JP2001203393A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JP2001203393A
JP2001203393A JP2000010743A JP2000010743A JP2001203393A JP 2001203393 A JP2001203393 A JP 2001203393A JP 2000010743 A JP2000010743 A JP 2000010743A JP 2000010743 A JP2000010743 A JP 2000010743A JP 2001203393 A JP2001203393 A JP 2001203393A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
emitting diode
element portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000010743A
Other languages
Japanese (ja)
Inventor
Masao Yamaguchi
昌男 山口
Tadashi Murakami
忠史 村上
Tatsukiyo Uchida
達清 内田
Shinji Noguchi
晋治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000010743A priority Critical patent/JP2001203393A/en
Publication of JP2001203393A publication Critical patent/JP2001203393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To suppress loss of optical flux from the inside of a semiconductor of a light-emitting element and to effectively guide the light flux once taken out of the element to the outside of a sealed resin. SOLUTION: The surface of a light-emitting element 1 positioned between the light-emitting element 1 and a sealing layer 2 is coated with a thin-film 3 whose refractive index is higher than that of the sealing layer 2, and the surface of the thin-film 3 is given a ruggedness or a rounded shape. Thus, the difference in refractive index is reduced between a semiconductor forming the light-emitting element 1 whose refractive index is very high and the sealing material of sealing layer 2, discouraging total reflection of the light coming out of the semiconductor. Since the light once coming into the thin-film 3 is hard to be totally reflected again on the surface, the light coming out of the light-emitting element 1 is effectively guided outward, for improved efficiency in taking out of light. Since the thin-film 3 also acts as a reflection preventing film, surface reflection is suppressed as well for improved efficiency in taking out of light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、発光素子部から
光の取出し効率を向上させる封止構造を有する発光ダイ
オードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode having a sealing structure for improving light extraction efficiency from a light emitting element.

【0002】[0002]

【従来の技術】図10は従来の砲弾型発光ダイオードを
示す断面図、図11は従来の面実装チップ部品型発光ダ
イオードを示す断面図である。
2. Description of the Related Art FIG. 10 is a sectional view showing a conventional light emitting diode of a cannonball type, and FIG. 11 is a sectional view showing a conventional light emitting diode of a surface mount chip component type.

【0003】図10,11共に発光素子部50(化合物
半導体発光素子)周囲に透光性樹脂51(エポキシな
ど)で封止されている。発光素子部50はリードフレー
ム52または電気的導電層53に金線54で接続されて
いる。図11において、55はセラミック基板である。
このとき、発光素子部50を形成している半導体の屈折
率は非常に高く3〜5程度である。これに対して封止材
である透光性樹脂51では1.6程度と低く、半導体と
透明樹脂の界面における全反射角度は非常に小さく、そ
れゆえ発光素子部50からの光の取出し効率は悪いもの
となっている。
[0003] In both FIGS. 10 and 11, a light-transmitting resin 51 (epoxy or the like) is sealed around the light-emitting element portion 50 (compound semiconductor light-emitting element). The light emitting element unit 50 is connected to a lead frame 52 or an electrically conductive layer 53 by a gold wire 54. In FIG. 11, reference numeral 55 denotes a ceramic substrate.
At this time, the refractive index of the semiconductor forming the light emitting element unit 50 is very high, about 3 to 5. On the other hand, the translucent resin 51 as a sealing material is as low as about 1.6, and the total reflection angle at the interface between the semiconductor and the transparent resin is very small. Therefore, the light extraction efficiency from the light emitting element unit 50 is low. It is bad.

【0004】また、同じ界面での屈折率差による表面反
射も光の取出し効率低下の要因である。このことは、透
明封止材料と外部空気層との間の界面についても言え
る。特に、図11のように面実装チップ部品型では顕著
である。
[0004] Surface reflection due to a difference in refractive index at the same interface is also a cause of a reduction in light extraction efficiency. This is also true for the interface between the transparent sealing material and the outer air layer. This is particularly remarkable in the surface mount chip component type as shown in FIG.

【0005】このため、発光ダイオードにおいて、光の
取出し効率を改善するには図12,13に示したよう
に、(A)発光素子からの光の取出し効率の改善、
(B)外部空気層への光導出効率の改善、の2つの点の
改善が必要である。
[0005] Therefore, in the light emitting diode, as shown in FIGS. 12 and 13, in order to improve the light extraction efficiency, (A) improvement of the light extraction efficiency from the light emitting element,
(B) improvement of the efficiency of extracting light to the external air layer is required.

【0006】このうち、(A)の改善手法として、特開
平7−38148号、特開平10−65220号があ
る。特開平7−38148号「化合物半導体光素子、発
光ダイオード及び発光ダイオードの製造方法」(出願
人:日立電線株式会社)では、化合物半導体光素子の表
面の少なくとも一部が屈折率2.2〜2.7の反射防止
膜56で覆われているもので、封止樹脂と化合物半導体
光素子の界面に発生する光の反射損失を低減させてい
る。図12において、57は表面電極、58は裏面電
極、59はn型AlGaAsウインド層、60はp型A
lGaAs活性層、61はp型AlGaAsクラッド
層、62はp型GaAs基板である。
[0006] Among them, there are JP-A-7-38148 and JP-A-10-65220 as an improvement method of (A). In Japanese Patent Application Laid-Open No. 7-38148, “Compound semiconductor optical device, light emitting diode, and method for manufacturing light emitting diode” (applicant: Hitachi Cable, Ltd.), at least a part of the surface of the compound semiconductor optical device has a refractive index of 2.2 to 2.2. .7, the reflection loss of light generated at the interface between the sealing resin and the compound semiconductor optical element is reduced. In FIG. 12, 57 is a front electrode, 58 is a back electrode, 59 is an n-type AlGaAs window layer, and 60 is p-type A.
1GaAs active layer, 61 is a p-type AlGaAs cladding layer, 62 is a p-type GaAs substrate.

【0007】また、特開平10−65220号「半導体
発光装置及びその製造方法」(出願人:シャープ株式会
社)では、図13に示すように、化合物半導体発光素子
50を透光性封止材料により封止してなる半導体発光装
置であり、該透光性封止材料による封止構造が2重構造
であり、かつ、該化合物半導体発光素子50の屈折率N
1と、化合物半導体発光素子50に接する第1の透光性
封止材料(透光性高屈折率樹脂)63の屈折率N2と、
さらにその外側を封止する第2の透光性封止材料(透光
性低屈折率樹脂)64の屈折率N3との間に、N1>N
2>N3>1の関係を有し、かつ、第1の透光性封止材
料63の厚さが一様でないことを特徴としており、これ
により化合物半導体発光素子50と封止樹脂界面での反
射率の低減、および全反射の臨界角を広くすることで光
の外部取出し効率を改善している。
Japanese Patent Application Laid-Open No. 10-65220, entitled "Semiconductor Light Emitting Device and Method of Manufacturing the Same" (Applicant: Sharp Corporation), as shown in FIG. This is a semiconductor light emitting device that is sealed, the sealing structure with the light-transmitting sealing material is a double structure, and the compound semiconductor light emitting element 50 has a refractive index N.
1, and the refractive index N2 of the first light-transmitting sealing material (light-transmitting high-refractive-index resin) 63 in contact with the compound semiconductor light-emitting element 50;
Further, between the refractive index N3 of the second light-transmitting sealing material (light-transmitting low-refractive-index resin) 64 for sealing the outside thereof, N1> N
2>N3> 1, and the thickness of the first light-transmitting sealing material 63 is not uniform. By reducing the reflectivity and widening the critical angle of total reflection, the efficiency of extracting light outside is improved.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この先
行例の特開平7−38148号では、反射防止膜の形成
により前面への光取出し効率を改善できるが、全反射に
ついては平行面の薄膜であることから、発光素子の全反
射の臨界角は広がるが、薄膜から封止材料への全反射角
度があるため大きな改善とはならなかった。
However, in Japanese Patent Application Laid-Open No. Hei 7-38148, the efficiency of extracting light to the front surface can be improved by forming an antireflection film, but the total reflection is a thin film having a parallel surface. Thus, although the critical angle of total reflection of the light emitting element is widened, there is no significant improvement due to the total reflection angle from the thin film to the sealing material.

【0009】図14,15は光束取出し原理と問題点を
示す説明図である。65は発光層、66は半導体透過
層、67は高屈折薄膜、68は封止樹脂、C1は封止樹
脂層へ出る光、C2は高屈折薄膜へ出る光、Dは全反射
成分である。図14に示すように、発光素子部を構成し
ている半導体の屈折率は非常に高く、接している物質
(半導体透過層66)の屈折率が低ければ、全反射を起
こす臨界角θ1 も小さく全反射が起こり易い。そのた
め、図15に示すように、より屈折率の高い物質(高屈
折薄膜67)で発光素子部を包むことで、全反射の起こ
る角度を大きくでき、その分外部への光束取出し効率が
向上する。しかし、図15に示されたように、発光素子
表面の形状と平行である薄膜の場合、折角発光素子から
取出された光も高屈折薄膜67と封止樹脂68との臨界
角θ3 で再度内側へ閉じ込められるため、効果としては
表面反射の低減のみとなり、臨界角の増加による効率改
善が行われない。
FIGS. 14 and 15 are explanatory views showing the principle of taking out a light beam and problems. 65 is a light emitting layer, 66 is a semiconductor transmission layer, 67 is a high refractive thin film, 68 is a sealing resin, C1 is light emitted to the sealing resin layer, C2 is light emitted to the high refractive thin film, and D is a total reflection component. As shown in FIG. 14, the semiconductor constituting the light emitting element portion has a very high refractive index. If the refractive index of a material (semiconductor transmission layer 66) in contact with the semiconductor is low, the critical angle θ 1 at which total reflection occurs is also large. Small and easy to cause total reflection. Therefore, as shown in FIG. 15, by wrapping the light-emitting element portion with a substance having a higher refractive index (high-refractive-index thin film 67), the angle at which total reflection occurs can be increased, and the efficiency of extracting light to the outside is improved accordingly. . However, as shown in FIG. 15, in the case of a thin film parallel to the shape of the surface of the light emitting element, the light extracted from the bent light emitting element is again generated at the critical angle θ 3 between the high refractive thin film 67 and the sealing resin 68. Because it is confined inside, only the effect of reducing the surface reflection is obtained, and the efficiency is not improved by increasing the critical angle.

【0010】また、先行例の特開平10−65220号
では、全反射の臨界角を広げ、さらに第1の透光性樹脂
の厚さが一様でないため出射効率は改善されるが、2段
の封止工程をふまねばならず、形状の再現性において問
題が残る。
In Japanese Patent Application Laid-Open No. Hei 10-65220, the critical angle of total reflection is widened, and the emission efficiency is improved because the thickness of the first light-transmitting resin is not uniform. Must be taken into consideration in the sealing step, and a problem remains in the reproducibility of the shape.

【0011】したがって、この発明の目的は、上記のよ
うな従来の問題点を考慮して、発光素子部の半導体内部
からの光束の損失を抑え、および一度素子から取出され
た光束を封止樹脂外部へ有効に導出する発光ダイオード
を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to suppress the loss of a light beam from the inside of a semiconductor in a light emitting element portion and to reduce the light beam once taken out of the element with a sealing resin in consideration of the above conventional problems. An object of the present invention is to provide a light emitting diode which is effectively led to the outside.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
にこの発明の請求項1記載の発光ダイオードは、発光素
子部を透光性物質の封止層で被覆した発光ダイオードに
おいて、前記発光素子部と封止層との間に位置する前記
発光素子部の表面を封止層よりも屈折率の大なる薄膜で
被覆し、この薄膜の表面に凹凸または丸みを帯びた起伏
を形成した。
According to a first aspect of the present invention, there is provided a light emitting diode in which a light emitting element portion is covered with a sealing layer of a light-transmitting substance. The surface of the light emitting element portion located between the portion and the sealing layer was covered with a thin film having a higher refractive index than that of the sealing layer, and the surface of the thin film was formed with irregularities or rounded undulations.

【0013】このように、発光素子部の表面を封止層よ
りも屈折率の大なる薄膜で被覆し、この薄膜の表面に凹
凸または丸みを帯びた起伏を形成したので、発光素子部
を形成している屈折率が非常に大きな半導体と、発光素
子部に接している薄膜の屈折率との差を小さくでき、半
導体内部から外へ出る光について全反射が生じにくくな
る。また、一度薄膜へ入った光は表面の凹凸により、再
度表面での全反射が起こりにくくなっているため、発光
素子部から出てくる光を有効に外部に導くことができ、
光の取出し効率が改善できる。また、薄膜は反射防止膜
としての機能も有しているため表面反射も抑えられより
光の取出し効率が改善される。
As described above, the surface of the light emitting element portion is covered with the thin film having a higher refractive index than the sealing layer, and the surface of the thin film is formed with irregularities or rounded undulations. The difference between the refractive index of the semiconductor having a very large refractive index and the refractive index of the thin film in contact with the light-emitting element portion can be reduced, so that total reflection of light emitted from the inside of the semiconductor to the outside hardly occurs. In addition, since the light once entering the thin film is less likely to be totally reflected on the surface again due to the unevenness of the surface, the light coming out of the light emitting element portion can be effectively guided to the outside,
The light extraction efficiency can be improved. Further, since the thin film also has a function as an anti-reflection film, surface reflection is suppressed and light extraction efficiency is further improved.

【0014】請求項2記載の発光ダイオードは、発光素
子部を透光性物質の封止層で多層に被覆した発光ダイオ
ードにおいて、外側の封止層ほど屈折率が低い材質で形
成した。このように、外側の封止層ほど屈折率が低い材
質で形成したので、外部空気層と封止樹脂の界面での全
反射していた光をより多く外部へ射出できるようにな
る。また、表面反射も抑えられるため光の取出し効率を
改善できる。
According to a second aspect of the present invention, in the light emitting diode in which the light emitting element portion is coated in multiple layers with a sealing layer of a light-transmitting substance, the outer sealing layer is formed of a material having a lower refractive index. As described above, since the outer sealing layer is formed of a material having a lower refractive index, more light totally reflected at the interface between the outer air layer and the sealing resin can be emitted to the outside. Further, since the surface reflection is suppressed, the light extraction efficiency can be improved.

【0015】請求項3記載の発光ダイオードは、発光素
子部を透光性物質の封止層で被覆した発光ダイオードに
おいて、前記封止層は発光素子部から側方に発光した光
線が前方に屈折されるようにした。このように、封止層
は発光素子部から側方に発光した光線が前方に屈折され
るようにしたので、光の取出し効率は改善される。
According to a third aspect of the present invention, in the light emitting diode, the light emitting element portion is covered with a sealing layer made of a light-transmitting substance, wherein the sealing layer refracts light emitted laterally from the light emitting element portion forward. I was doing it. As described above, since the sealing layer is configured to refract light emitted laterally from the light emitting element portion forward, light extraction efficiency is improved.

【0016】請求項4記載の発光ダイオードは、請求項
1,2または3において、封止層表面の射光面が平面ま
たは曲率を有する凹面で形成された。このように、封止
層表面の射光面が平面または曲率を有する凹面のように
平面に近い状態のものにおいて、全反射光の再入射によ
る光束取出し効率が低下する欠点を解消できる。
According to a fourth aspect of the present invention, in the light emitting diode according to the first, second or third aspect, the light emitting surface of the sealing layer is formed as a flat surface or a concave surface having a curvature. As described above, in the case where the light emitting surface of the sealing layer surface is almost flat, such as a flat surface or a concave surface having a curvature, it is possible to eliminate the disadvantage that the light flux extraction efficiency is reduced due to the re-incident of the totally reflected light.

【0017】請求項5記載の発光ダイオードは、請求項
3において、発光素子部から側方へ向かう光を前方へ反
射、射出するために設置された反射面が、傾きの異なる
複数の略円錐面から構成されている。このように、発光
素子部から側方へ向かう光を前方へ反射、射出するため
に設置された反射面が、傾きの異なる複数の略円錐面か
ら構成されているので、有効に外部へ導光できる。
According to a fifth aspect of the present invention, in the light emitting diode according to the third aspect, a plurality of substantially conical surfaces having different inclinations are provided, the reflecting surfaces being provided for reflecting and emitting light directed laterally from the light emitting element section forward. It is composed of As described above, since the reflecting surface provided for reflecting and emitting the light traveling sideways from the light emitting element portion to the front is constituted by a plurality of substantially conical surfaces having different inclinations, the light is effectively guided to the outside. it can.

【0018】請求項6記載の発光ダイオードは、請求項
5において、傾きの異なる反射面交点位置(x,y)
は、全反射により再度発光素子部方向へ戻される光線
と、発光素子部を設けた基板位置から立ち上げられる反
射面との交点である。
According to a sixth aspect of the present invention, in the light emitting diode according to the fifth aspect, the position (x, y) of the intersection of the reflecting surfaces having different inclinations.
Is the intersection of the light ray returned to the light emitting element portion direction again by total reflection and the reflection surface raised from the substrate position where the light emitting element portion is provided.

【0019】このように、傾きの異なる反射面交点位置
(x,y)は、全反射により再度発光素子部方向へ戻さ
れる光線と、発光素子部を設けた基板位置から立ち上げ
られる反射面との交点であるので、反射面交点位置より
基板側の反射面は発光素子部から直接くる光を樹脂層と
外部空気層の臨界角以下になるように傾斜させることで
外部へ光が導かれる。その上の反射面は発光素子部から
射出された光が樹脂層と外部空気層の界面で全反射され
戻るが、その反射光を樹脂層と外部空気層の臨界角以下
になるように傾斜させることで外部へ光が導かれる。こ
のため、全反射光を有効に前方へ出る光にしているため
光の取出し効率が改善されるとともに、配光の制御も行
える。
As described above, the reflection surface intersection point (x, y) having a different inclination is defined by the light ray returned to the light emitting element portion again by total reflection and the reflection surface raised from the substrate position on which the light emitting element portion is provided. The reflection surface on the substrate side from the reflection surface intersection position is directed to the outside by inclining light coming directly from the light emitting element portion so as to be equal to or less than the critical angle between the resin layer and the external air layer. The light reflected from the light emitting element portion is totally reflected back at the interface between the resin layer and the external air layer, and the reflected light is inclined so as to be equal to or less than the critical angle between the resin layer and the external air layer. This leads light to the outside. For this reason, since the total reflection light is effectively emitted forward, the light extraction efficiency is improved and the light distribution can be controlled.

【0020】請求項7記載の発光ダイオードは、請求項
6において、封止樹脂表面形状が曲率を持つ。このよう
に、封止樹脂表面形状が曲率を持つ場合でも、全反射角
度が異なるが同じ考え方で全反射により戻される光線と
基板位置から立ち上げられる反射面との交点を求めて請
求項6と同様の効果が得られる。
According to a seventh aspect of the present invention, in the light emitting diode according to the sixth aspect, the surface shape of the sealing resin has a curvature. In this way, even when the surface shape of the sealing resin has a curvature, the total reflection angle is different, but the intersection between the light beam returned by total reflection and the reflection surface rising from the substrate position is determined based on the same concept. Similar effects can be obtained.

【0021】[0021]

【発明の実施の形態】この発明の第1の実施の形態の発
光ダイオードを図1ないし図3に基づいて説明する。図
1(a)はこの発明の第1の実施の形態の発光素子部の
断面図、(b)はその要部拡大図である。図2(a)は
この発明の第1の実施の形態の砲弾型発光ダイオードの
概略断面図、(b)は第1実施の形態の変形例で面実装
チップ部品型発光ダイオードの概略断面図、図3(a)
は第1の実施の形態の発光素子部に物理蒸着法により成
膜する状態を示す説明図、(b)は成膜した発光素子部
の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A light emitting diode according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a cross-sectional view of a light emitting element according to a first embodiment of the present invention, and FIG. 1B is an enlarged view of a main part thereof. FIG. 2A is a schematic sectional view of a shell type light emitting diode according to the first embodiment of the present invention, and FIG. 2B is a schematic sectional view of a surface mount chip component type light emitting diode according to a modification of the first embodiment. FIG. 3 (a)
FIG. 3 is an explanatory view showing a state in which a film is formed on the light emitting element portion according to the first embodiment by physical vapor deposition, and FIG. 2B is a cross-sectional view of the formed light emitting element portion.

【0022】図2に示すように、この発光ダイオード
は、発光素子部1を透光性物質からなる封止層2で被覆
した構造であり、図10および図11と同様の部材には
同一符号を付す。また、発光素子部1と封止層2との間
に位置する発光素子部1の表面を封止層2よりも屈折率
の大なる薄膜3で被覆し、この薄膜3の表面に凹凸また
は丸みを帯びた起伏を形成した。この場合、図1に示す
ように発光素子部1は発光層4、半導体透過層5を有
し、半導体透過層5上に屈折率が高く絶縁性のある材質
としてTiO2 薄膜(高屈折率薄膜)3を形成、その外
部を封止層であるエポキシ樹脂2により封止した構成で
ある。TiO2 薄膜3の表面形状は丸みを帯びた起伏
(凹凸)を有している。具体的には、屈折率n=2.
3、主波長(黄色LEDの場合)λ=590nm、薄膜
平均厚みλ・n/4=339nm、凹凸の振れ幅λ・n
/16=85nmである。
As shown in FIG. 2, this light-emitting diode has a structure in which a light-emitting element portion 1 is covered with a sealing layer 2 made of a light-transmitting substance, and the same members as those in FIGS. Is attached. Further, the surface of the light emitting element portion 1 located between the light emitting element portion 1 and the sealing layer 2 is covered with a thin film 3 having a larger refractive index than that of the sealing layer 2, and the surface of the thin film 3 is made uneven or round. Undulations were formed. In this case, as shown in FIG. 1, the light emitting element section 1 has a light emitting layer 4 and a semiconductor transmission layer 5, and a TiO 2 thin film (high refractive index thin film) is formed on the semiconductor transmission layer 5 as a material having a high refractive index and an insulating property. 3) is formed, and the outside thereof is sealed with an epoxy resin 2 as a sealing layer. The surface shape of the TiO 2 thin film 3 has a rounded undulation (irregularity). Specifically, the refractive index n = 2.
3. Dominant wavelength (in the case of a yellow LED) λ = 590 nm, average thin film thickness λ · n / 4 = 339 nm, fluctuation width of unevenness λ · n
/ 16 = 85 nm.

【0023】次に高屈折率薄膜の成膜について説明す
る。上記のように発光素子部1の表面に丸みを帯びた起
伏のTiO2 薄膜3を成膜するが、これは物理蒸着法を
用いて行う。このとき、図3に示すように、電子銃6で
材料7をスパッタリングして発光素子部1に蒸着させる
が、特に微量のAr気体を添加することで、ポーラスで
揃った形状となる。
Next, the formation of a high refractive index thin film will be described. As described above, the undulating TiO 2 thin film 3 having a round shape is formed on the surface of the light emitting element portion 1 by using a physical vapor deposition method. At this time, as shown in FIG. 3, the material 7 is sputtered by the electron gun 6 and vapor-deposited on the light emitting element portion 1. In particular, by adding a small amount of Ar gas, the material becomes porous and uniform.

【0024】上記により作成された発光素子部1では、
高屈折物質の薄膜3により表面が覆われていることによ
り、半導体素子からの出射される光の臨界角は広くな
る。このため、出射光束量が増加する。さらに、薄膜3
まで導かれた光は次の封止樹脂であるエポキシ樹脂2と
の界面が丸みを帯びた起伏(凹凸)であるため角度のつ
いた光でも効率良く出射されることになる。また、高屈
折率薄膜3は反射防止膜としての機能も有しているた
め、表面反射の低減によって光の取出しが改善される。
In the light emitting element section 1 prepared as described above,
Since the surface is covered with the thin film 3 of the high refractive material, the critical angle of the light emitted from the semiconductor element is widened. Therefore, the amount of emitted light flux increases. Furthermore, the thin film 3
Since the light guided to this point has a rounded undulation (irregularity) at the interface with the epoxy resin 2 as the next sealing resin, even light having an angle can be efficiently emitted. Further, since the high refractive index thin film 3 also has a function as an anti-reflection film, light extraction is improved by reducing surface reflection.

【0025】この発明の第2の実施の形態の発光ダイオ
ードを図4ないし図6に基づいて説明する。図4(a)
はこの発明の第2の実施の形態の発光ダイオードの断面
図、(b)は第2の実施の形態のモジュール型発光ダイ
オードの斜視図、(c)は第2の実施の形態の変形例の
面実装チップ部品型発光ダイオードの概略断面図、図5
は第2の実施の形態の発光ダイオードで封止樹脂表面を
平面にした場合の断面図、図6は第2の実施の形態にお
いて封止樹脂表面が平面以外の場合を示す断面図であ
る。
A light emitting diode according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 (a)
FIG. 3 is a cross-sectional view of a light emitting diode according to a second embodiment of the present invention, FIG. 4 (b) is a perspective view of a module type light emitting diode of the second embodiment, and FIG. 4 (c) is a modification of the second embodiment. FIG. 5 is a schematic cross-sectional view of a surface mount chip component type light emitting diode.
Is a cross-sectional view of the light emitting diode of the second embodiment when the sealing resin surface is flat, and FIG. 6 is a cross-sectional view of the light emitting diode according to the second embodiment when the sealing resin surface is not flat.

【0026】この発光ダイオードは、発光素子部1を透
光性物質の封止層2で多層に被覆した構造で、外側の封
止層2ほど屈折率が低い材質で形成した。この場合、図
4(b)に示すモジュール型構造においては発光素子部
1が位置する反射枠8の開口にエポキシ樹脂2を充填
し、金型を使わない場合、エポキシ樹脂表面が非常に平
面に違い緩やかな曲率を持った凹面となる。この面に低
屈折率材料(フッ化マグネシウム)9を塗布している。
なお、図4(c)に示す面実装チップ部品型でも同様に
エポキシ樹脂表面に低屈折率材料を形成できる。
This light-emitting diode has a structure in which the light-emitting element portion 1 is covered with a sealing layer 2 of a light-transmitting material in multiple layers, and the outer sealing layer 2 is formed of a material having a lower refractive index. In this case, in the module type structure shown in FIG. 4B, the opening of the reflection frame 8 where the light emitting element 1 is located is filled with the epoxy resin 2, and the epoxy resin surface becomes very flat when the mold is not used. The difference is a concave surface with a gentle curvature. A low refractive index material (magnesium fluoride) 9 is applied to this surface.
It should be noted that a low-refractive-index material can be similarly formed on the surface of the epoxy resin in the surface mount chip component type shown in FIG.

【0027】特にモジュール型構造や面実装チップ部品
型のようにエポキシ樹脂表面の射光面が平面に近い状態
のものにおいては、全反射光の再入射による内部損失が
大きく光束取出し効率が低いのが欠点であった。このた
め、屈折率の低い材質で外側を形成することにより、エ
ポキシ樹脂2に塗布した低屈折率材料9と外部空気層の
界面での屈折率差は少なくなることで、全反射は非常に
少なくなり樹脂2内での内部反射損失がほとんどなくな
る。これにより、発光素子部1より取出された光束を損
失することなく、有効に外部へ導光できる。また、反射
防止膜としての機能も有しているため、表面反射の低減
によっても光の取出しが改善される。
In particular, in the case where the light emitting surface of the epoxy resin surface is almost flat, such as a module type structure or a surface mount chip component type, the internal loss due to the re-incident of the total reflected light is large and the light extraction efficiency is low. It was a drawback. Therefore, by forming the outside with a material having a low refractive index, the difference in the refractive index at the interface between the low-refractive-index material 9 applied to the epoxy resin 2 and the external air layer is reduced, and the total reflection is very small. The internal reflection loss in the resin 2 is almost eliminated. Thereby, the light flux extracted from the light emitting element unit 1 can be effectively guided to the outside without loss. Further, since it also has a function as an antireflection film, light extraction can be improved by reducing surface reflection.

【0028】なお、図5に示すようにエポキシ樹脂2の
表面が平面の場合でも同様に構成できる。エポキシ樹脂
2の表面形状は、緩やかな凹曲面(図6(a))の他、
緩やかな凸曲面(図6(b))でもよい。
It should be noted that the same configuration can be made even when the surface of the epoxy resin 2 is flat as shown in FIG. The surface shape of the epoxy resin 2 has a gentle concave curved surface (FIG. 6A),
A gentle convex curved surface (FIG. 6B) may be used.

【0029】この発明の第3の実施の形態の発光ダイオ
ードを図7ないし図9に基づいて説明する。図7(a)
はこの発明の第3の実施の形態のモジュール型発光ダイ
オードの斜視図、(b)はその反射面の拡大斜視図、図
8は第3の実施の形態の発光ダイオードの反射面の断面
図、図9は第3の実施の形態の作用説明図である。
A light emitting diode according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 7 (a)
Is a perspective view of a module type light emitting diode according to a third embodiment of the present invention, (b) is an enlarged perspective view of a reflection surface thereof, FIG. 8 is a sectional view of a reflection surface of the light emitting diode of the third embodiment, FIG. 9 is an operation explanatory view of the third embodiment.

【0030】この発光ダイオードは、発光素子部1を透
光性物質の封止層2で被覆した構造で、封止層2は発光
素子部1から側方に発光した光線が前方に屈折されるよ
うにした。この場合、図7(b)に示すように、モジュ
ール型において、発光素子部1の置かれている反射枠8
の穴が、発光素子部1から側方へ向かう光を前方へ反
射、射出するために設置された反射面10となり、傾き
が異なる複数の略円錐面から構成されている。図8に示
すように、傾きの異なる反射面交点位置(x,y)は、
全反射により再度発光素子部1方向へ戻される光線と、
発光素子部1を設けた基板位置から立ち上げられる反射
面10との交点であり、概略(数1)で導かれる。ここ
では、発光素子部1を中心座標(0,0)として、反射
面10の立ち上がり始点を(r,0)、この反射面10
の立ち上がり角度をα、全反射角度をθ、封止樹脂屈折
率n、封止樹脂厚さtとした場合の式である。
This light emitting diode has a structure in which a light emitting element portion 1 is covered with a sealing layer 2 made of a transparent material. The sealing layer 2 refracts light emitted from the light emitting element portion 1 to the side. I did it. In this case, as shown in FIG. 7B, in the module type, the reflection frame 8 on which the light emitting element unit 1 is placed is arranged.
Is a reflecting surface 10 provided for reflecting and emitting light traveling sideways from the light emitting element portion 1 forward, and is constituted by a plurality of substantially conical surfaces having different inclinations. As shown in FIG. 8, the reflection surface intersection points (x, y) having different inclinations are:
A light ray returned toward the light emitting element unit 1 again by total reflection;
This is an intersection with the reflection surface 10 that is raised from the position of the substrate on which the light emitting element unit 1 is provided, and is roughly derived (Equation 1). Here, assuming that the light emitting element unit 1 is the center coordinate (0, 0), the rising start point of the reflecting surface 10 is (r, 0).
, The total reflection angle is θ, the sealing resin refractive index n, and the sealing resin thickness t.

【0031】[0031]

【数1】 (Equation 1)

【0032】上記のように構成した発光ダイオードで
は、図9に示すように、1段目の反射面10aは発光素
子部1から直接くる光Aをエポキシ樹脂2と外部空気層
の臨界角以下になるように計算された傾斜を持ち、これ
によりモジュール外へ光Aが導かれる。2段目の反射面
10bは発光素子部1から射出された光Bがエポキシ樹
脂2と外部空気層の界面で全反射され戻されるが、その
再度反射光がくる位置にはエポキシ樹脂2と外部空気層
の臨界角以下になるように計算された傾きの反射面10
bがあり、これによりモジュール外へ光Bが導かれる。
このため、全反射光を有効に前方へ出る光にしているた
め光の取出し効率が改善される。また、反射面方向の設
定により挟角配光も実現可能となり、配光の制御が行え
る。
In the light-emitting diode configured as described above, as shown in FIG. 9, the first-stage reflecting surface 10a makes the light A coming directly from the light-emitting element portion 1 fall below the critical angle between the epoxy resin 2 and the external air layer. The light A is guided out of the module. The light B emitted from the light emitting element 1 is totally reflected back at the interface between the epoxy resin 2 and the external air layer on the second-stage reflecting surface 10b. Reflecting surface 10 having a slope calculated to be less than the critical angle of the air layer
b, which guides light B out of the module.
For this reason, since the total reflection light is effectively emitted forward, the light extraction efficiency is improved. In addition, by setting the direction of the reflection surface, narrow-angle light distribution can be realized, and light distribution can be controlled.

【0033】また、封止樹脂表面形状が曲率を持つ場合
は、全反射角度が異なるが同じ考え方で全反射により戻
される光線と基板位置から立ち上げられる反射面との交
点を求めて構成できる。
When the surface shape of the sealing resin has a curvature, the total reflection angle is different, but the intersection point between the light beam returned by the total reflection and the reflection surface rising from the substrate position can be obtained by the same concept.

【0034】なお、第1〜3の実施の形態の全部または
一部を組み合わせて構成してもよい。
It is to be noted that all or some of the first to third embodiments may be combined.

【0035】[0035]

【発明の効果】この発明の請求項1記載の発光ダイオー
ドによれば、発光素子部の表面を封止層よりも屈折率の
大なる薄膜で被覆し、この薄膜の表面に凹凸または丸み
を帯びた起伏を形成したので、発光素子部を形成してい
る屈折率が非常に大きな半導体と、発光素子部に接して
いる薄膜の屈折率との差を小さくでき、半導体内部から
外へ出る光について全反射が生じにくくなる。また、一
度薄膜へ入った光は表面の凹凸により、再度表面での全
反射が起こりにくくなっているため、発光素子部から出
てくる光を有効に外部に導くことができ、発光素子部か
らの光束取出し効率が向上(全光束の増加)する。ま
た、薄膜は反射防止膜としての機能も有しているため表
面反射も抑えられより光の取出し効率が改善される。
According to the light emitting diode according to the first aspect of the present invention, the surface of the light emitting element is covered with a thin film having a refractive index larger than that of the sealing layer, and the surface of the thin film has irregularities or roundness. Since the undulations are formed, the difference between the semiconductor with a very large refractive index that forms the light emitting element and the refractive index of the thin film in contact with the light emitting element can be reduced. Total reflection hardly occurs. In addition, once the light has entered the thin film, it is difficult for total reflection on the surface to occur again due to the unevenness of the surface, so that light coming out of the light emitting element can be effectively guided to the outside, and Of the light beam is improved (the total light beam is increased). Further, since the thin film also has a function as an anti-reflection film, surface reflection is suppressed and light extraction efficiency is further improved.

【0036】この発明の請求項2記載の発光ダイオード
によれば、外側の封止層ほど屈折率が低い材質で形成し
たので、外部空気層と封止樹脂の界面での全反射してい
た光をより多く外部へ射出できるようになり、光束取出
し効率が向上する。また、表面反射も抑えられるため光
の取出し効率を改善できる。
According to the light emitting diode of the present invention, since the outer sealing layer is formed of a material having a lower refractive index, the light totally reflected at the interface between the external air layer and the sealing resin is formed. Can be emitted to the outside more, and the light beam extraction efficiency is improved. Further, since the surface reflection is suppressed, the light extraction efficiency can be improved.

【0037】この発明の請求項3記載の発光ダイオード
によれば、封止層は発光素子部から側方に発光した光線
が前方に屈折されるようにしたので、光束取出し効率が
向上する。
According to the light emitting diode of the third aspect of the present invention, the sealing layer is configured so that the light emitted laterally from the light emitting element portion is refracted forward, so that the efficiency of extracting a light beam is improved.

【0038】請求項4では、封止層表面の射光面が平面
または曲率を有する凹面のように平面に近い状態のもの
において、全反射光の再入射による光束取出し効率が低
下する欠点を解消できる。
According to the fourth aspect, in the case where the light emitting surface of the sealing layer surface is close to a flat surface such as a flat surface or a concave surface having a curvature, it is possible to eliminate the disadvantage that the efficiency of taking out the light beam due to the re-incident of the totally reflected light is reduced. .

【0039】請求項5では、発光素子部から側方へ向か
う光を前方へ反射、射出するために設置された反射面
が、傾きの異なる複数の略円錐面から構成されているの
で、有効に外部へ導光できる。
According to the fifth aspect, since the reflecting surface provided for reflecting and emitting the light directed sideways from the light emitting element portion forward is constituted by a plurality of substantially conical surfaces having different inclinations, it is effective. Light can be guided to the outside.

【0040】請求項6では、傾きの異なる反射面交点位
置(x,y)は、全反射により再度発光素子部方向へ戻
される光線と、発光素子部を設けた基板位置から立ち上
げられる反射面との交点であるので、反射面交点位置よ
り基板側の反射面は発光素子部から直接くる光を樹脂層
と外部空気層の臨界角以下になるように傾斜させること
で外部へ光が導かれる。その上の反射面は発光素子部か
ら射出された光が樹脂層と外部空気層の界面で全反射さ
れ戻るが、その反射光を樹脂層と外部空気層の臨界角以
下になるように傾斜させることで外部へ光が導かれる。
このため、全反射光を有効に前方へ出る光にしているた
め光束取出し効率が向上するとともに、配光の制御も行
える。
According to the sixth aspect, the reflection surface intersection point (x, y) having a different inclination is defined as a light beam returned toward the light emitting element portion again by total reflection and a reflection surface rising from the substrate position provided with the light emitting element portion. The reflection surface on the substrate side from the reflection surface intersection position is directed to the outside by inclining light coming directly from the light emitting element portion so as to be equal to or less than the critical angle between the resin layer and the external air layer. . The light reflected from the light emitting element portion is totally reflected back at the interface between the resin layer and the external air layer, and the reflected light is inclined so as to be equal to or less than the critical angle between the resin layer and the external air layer. This leads light to the outside.
For this reason, the total reflected light is effectively emitted forward, so that the light beam extraction efficiency is improved and the light distribution can be controlled.

【0041】請求項7では、封止樹脂表面形状が曲率を
持つ場合でも、全反射角度が異なるが同じ考え方で全反
射により戻される光線と基板位置から立ち上げられる反
射面との交点を求めて請求項6と同様の効果が得られ
る。
According to the seventh aspect, even when the surface shape of the sealing resin has a curvature, the intersection between the light beam returned by the total reflection and the reflecting surface rising from the substrate position is determined based on the same concept, although the total reflection angle is different. The same effect as the sixth aspect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの発明の第1の実施の形態の発光素
子部の断面図、(b)はその要部拡大図である。
FIG. 1A is a cross-sectional view of a light emitting element according to a first embodiment of the present invention, and FIG. 1B is an enlarged view of a main part thereof.

【図2】(a)はこの発明の第1の実施の形態の砲弾型
発光ダイオードの概略断面図、(b)は第1実施の形態
の変形例で面実装チップ部品型発光ダイオードの概略断
面図である。
FIG. 2A is a schematic sectional view of a shell type light emitting diode according to a first embodiment of the present invention, and FIG. 2B is a schematic sectional view of a surface mount chip component type light emitting diode according to a modification of the first embodiment; FIG.

【図3】(a)は第1の実施の形態の発光素子部に物理
蒸着法により成膜する状態を示す説明図、(b)は成膜
した発光素子部の断面図である。
FIG. 3A is an explanatory view showing a state in which a film is formed on a light emitting element unit according to the first embodiment by a physical vapor deposition method, and FIG. 3B is a cross-sectional view of the formed light emitting element unit.

【図4】(a)はこの発明の第2の実施の形態の発光ダ
イオードの断面図、(b)は第2の実施の形態のモジュ
ール型発光ダイオードの斜視図、(c)は第2の実施の
形態の変形例の面実装チップ部品型発光ダイオードの概
略断面図である。
FIG. 4A is a sectional view of a light emitting diode according to a second embodiment of the present invention, FIG. 4B is a perspective view of a module type light emitting diode of the second embodiment, and FIG. It is a schematic sectional drawing of the surface mount chip component type light emitting diode of the modification of embodiment.

【図5】第2の実施の形態の発光ダイオードで封止樹脂
表面を平面にした場合の断面図である。
FIG. 5 is a cross-sectional view of a light emitting diode according to a second embodiment when a sealing resin surface is flat.

【図6】第2の実施の形態において封止樹脂表面が平面
以外の場合を示す断面図である。
FIG. 6 is a cross-sectional view showing a case where a sealing resin surface is other than a flat surface in the second embodiment.

【図7】(a)はこの発明の第3の実施の形態のモジュ
ール型発光ダイオードの斜視図、(b)はその反射面の
拡大斜視図である。
FIG. 7A is a perspective view of a module type light emitting diode according to a third embodiment of the present invention, and FIG. 7B is an enlarged perspective view of a reflection surface thereof.

【図8】第3の実施の形態の発光ダイオードの反射面の
断面図である。
FIG. 8 is a sectional view of a reflection surface of a light emitting diode according to a third embodiment.

【図9】第3の実施の形態の作用説明図である。FIG. 9 is an operation explanatory view of the third embodiment.

【図10】従来の砲弾型発光ダイオードを示す断面図で
ある。
FIG. 10 is a cross-sectional view showing a conventional shell-type light emitting diode.

【図11】従来の面実装チップ部品型発光ダイオードを
示す断面図である。
FIG. 11 is a cross-sectional view showing a conventional light emitting diode of the surface mount chip component type.

【図12】従来の発光ダイオードにおいて光の取出し効
率を改善する例を示す断面図である。
FIG. 12 is a cross-sectional view showing an example of improving light extraction efficiency in a conventional light emitting diode.

【図13】従来の発光ダイオードにおいて光の取出し効
率を改善する別の例を示す断面図である。
FIG. 13 is a cross-sectional view showing another example of improving the light extraction efficiency in a conventional light emitting diode.

【図14】従来例の光束取出し原理と問題点を示す説明
図である。
FIG. 14 is an explanatory diagram showing a light-flux extraction principle and a problem in a conventional example.

【図15】別の従来例の光束取出し原理と問題点を示す
説明図である。
FIG. 15 is an explanatory view showing another conventional light beam extraction principle and problems.

【符号の説明】[Explanation of symbols]

1 発光素子部 2 エポキシ樹脂 3 TiO2 薄膜 4 発光層 5 半導体透過層 9 フッ化マグネシウム 10 反射面1 the light emitting element portion 2 epoxy resin 3 TiO 2 thin film 4 emitting layer 5 semiconductor transmission layer 9 of magnesium fluoride 10 reflecting surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 達清 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 野口 晋治 大阪府門真市大字門真1048番地 松下電工 株式会社内 Fターム(参考) 5F041 AA04 AA06 DA07 DA16 DA25 DA26 DA41 DA44 DA57  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Tatsuyoshi Uchida 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. (Reference) 5F041 AA04 AA06 DA07 DA16 DA25 DA26 DA41 DA44 DA57

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 発光素子部を透光性物質の封止層で被覆
した発光ダイオードにおいて、前記発光素子部と封止層
との間に位置する前記発光素子部の表面を封止層よりも
屈折率の大なる薄膜で被覆し、この薄膜の表面に凹凸ま
たは丸みを帯びた起伏を形成したことを特徴とする発光
ダイオード。
In a light-emitting diode in which a light-emitting element portion is covered with a sealing layer of a light-transmitting substance, the surface of the light-emitting element portion located between the light-emitting element portion and the sealing layer has a higher surface than the sealing layer. A light-emitting diode which is covered with a thin film having a large refractive index, and has irregularities or rounded undulations formed on the surface of the thin film.
【請求項2】 発光素子部を透光性物質の封止層で多層
に被覆した発光ダイオードにおいて、外側の封止層ほど
屈折率が低い材質で形成したことを特徴とする発光ダイ
オード。
2. A light-emitting diode in which a light-emitting element portion is covered in multiple layers with a sealing layer of a light-transmitting substance, wherein the outer sealing layer is formed of a material having a lower refractive index.
【請求項3】 発光素子部を透光性物質の封止層で被覆
した発光ダイオードにおいて、前記封止層は発光素子部
から側方に発光した光線が前方に屈折されるようにした
ことを特徴とする発光ダイオード。
3. A light-emitting diode having a light-emitting element portion covered with a sealing layer of a light-transmitting substance, wherein the sealing layer is configured to refract light emitted laterally from the light-emitting element portion forward. Characteristic light emitting diode.
【請求項4】 封止層表面の射光面が平面または曲率を
有する凹面で形成された請求項1,2または3記載の発
光ダイオード。
4. The light emitting diode according to claim 1, wherein the light emitting surface of the sealing layer surface is formed as a flat surface or a concave surface having a curvature.
【請求項5】 発光素子部から側方へ向かう光を前方へ
反射、射出するために設置された反射面が、傾きの異な
る複数の略円錐面から構成されている請求項3記載の発
光ダイオード。
5. The light-emitting diode according to claim 3, wherein the reflecting surface provided for reflecting and emitting the light traveling sideways from the light-emitting element portion forward comprises a plurality of substantially conical surfaces having different inclinations. .
【請求項6】 傾きの異なる反射面交点位置(x,y)
は、全反射により再度発光素子部方向へ戻される光線
と、発光素子部を設けた基板位置から立ち上げられる反
射面との交点である請求項5記載の発光ダイオード。
6. A position (x, y) of an intersection of reflection surfaces having different inclinations.
6. The light emitting diode according to claim 5, wherein: is an intersection point of a light beam returned toward the light emitting element portion again by total reflection and a reflection surface raised from a position of the substrate on which the light emitting element portion is provided.
【請求項7】 封止樹脂表面形状が曲率を持つ請求項6
記載の発光ダイオード。
7. The sealing resin surface shape has a curvature.
A light-emitting diode as described.
JP2000010743A 2000-01-19 2000-01-19 Light-emitting diode Pending JP2001203393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010743A JP2001203393A (en) 2000-01-19 2000-01-19 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010743A JP2001203393A (en) 2000-01-19 2000-01-19 Light-emitting diode

Publications (1)

Publication Number Publication Date
JP2001203393A true JP2001203393A (en) 2001-07-27

Family

ID=18538729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010743A Pending JP2001203393A (en) 2000-01-19 2000-01-19 Light-emitting diode

Country Status (1)

Country Link
JP (1) JP2001203393A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252082A (en) * 2000-12-21 2002-09-06 Sony Corp Display device and its manufacturing method
JP2004095969A (en) * 2002-09-02 2004-03-25 Stanley Electric Co Ltd Wavelength conversion element
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005209795A (en) * 2004-01-21 2005-08-04 Koito Mfg Co Ltd Light emitting module and lighting tool
JP2005244152A (en) * 2004-01-29 2005-09-08 Kyocera Corp Substrate for mounting light emitting element and light emitting device
JP2005251875A (en) * 2004-03-02 2005-09-15 Toshiba Corp Semiconductor light emitting device
WO2005106973A1 (en) * 2004-04-27 2005-11-10 Kyocera Corporation Wiring board for light emitting element
JP2006165101A (en) * 2004-12-03 2006-06-22 Harison Toshiba Lighting Corp Envelope for light-emitting device
KR100690366B1 (en) 2005-08-26 2007-03-09 서울옵토디바이스주식회사 Light emitting diode havigng a roughened surface for light extraction and method of fabricating the same
JP2007220972A (en) * 2006-02-17 2007-08-30 Showa Denko Kk Semiconductor light-emitting element, manufacturing method thereof, and lamp
US7388232B2 (en) 2003-10-31 2008-06-17 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
JP2009146924A (en) * 2007-12-11 2009-07-02 Sumitomo Osaka Cement Co Ltd Light-emitting device and electronic apparatus
CN101872829A (en) * 2010-06-21 2010-10-27 深圳雷曼光电科技股份有限公司 White light LED (Light Emitting Diode) with high luminous efficiency and encapsulation method thereof
CN102244176A (en) * 2011-05-09 2011-11-16 宜兴环特光电科技有限公司 Light emergency interface of LED (light emitting diode) chip and preparation method thereof
KR101134766B1 (en) * 2004-06-25 2012-04-13 엘지이노텍 주식회사 Semiconductor emitting device and method for manufacturing the same
CN102832297A (en) * 2011-06-17 2012-12-19 比亚迪股份有限公司 Preparation methods of semiconductor light emitting device and current diffusion layer
WO2014002628A1 (en) * 2012-06-29 2014-01-03 シャープ株式会社 Light-emitting device, illumination device and backlight for display device
JP2019004162A (en) * 2014-01-29 2019-01-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Shallow bottom reflector cup for phosphor conversion led filled with sealing substance

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252082A (en) * 2000-12-21 2002-09-06 Sony Corp Display device and its manufacturing method
JP2004095969A (en) * 2002-09-02 2004-03-25 Stanley Electric Co Ltd Wavelength conversion element
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
US7388232B2 (en) 2003-10-31 2008-06-17 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
JP2005209795A (en) * 2004-01-21 2005-08-04 Koito Mfg Co Ltd Light emitting module and lighting tool
JP4530739B2 (en) * 2004-01-29 2010-08-25 京セラ株式会社 Light emitting element mounting substrate and light emitting device
JP2005244152A (en) * 2004-01-29 2005-09-08 Kyocera Corp Substrate for mounting light emitting element and light emitting device
JP2005251875A (en) * 2004-03-02 2005-09-15 Toshiba Corp Semiconductor light emitting device
WO2005106973A1 (en) * 2004-04-27 2005-11-10 Kyocera Corporation Wiring board for light emitting element
US8314346B2 (en) 2004-04-27 2012-11-20 Kyocera Corporation Wiring board for light-emitting element
KR101134766B1 (en) * 2004-06-25 2012-04-13 엘지이노텍 주식회사 Semiconductor emitting device and method for manufacturing the same
JP2006165101A (en) * 2004-12-03 2006-06-22 Harison Toshiba Lighting Corp Envelope for light-emitting device
KR100690366B1 (en) 2005-08-26 2007-03-09 서울옵토디바이스주식회사 Light emitting diode havigng a roughened surface for light extraction and method of fabricating the same
JP2007220972A (en) * 2006-02-17 2007-08-30 Showa Denko Kk Semiconductor light-emitting element, manufacturing method thereof, and lamp
JP2009146924A (en) * 2007-12-11 2009-07-02 Sumitomo Osaka Cement Co Ltd Light-emitting device and electronic apparatus
CN101872829A (en) * 2010-06-21 2010-10-27 深圳雷曼光电科技股份有限公司 White light LED (Light Emitting Diode) with high luminous efficiency and encapsulation method thereof
CN102244176A (en) * 2011-05-09 2011-11-16 宜兴环特光电科技有限公司 Light emergency interface of LED (light emitting diode) chip and preparation method thereof
CN102832297A (en) * 2011-06-17 2012-12-19 比亚迪股份有限公司 Preparation methods of semiconductor light emitting device and current diffusion layer
EP2721651A1 (en) * 2011-06-17 2014-04-23 Shenzhen BYD Auto R&D Company Limited Method for forming current diffusion layer in semiconductor light emitting device and method for fabricating semiconductor light emitting device
EP2721651A4 (en) * 2011-06-17 2014-11-12 Shenzhen Byd Auto R & D Co Ltd Method for forming current diffusion layer in semiconductor light emitting device and method for fabricating semiconductor light emitting device
US9401457B2 (en) 2011-06-17 2016-07-26 Byd Company Limited Method for forming current diffusion layer in light emitting diode device and method for fabricating the same
WO2014002628A1 (en) * 2012-06-29 2014-01-03 シャープ株式会社 Light-emitting device, illumination device and backlight for display device
JP2014011359A (en) * 2012-06-29 2014-01-20 Sharp Corp Light-emitting device, lighting apparatus and backlight for display apparatus
CN104380489A (en) * 2012-06-29 2015-02-25 夏普株式会社 Light-emitting device, illumination device and backlight for display device
TWI499095B (en) * 2012-06-29 2015-09-01 Sharp Kk A light emitting device, a lighting device, and a display device
CN104380489B (en) * 2012-06-29 2017-03-15 夏普株式会社 Light-emitting device, lighting device and display device backlight
US9680076B2 (en) 2012-06-29 2017-06-13 Sharp Kabushiki Kaisha Light-emitting device, illumination device and backlight for display device
JP2019004162A (en) * 2014-01-29 2019-01-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Shallow bottom reflector cup for phosphor conversion led filled with sealing substance

Similar Documents

Publication Publication Date Title
JP2001203393A (en) Light-emitting diode
JP3312049B2 (en) Semiconductor light emitting device
JP4123830B2 (en) LED chip
KR101211864B1 (en) Light-emitting devices having an antireflective layer that has a graded index of refraction and methods of forming the same
US5793062A (en) Transparent substrate light emitting diodes with directed light output
US6015719A (en) Transparent substrate light emitting diodes with directed light output
JP3439063B2 (en) Semiconductor light emitting device and light emitting lamp
US6369506B1 (en) Light emitting apparatus and method for mounting light emitting device
JP4449113B2 (en) 2D display device
JP3540605B2 (en) Light emitting element
US20070018184A1 (en) Light emitting diodes with high light extraction and high reflectivity
KR20200045861A (en) Flip chip type light emitting diode chip
WO2012040979A1 (en) Light emitting device and manufacturing method thereof
US6858881B2 (en) Radiation-emitting semiconductor chip, and method for producing the semiconductor chip
US20030010989A1 (en) Light-emitting diode array
JP5187525B2 (en) Light emitting device
US20100289047A1 (en) Light Emitting Element and Illumination Device
JP2003179255A (en) Method of selectively providing quantum well in flip chip light emitting diode for improving light extraction
JP3260358B2 (en) Semiconductor light emitting device
JPS59205774A (en) Semiconductor light-emitting element
JP2009267119A (en) Light-emitting device
JPH01179374A (en) Junction semiconductor light emitting element
US20040144986A1 (en) Light emitting diode having anti-reflection layer and method of making the same
JPS6391998A (en) El light emission array
US20210091276A1 (en) Light-emitting diode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060209

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060303