 Low pressure gas pipe 7-10 Switching valve 11 Heat source side heat exchanger 12 Use side heat exchanger 13, 14 Blower fan 15, 16 Expansion valve 17 Liquid pipe 18 Intermediate pressure receiver 21 High pressure sensor



























Claims (5)

超臨界冷媒を使用し、圧縮機の吐出管に接続された高圧ガス管と圧縮機の吸込管に接続された低圧ガス管にそれぞれ切換弁を介して熱源側熱交換器と利用側熱交換器の一端側が接続され、各熱交換器の他端側が膨張弁を介してそれぞれ液管に接続され、前記圧縮機と各切換弁や各膨張弁等を制御手段で制御して冷房運転や暖房運転あるいは給湯運転を行うようにしたヒートポンプシステムにおいて、
暖房あるいは給湯運転開始時、前記熱源側熱交換器と高圧ガス管との間の切換弁を開とし、低圧ガス管との間の切換弁を閉とするとともに、前記利用側熱交換器と高圧ガス管との間の切換弁を閉とし、低圧ガス管との間の切換弁を開とし、両熱交換器と液管との間の膨張弁を開として、短時間逆サイクル起動し、通常運転に切り換えることを特徴とするヒートポンプシステム。
A heat source side heat exchanger and a use side heat exchanger are connected to the high pressure gas pipe connected to the discharge pipe of the compressor and the low pressure gas pipe connected to the suction pipe of the compressor via a switching valve, respectively. One end side of each heat exchanger is connected, and the other end side of each heat exchanger is connected to a liquid pipe via an expansion valve, and the compressor, each switching valve, each expansion valve, etc. are controlled by a control means to perform cooling operation or heating operation Alternatively, in a heat pump system designed to perform hot water supply operation,
At the start of heating or hot water supply operation, the switching valve between the heat source side heat exchanger and the high pressure gas pipe is opened, the switching valve between the low pressure gas pipe is closed, and the use side heat exchanger and the high pressure gas pipe are closed. Close the switching valve to the gas pipe, open the switching valve to the low-pressure gas pipe, open the expansion valve between both heat exchangers and the liquid pipe, start a reverse cycle for a short time, A heat pump system characterized by switching to operation.
前記冷媒の超臨界状態を検出する検出手段を備え、前記検出手段を用いて冷媒を超臨界状態まで昇圧させてから、通常運転に切り換えることを特徴とする請求項1記載のヒートポンプシステム。   The heat pump system according to claim 1, further comprising a detection unit that detects a supercritical state of the refrigerant, wherein the refrigerant is boosted to a supercritical state using the detection unit and then switched to a normal operation. 前記液管内を流れる冷媒を気液分離し、分離した気相冷媒を前記圧縮機に供給するための中間圧レシーバを備えたことを特徴とする請求項1又は請求項2記載のヒートポンプシステム。   3. The heat pump system according to claim 1, further comprising an intermediate pressure receiver configured to gas-liquid separate the refrigerant flowing in the liquid pipe and supply the separated gas-phase refrigerant to the compressor. 前記冷媒の超臨界状態を検出する検出手段として圧力センサを用いたことを特徴とする請求項2記載のヒートポンプシステム。   The heat pump system according to claim 2, wherein a pressure sensor is used as a detection means for detecting a supercritical state of the refrigerant. 前記超臨界冷媒として二酸化炭素冷媒を使用したことを特徴とする請求項1ないし請求項4のいずれかに記載のヒートポンプシステム。























The heat pump system according to any one of claims 1 to 4, wherein a carbon dioxide refrigerant is used as the supercritical refrigerant.























JP2004331184A 2004-11-15 2004-11-15 Heat pump system Withdrawn JP2006138611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331184A JP2006138611A (en) 2004-11-15 2004-11-15 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331184A JP2006138611A (en) 2004-11-15 2004-11-15 Heat pump system

Publications (1)

Publication Number Publication Date
JP2006138611A true JP2006138611A (en) 2006-06-01

Family

ID=36619543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331184A Withdrawn JP2006138611A (en) 2004-11-15 2004-11-15 Heat pump system

Country Status (1)

Country Link
JP (1) JP2006138611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052882A (en) * 2008-12-11 2009-03-12 Daikin Ind Ltd Air conditioning system
CN107101412A (en) * 2017-06-02 2017-08-29 山东中瑞新能源科技有限公司 A kind of sewage as direct Cooling and Heat Source source pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052882A (en) * 2008-12-11 2009-03-12 Daikin Ind Ltd Air conditioning system
CN107101412A (en) * 2017-06-02 2017-08-29 山东中瑞新能源科技有限公司 A kind of sewage as direct Cooling and Heat Source source pump
CN107101412B (en) * 2017-06-02 2023-06-13 山东中瑞新能源科技有限公司 Heat pump unit with sewage as direct cold and heat source

Similar Documents

Publication Publication Date Title
WO2007110908A9 (en) Refrigeration air conditioning device
WO2019073870A1 (en) Refrigeration device
JP5263522B2 (en) Refrigeration equipment
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP4386071B2 (en) Refrigeration equipment
WO2006028218A1 (en) Refrigerating apparatus
JP2007240025A (en) Refrigerating device
JP5908183B1 (en) Air conditioner
JP2006112708A (en) Refrigerating air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2006349258A (en) Air conditioner
JP4442237B2 (en) Air conditioner
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2005214575A (en) Refrigerator
WO2010150344A1 (en) Vapor compression cycle device
JP2003074990A (en) Refrigerating unit
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
JP2008267732A (en) Air-conditioning device
JP2006138612A (en) Heat pump system
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2002243307A (en) Air conditioning apparatus
JP2006138611A (en) Heat pump system
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091209

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222