JPS6229183A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS6229183A
JPS6229183A JP60167532A JP16753285A JPS6229183A JP S6229183 A JPS6229183 A JP S6229183A JP 60167532 A JP60167532 A JP 60167532A JP 16753285 A JP16753285 A JP 16753285A JP S6229183 A JPS6229183 A JP S6229183A
Authority
JP
Japan
Prior art keywords
mesa
light emitting
light
optical
mesa structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167532A
Other languages
Japanese (ja)
Inventor
Toshio Sagawa
佐川 敏男
Kazuhiro Kurata
倉田 一宏
Takeshi Takahashi
健 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60167532A priority Critical patent/JPS6229183A/en
Publication of JPS6229183A publication Critical patent/JPS6229183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To increase the optical takeout rate as large as possible to enhance externally the light emitting efficiency and reduce loss in heating or the like caused by internal absorption, together with facilitating wiring work, by installing a metal film wiring stretchingly along an inclined side which composes forward-mesa structure on the electrode part mounted on the upper surface of the optical takeout part. CONSTITUTION:A P-Ga0.7Al0.3As layer 31 and N-Ga0.6Al0.4As layer 32 are made to grow on a P-type GaAs substrate 30 by liquid-phase epitaxial method. After this growth, with fixed patterns mesa-etched, an optical takeout part 35 is formed in a mesa structure in which both right and left sides are formed into forward-mesa faces 33 and both sided of the cross-section perpendicular to them are formed in reverse-mesa faces 34. After the etching, a crystal surface is covered with a phosphor-added glass film 36 to form a window part for mounting N electrodes 37 on the central surface of the optical takeout part using hydrofluoric acid-system etchant. When a chip formed this way is assembled into a stem 41 and coated 42 with epoxy resin to be dome-shaped, electrode wiring can be obtained with high reliability and without disconnection or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は注入形電界発光ダイオードに係り、特に光取出
し率を向上させたメサ構造の発光ダイオードに関づる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an injection type electroluminescent diode, and particularly to a mesa structure light emitting diode with improved light extraction efficiency.

[従来の技術] 一般に、点表示素子用発光ダイオードあるいは数字表示
素子用発光ダイオードは、プレーナモノリシック型又は
襞間を利用してペレット化を行ったものを組合せる所謂
ハイブリッドを発光ダイオードが主流である。
[Prior Art] In general, light-emitting diodes for dot display elements or light-emitting diodes for numeric display elements are mainly so-called hybrid light-emitting diodes that are a combination of planar monolithic type or pelletized type using inter-fold spaces. .

第6図は拡散型プレーナモノリシック型発光ダイオード
例の断面構造を示したもので、1は基板、2はエピタキ
シャル層、3は亜鉛拡散層、4は5fN4膜、5はアル
ミニウム澄極、6はn電極である。光は、PN接合面か
ら垂直方向にアルミニウム電極5で囲まれた窓の部分を
通して外部に放出される。
Figure 6 shows the cross-sectional structure of an example of a diffused planar monolithic light emitting diode, where 1 is the substrate, 2 is the epitaxial layer, 3 is the zinc diffusion layer, 4 is the 5fN4 film, 5 is the aluminum clear electrode, and 6 is the n It is an electrode. Light is emitted to the outside from the PN junction surface in a vertical direction through a window portion surrounded by aluminum electrodes 5.

ところが、光の大部分は、513N4膜4あるいはアル
ミニウム電極5の存在により外部に出ることができず、
そこで反射して点線で示寸矢印の方向に進む。これら大
部分の光は発光として外部に取り出されないばかりか、
素子に吸収されて素子を発熱させ寿命の低下や欠陥をも
たらしていた。
However, most of the light cannot escape to the outside due to the presence of the 513N4 film 4 or the aluminum electrode 5.
It then reflects and travels in the direction indicated by the dotted arrow. Most of this light is not only not extracted outside as luminescence, but also
It was absorbed into the element and caused the element to generate heat, resulting in a shortened lifespan and defects.

第7図は襞間を利用してペレット化を行った発光ダイオ
ードの模式図を示したものであり、説明の便宜上一点か
ら光が出ていると仮定している。
FIG. 7 shows a schematic diagram of a light emitting diode that is pelletized using the spaces between the folds, and for convenience of explanation, it is assumed that light is emitted from one point.

7はn電極、8は基板、9は勇開面、10は発光部であ
る。これによれば臨界角以下の入射角を有する斜線領域
11内の光は外部へ取り出づことができる。
7 is an n-electrode, 8 is a substrate, 9 is an open surface, and 10 is a light emitting part. According to this, light within the shaded area 11 having an incident angle less than the critical angle can be extracted to the outside.

しかし、臨界角以上の入射角を有する光は結晶表面で全
反射を起こして外部へ取り出すことができないため、第
6図の場合と同様に結晶内部で発熱等の形で・消費され
、その結果外部1了効率は低下するという欠点があった
However, since light with an incident angle greater than the critical angle is totally reflected on the crystal surface and cannot be extracted to the outside, it is consumed within the crystal in the form of heat generation, etc., as in the case of Figure 6, and as a result, This method has the disadvantage that the external recognition efficiency is reduced.

また、このベレット化を行った第7図の発光ダイオード
を数字表示素子用とするため複数組合せてハイブリッド
型発光ダイオードとづるのであるが、そのためには通常
n電極7及びP′Hi極(図示省略)を共通基板上で金
線により配線する必蟹があり、このlCめの電極付作業
が困難で、しかも特性が不安定になる等の問題が生じて
いた。
Furthermore, in order to make this pelletized light emitting diode shown in FIG. 7, a plurality of light emitting diodes are combined to form a numeric display element and are called a hybrid type light emitting diode. ) must be wired with gold wires on a common substrate, making it difficult to attach the 1C electrodes and causing problems such as unstable characteristics.

そこで従来、光取り出し率の向上及び配線等の問題を解
消するIζめ、発光ダイオードを襞間ではなくメサエッ
チングによりメサ構造にすることが考えられた。即ち、
第8図に示す如く、光取出し部12の断面形状を前後左
右とも順メサ構造としたちのである。これによれば、基
板13上の光取出し部の底部に存在する仮想発光点から
出た光は周囲に均一に発光り−るが、ん子の表面14.
15となす角度が臨界角00以上になると全反射を起こ
りため、臨界角Ocで囲まれた斜線の三領域16の光を
素子の外部に取り出させることができる。
Therefore, conventionally, in order to improve the light extraction efficiency and solve problems such as wiring, it has been considered to form the light emitting diode into a mesa structure by mesa etching instead of between the folds. That is,
As shown in FIG. 8, the cross-sectional shape of the light extraction portion 12 has a regular mesa structure on both the front, rear, left and right sides. According to this, the light emitted from the virtual light emitting point located at the bottom of the light extraction portion on the substrate 13 is uniformly emitted around the surface of the plate 14.
When the angle formed with 15 becomes a critical angle of 00 or more, total reflection occurs, so that the light in the three diagonally shaded areas 16 surrounded by the critical angle Oc can be extracted to the outside of the element.

したがって、プレーナモノリシック型発光ダイオードよ
りも光取出し率をはるかに高めることができる一方、ハ
イブリッド型発光ダイオードに比して、光取出し率の向
上は差程望めないにしても、同一基板上に複数の光取出
し部を形成し、これらを金属膜配線で接続できるので、
配線作業の問題が解消される。
Therefore, while it is possible to achieve a much higher light extraction rate than that of a planar monolithic light emitting diode, it is possible to achieve a much higher light extraction rate than a hybrid type light emitting diode. Since a light extraction part can be formed and these can be connected with metal film wiring,
Wiring work problems are solved.

し発明が解決しようとする問題点] しかしながら1、ト述した従来の順メサ構造の発光ダイ
オードでは、例えばGaPの場合屈折率が約2.9テあ
るため、臨界角はθ=s+n  (n2/n+  )〜
202°となり小ざい。ここで、nlはGaPの屈折率
、n2は空気の屈折率(〜1)である。
[Problems to be Solved by the Invention] However, in the conventional mesa structure light emitting diode mentioned in 1., for example, GaP has a refractive index of about 2.9 Te, so the critical angle is θ=s+n (n2/ n+)~
It is small at 202°. Here, nl is the refractive index of GaP, and n2 is the refractive index of air (~1).

また、GaASの場合屈折率を約3.36とすると臨界
角θ−17,3°となり、その値が更に小さくなるので
、はとんどの光は全反射してしまう。したがって、メサ
構造にしても高効率の発光ダイオードが得られなかった
Further, in the case of GaAS, if the refractive index is approximately 3.36, the critical angle θ is −17.3°, and this value becomes even smaller, so that most of the light is totally reflected. Therefore, even with a mesa structure, a highly efficient light emitting diode could not be obtained.

「発明の目的] 本発明の目的は、前記した従来技術の欠点を解消し、光
取出し率を可及的に向上さぼて外部発光効率を高め、内
部吸収による発熱等の損失を低減し、しかも配線作業が
容易な発光ダイオードを提供することである。
``Object of the Invention'' The object of the present invention is to eliminate the drawbacks of the prior art described above, improve the light extraction rate as much as possible to increase the external luminous efficiency, reduce losses such as heat generation due to internal absorption, and It is an object of the present invention to provide a light emitting diode whose wiring work is easy.

[発明の概要コ 本発明は、実施例に対応づる第1A図〜第1B図に示す
如く、注入発光領域からの光の取出し部35の断面形状
が、メサエッチングにより一側で逆メサ構造をしており
、この一側と直交する他側で順メサ構造をしている。そ
して光取出し部35の上面に設けた電極部37に順メυ
構造を構成する傾斜側面33に沿って金属膜配線38が
延設されている。
[Summary of the Invention] As shown in FIG. 1A to FIG. 1B corresponding to the embodiment, the cross-sectional shape of the light extraction portion 35 from the injection/emission region has an inverted mesa structure on one side by mesa etching. The other side, which is perpendicular to this one side, has a mesa structure. Then, the electrode part 37 provided on the upper surface of the light extraction part 35 is
A metal film wiring 38 is extended along the inclined side surface 33 forming the structure.

これにより、光取出し部35の上面29又は逆メリー構
造を構成する傾斜側面(逆メサ面)34に臨界角以上で
光が入)1して全反射しても、その反射光は基板30と
の界面に直接当るのではなく、逆メサ面34又は上面2
9に突き当ることになり、このとき臨界角以下で突き当
たれば反射光は結晶内部に吸収されることなく結晶外部
に出て行くことになる。
As a result, even if light enters the upper surface 29 of the light extraction portion 35 or the inclined side surface (inverted mesa surface) 34 constituting the inverted merry structure at a critical angle or more) 1 and is totally reflected, the reflected light will not reach the substrate 30. Instead of directly hitting the interface of the reverse mesa surface 34 or the upper surface 2
9, and if it hits at a critical angle or less, the reflected light will go out to the outside of the crystal without being absorbed inside the crystal.

また、金B膜配線38は逆メサ面34ではなく順メサ構
造を構成づ”る傾斜側面(順メサ面)33に沿って配線
されるため、金属膜の段切れが生じない。
Further, since the gold B film wiring 38 is routed along the inclined side surface (forward mesa surface) 33 forming the forward mesa structure rather than the reverse mesa surface 34, no step breaks occur in the metal film.

[実施例] 本発明の実施例を第1Δ図〜第5図に基づいて説明ずれ
ば以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1A to 5.

まず、原理的な説明を行う。I[−Vl、 I−V族等
閃亜鉛鉱結晶構造を有する化合物半導体は<111>方
向に極性を有することから(111)Δ面および(11
1)8面でt、iエツチング速度が異なっている。この
ことから、(100)面結晶基板に<011>方向また
は〈O工1〉方向等にパターンを作成し、選択性のエツ
チング液でエツチングを行うと、第3図または第4図の
ような所謂順メサ型あるいは逆メサ型と呼ばれるメサエ
ッチング溝20.21が形成されて、断面形状が順メサ
構造あるいは逆メサ構造の素子が出来上がる。
First, we will explain the principle. Since compound semiconductors having a zincblende crystal structure such as I[-Vl, IV group, etc., have polarity in the <111> direction, (111) Δ plane and (11
1) The t and i etching speeds are different for the eight surfaces. From this, if a pattern is created in the <011> direction or <01> direction on a (100) plane crystal substrate and etched with a selective etching solution, it will produce a pattern as shown in Fig. 3 or 4. Mesa etching grooves 20 and 21, which are so-called forward mesa type or reverse mesa type, are formed, and an element having a cross-sectional shape of a forward mesa structure or a reverse mesa structure is completed.

このとき、メサの傾斜側面22は(111)面となるた
め、(100)面である素子表面23となす角αL!約
55°となる。
At this time, since the inclined side surface 22 of the mesa becomes a (111) plane, it forms an angle αL! with the element surface 23, which is a (100) plane! The angle will be approximately 55°.

上述した逆メサ構造を有する発光ダイオードの断面構造
を第5図に示す。中央の仮想発光点から発した光△は直
進して外部に放出されるのに対し、上面24に対し臨界
角以上の角度で斜めに突き当った光Bは、全反射して傾
斜側面である逆メサ面25に当る。このときの角度が臨
界角以下であれば、光は結晶外部に発光として取り出さ
れる。
FIG. 5 shows a cross-sectional structure of the light emitting diode having the above-mentioned inverted mesa structure. The light △ emitted from the central virtual light emitting point goes straight and is emitted to the outside, whereas the light B that impinges obliquely on the upper surface 24 at an angle greater than the critical angle is totally reflected and is emitted from the inclined side surface. It hits the reverse mesa surface 25. If the angle at this time is less than the critical angle, the light is extracted outside the crystal as luminescence.

また、中央の発光点から直接逆メサ面に向かう光Cは、
逆メサ面25に立てた垂線に対し臨界角以上になるため
全反射し、結晶の上面24に突き当たる。この光の角度
が臨界角以下であれば結晶を通して外部に発光出力され
る。
In addition, the light C that goes directly from the central light emitting point to the reverse mesa surface is
Since the angle is greater than the critical angle with respect to the perpendicular to the inverted mesa surface 25, it is totally reflected and hits the upper surface 24 of the crystal. If the angle of this light is less than the critical angle, it is emitted to the outside through the crystal.

ここで、上面となる(100)面と逆メ畳す而となる(
111)而とのなす角は、既述したように約55°であ
るため、逆メサ構造の底部に位置でる部分から発生した
光のうらほとlνどは外部に取り出されることになり、
発光効率は従来の順メサ構造あるいはプレーナ構造のも
のに比しC著しく良くなることがわかる。
Here, we will fold it inversely with the (100) surface which will be the upper surface (
111) As mentioned above, the angle formed with
It can be seen that the luminous efficiency is significantly improved compared to the conventional mesa structure or planar structure.

次に、具体的な説明を第1Δ図〜第2図に沿って説明す
る。
Next, a specific explanation will be given along with FIGS. 1A to 2.

第1Δ図及び第1B図に示づ如く、P型G a 八s 
73板3o上にP −Gao、7八2゜、、AS層31
 、 n −Ga6.(、t&0.t4As層32を液
相1ビタキシヤル法により成長させる。成長後、所定の
パターンにメ(ブエッチングして、第1A図の左右側面
が順メサ面33となり、これと直交する1 B−1B矢
視断面の両側面が逆メサ面34となるメサ構造の光取出
し部35を形成する。この場合、順メサ面よりも逆メサ
面の方が長くなるように光取出し部のパターンを形成す
ると光取出し率が一層向上する。
As shown in Figure 1Δ and Figure 1B, P type Ga 8s
P-Gao, 782°, AS layer 31 on 73 plate 3o
, n-Ga6. (, t&0.t4As layer 32 is grown by liquid phase 1 bitaxial method. After growth, it is mesa-etched into a predetermined pattern, and the left and right side surfaces in FIG. 1A become normal mesa surfaces 33, and the 1 B A light extraction portion 35 having a mesa structure is formed in which both sides of the cross section as viewed from the arrow −1B are reverse mesa surfaces 34. In this case, the pattern of the light extraction portion is such that the reverse mesa surface is longer than the forward mesa surface. When formed, the light extraction rate is further improved.

エツチング後、PSG (リン添加ガラス)膜36によ
って結晶表面を覆い、光取出し部表面中央にn電極37
を設けるための窓部をフッ酸系エッチャントで形成づる
。しかる後に、順メサ構造の下部から順メサ面33に沿
って上面の窓部に達すZr AU −Ge/ Ni/^
Uの金m IFJ配線38をPSGI36」−に蒸着し
て、この配線の一端にn電極37を、他端に配線幅より
も大きな配線用バッド39を形成する。金属膜配線38
はなだらかな順メサ面に沿って均一厚に蒸着されるから
1.viる膜の段切れ等のトラブルが生じない。一方、
裏面にも同様にAu−Zn/Ni/Auの電極40を全
面蒸着してこれをP電極とする。
After etching, the crystal surface is covered with a PSG (phosphorus-added glass) film 36, and an n-electrode 37 is placed in the center of the light extraction part surface.
A window section for providing a window is formed using a hydrofluoric acid etchant. After that, ZrAU-Ge/Ni/^ from the lower part of the forward mesa structure reaches the window on the upper surface along the forward mesa surface 33.
A gold m IFJ wiring 38 of U is vapor-deposited on the PSGI 36''-, and an n-electrode 37 is formed at one end of this wiring, and a wiring pad 39 larger than the wiring width is formed at the other end. Metal film wiring 38
1. It is deposited to a uniform thickness along the gentle mesa surface. Problems such as breakage of the viru membrane do not occur. on the other hand,
Similarly, an Au-Zn/Ni/Au electrode 40 is deposited on the entire surface of the back surface to serve as a P electrode.

このように形成したチップを第2図に示す如く、ステム
41に組み込みエポキシ樹脂によりコーティング42を
行いドーム状にするとともに、ステム足43を配線用パ
ッド39に直接融着して発光ダイオードを椙成する。ス
テム足43とチップとの、接続は金属線によらないlj
め、断線等すなく (i頼性の高い電極配線が可能とな
る。また、光取出し部が逆メサ構造を有しており、かつ
充放出面をドーム状に加工したから、光取出し率が一層
向上し、高い発光効率を得ることができる。
As shown in FIG. 2, the chip thus formed is assembled into a stem 41 and coated with epoxy resin to form a dome shape, and the stem foot 43 is directly fused to the wiring pad 39 to form a light emitting diode. do. The connection between the stem leg 43 and the chip is not made by metal wire.
(i) Highly reliable electrode wiring is possible without any disconnections. Also, since the light extraction part has an inverted mesa structure and the charge/emission surface is shaped into a dome, the light extraction rate is improved. It is possible to further improve the luminous efficiency and obtain high luminous efficiency.

なお、上記実施例では発光ダイオード祠料としてGaA
fL八s、 へaPについて述べたが、エツチングによ
り逆メサ構造が得られるものであればいずれの材料でも
よい。
In the above embodiment, GaA was used as the abrasive material for the light emitting diode.
Although aP has been described above, any material may be used as long as an inverted mesa structure can be obtained by etching.

また、エピタキシャル成長法は液相成長法の場合につい
て述べlζが、液相成長法に限らず気相成長法、有機金
属膜成長法(MOCVD)による成長法あるいは拡散成
長法であってもよく、これらの成長法ににり形成したP
−N接合層をエツチングしてメサ構造を形成する場合に
t)適用できる。
In addition, the epitaxial growth method is a liquid phase growth method, and lζ is not limited to the liquid phase growth method, but may also be a growth method using a vapor phase growth method, a metal organic film deposition method (MOCVD), or a diffusion growth method. P formed using the growth method of
t) Applicable when etching a -N junction layer to form a mesa structure.

[発明の効果] 以上要するに本発明にJ:れば次のような優れた効果を
発揮する、。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1)  結晶の屈折率による全反射を逆に利用し、光
を外部に取り出しやすい逆メサ構造を一側に設けたこと
により、全周が順メサ構造やプレーナモノリシック構造
をした従来のものと異なり、光取出し率を高め発光効率
を可及的に向上させることができる。また結晶内部へ吸
収される光が減少するので、発熱等の損失が低減し、素
子寿命も向上させることができる。
(1) By making use of the total reflection caused by the refractive index of the crystal and providing an inverted mesa structure on one side that makes it easier to extract light to the outside, it is different from conventional structures that have a normal mesa structure or planar monolithic structure around the entire circumference. In contrast, it is possible to increase the light extraction rate and improve the luminous efficiency as much as possible. Furthermore, since the amount of light absorbed into the crystal is reduced, losses such as heat generation are reduced, and the life of the element can be improved.

(2)  素子表面の配線は金属線によらず、金属膜の
蒸着により形成し、しかも順メナ構造を構成づる傾斜側
面に沿うように延設したので、断線や段切れ等のない信
頼性の高い電極配線を行うことができる。特に、同一・
基板上に複数の発光ダイオードを形成して数字表示用素
子として使う場合には、金i膜配線でこれらの発光ダイ
オードを接続すればよいので、配線作業が極めて容易と
なる。
(2) The wiring on the element surface is formed by vapor deposition of a metal film instead of using metal wires, and is extended along the sloped side surface of the forward-mena structure, ensuring reliability without disconnections or breaks. High electrode wiring can be performed. In particular, the same
When a plurality of light emitting diodes are formed on a substrate and used as a numeral display element, it is sufficient to connect these light emitting diodes with gold i-film wiring, making the wiring work extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の発光ダイオードの一実施例を示す断
面見取図、第1B図は第1A図の18−IB線断面図、
第2図は第1A図の発光ダイオードをステムに装着し・
た単ダイオード構造の断面図、第3図はメサエッチング
により得られる順メサ構造の断面図、第4図はメサエッ
チングにより得られる逆メサ構造の断面図、第5図は逆
メサ構造の発光ダイオードからの発光の様子を示す断面
図、第6図は従来のプレーナモノリシック型発光ダイオ
ード例を示す横断面図、第7図は従来のハイブリット型
発光ダイオード例を示づ横断面図、第8図は順メサ構造
の発光ダイオードからの発光の様子を示寸断面図ひある
。 図中、2つは上面、30は基板、33は順メザ面(傾斜
側面)、34は逆メサ面、35は光取出し部、37は電
極部、38は全屈膜配線である。
FIG. 1A is a cross-sectional diagram showing an embodiment of the light emitting diode of the present invention, FIG. 1B is a cross-sectional diagram taken along line 18-IB in FIG. 1A,
Figure 2 shows the light emitting diode shown in Figure 1A attached to the stem.
Figure 3 is a cross-sectional view of a forward mesa structure obtained by mesa etching, Figure 4 is a cross-sectional view of an inverted mesa structure obtained by mesa etching, and Figure 5 is a light emitting diode with an inverted mesa structure. 6 is a cross-sectional view showing an example of a conventional planar monolithic light emitting diode, FIG. 7 is a cross-sectional view showing an example of a conventional hybrid light emitting diode, and FIG. There is a sectional view showing the state of light emission from a light emitting diode with a regular mesa structure. In the figure, 2 are the upper surface, 30 is the substrate, 33 is the forward mesa surface (slanted side surface), 34 is the reverse mesa surface, 35 is the light extraction part, 37 is the electrode part, and 38 is the full-reflection film wiring.

Claims (1)

【特許請求の範囲】[Claims] メサエッチングにより一側断面形状を逆メサ構造となし
、一側と直交する他側断面形状を順メサ構造となした光
取出し部を基板上に形成し、前記光取出し部の上面に設
けた電極部に順メサ構造を構成する傾斜側面に沿つて金
属膜配線が延設されていることを特徴とする発光ダイオ
ード。
A light extraction part is formed on the substrate by mesa etching, with a cross-sectional shape on one side having an inverted mesa structure and a cross-sectional shape on the other side perpendicular to the one side having a forward mesa structure, and an electrode provided on the top surface of the light extraction part. 1. A light emitting diode characterized in that a metal film wiring is extended along a sloped side surface forming a mesa structure in a portion thereof.
JP60167532A 1985-07-31 1985-07-31 Light emitting diode Pending JPS6229183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167532A JPS6229183A (en) 1985-07-31 1985-07-31 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167532A JPS6229183A (en) 1985-07-31 1985-07-31 Light emitting diode

Publications (1)

Publication Number Publication Date
JPS6229183A true JPS6229183A (en) 1987-02-07

Family

ID=15851441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167532A Pending JPS6229183A (en) 1985-07-31 1985-07-31 Light emitting diode

Country Status (1)

Country Link
JP (1) JPS6229183A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361986A (en) * 1976-11-15 1978-06-02 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JPS5553469A (en) * 1978-10-16 1980-04-18 Mitsubishi Electric Corp Light emission diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361986A (en) * 1976-11-15 1978-06-02 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JPS5553469A (en) * 1978-10-16 1980-04-18 Mitsubishi Electric Corp Light emission diode

Similar Documents

Publication Publication Date Title
US20190115511A1 (en) Light Emitting Diode and Fabrication Method Thereof
KR100753710B1 (en) Improved light extraction from a semiconductor light-emitting device via chip shaping
US7829911B2 (en) Light emitting diode
JP3707279B2 (en) Semiconductor light emitting device
TWI383427B (en) Semiconductor-chip for optoelectronics and method for its production
JP2006253298A (en) Semiconductor light emitting element and device therefor
US20050035355A1 (en) Semiconductor light emitting diode and semiconductor light emitting device
CN105957938A (en) AlGaInP-based light emitting diode wafer with high brightness and reversed polarity, and manufacturing method thereof
JP4564234B2 (en) Semiconductor light emitting device
JP2003086838A (en) Light emitting device
JP2001203393A (en) Light-emitting diode
JPS59205774A (en) Semiconductor light-emitting element
JPH0410671A (en) Light-emitting diode
JP3602929B2 (en) Group III nitride semiconductor light emitting device
JPH0497575A (en) Light emitting diode array
JPS6229183A (en) Light emitting diode
CN210379101U (en) Anti-hydrolysis flip LED chip
JP3489395B2 (en) Semiconductor light emitting device
CN209822673U (en) High-voltage LED chip
JPH07263743A (en) Light-emitting diode
JP2011066453A (en) Semiconductor light emitting element, and semiconductor light emitting device
JPH06334218A (en) Led element
JP2874948B2 (en) Method for manufacturing semiconductor light emitting device
CN104681678A (en) LED (light emitting diode) with dual-reflector structure and manufacturing method of LED with dual-reflector structure
CN204441317U (en) A kind of light-emitting diode of double mirror structure