JPH01179374A - Junction semiconductor light emitting element - Google Patents

Junction semiconductor light emitting element

Info

Publication number
JPH01179374A
JPH01179374A JP63000556A JP55688A JPH01179374A JP H01179374 A JPH01179374 A JP H01179374A JP 63000556 A JP63000556 A JP 63000556A JP 55688 A JP55688 A JP 55688A JP H01179374 A JPH01179374 A JP H01179374A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000556A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tadatomo
一行 只友
Koichi Taniguchi
浩一 谷口
Akira Ito
晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Japan Science and Technology Agency
Original Assignee
Mitsubishi Cable Industries Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Research Development Corp of Japan filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63000556A priority Critical patent/JPH01179374A/en
Publication of JPH01179374A publication Critical patent/JPH01179374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To manufacture a light emitting element easily and not only attain high intensity but also improve heat radiation properties, by providing an insulation layer at one side of a semiconductor substrate and forming a groove at least at its layer so that the semiconductor substrate can be exposed, thereby forming semiconductor layers including active layers on the insulation layer respectively in such a way that each groove is coated. CONSTITUTION:An insulating layer is provided by a masking agent on an n-type GaAs substrate B and the insulation layer 1 is equipped with 12 places of circular grooves 7 which expose the substrate B at equal intervals one another. This element allows an n-type AlGaAs clad layer 2, an n-type AlGaAs active layer 3, and a p-type AlGaAs layer 4 to perform an epitaxial growth in order so as to coat each groove 7. Thus, semiconductor layers P having a multilayer structure consisting of double-hetero junction are formed respectively on the insulation layer 1. Then, an electrode E1 as one of electrode materials at a p-side is arranged at the surface of the clad layer 4 with the exception of a top part and also the electrode E2 as one of the electrode materials at an n-side is arranged at the lower face of the substrate B by means of vacuum vaporization and the like. Thus, a semiconductor light emitting element is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、発光ダイオードや半導体レーザとして使用し
得る新規な面発光型の半導体発光素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel surface-emitting type semiconductor light emitting device that can be used as a light emitting diode or a semiconductor laser.

〔従来の技術〕[Conventional technology]

発光ダイオード(LED)において、特に通信用LED
は表示用LEDと高輝度、高速応答の点で異なり、発光
層が表示用では主にホモ接合であるのに対し、通信用で
はシングルへテロ接合マたはダブルへテロ接合構造が主
に用いられている。
Light emitting diodes (LEDs), especially communication LEDs
LEDs differ from display LEDs in terms of high brightness and high-speed response, and while the light-emitting layer is mainly homojunction for display purposes, single heterojunction or double heterojunction structures are mainly used for communication purposes. It is being

通信用LEDは発光領域からの光の取り出し方により、
面発光型と端面発光型に分類される0面発光型は接合面
に垂直方向に光を取り出す構造で、電流狭窄は光ファイ
バのコア径よりも小面積の活性領域にのみ流す構造で行
い高輝度を得ている。
Communication LEDs vary depending on how light is extracted from the light emitting area.
The surface-emitting type, which is classified into the surface-emitting type and the edge-emitting type, has a structure that extracts light in a direction perpendicular to the bonding surface, and current confinement is performed only in an active region with an area smaller than the core diameter of the optical fiber. Obtaining brightness.

この面発光型のLEDの特徴は、活性領域からの光を自
己吸収損失をほとんど受けずに外部へ取り出せることで
ある。
A feature of this surface-emitting type LED is that light from the active region can be extracted to the outside with almost no self-absorption loss.

端面発光型はエピタキシャル層の接合面に平行方向に光
を取り出す構造で、活性層厚を大きくして単位長当たり
の利得を低下させた以外は半導体レーザの構造と類偵し
、ストライブ構造により電流狭窄を図っている。この端
面発光型のLEDの特徴は、比較的低電流密度で高輝度
が得られ、出射光の正反対側からモニタ光も取り出せる
点である。しかし、内部からの光は吸収係数の大きい活
性領域を伝播して端面に到達するため、自己吸収損失が
大きい、この自己吸収損失を実効的に減少させるため、
活性層に隣接して光ガイド層を設けたLEDもある。
The edge-emitting type has a structure that extracts light in a direction parallel to the junction surface of the epitaxial layer, and has a structure similar to that of a semiconductor laser, except that the active layer thickness is increased to reduce the gain per unit length. Current constriction is being attempted. The features of this edge-emitting type LED are that high brightness can be obtained with a relatively low current density, and that monitor light can also be extracted from the side directly opposite to the emitted light. However, since the light from inside propagates through the active region with a large absorption coefficient and reaches the end facets, the self-absorption loss is large.In order to effectively reduce this self-absorption loss,
Some LEDs have a light guide layer adjacent to the active layer.

一方、半導体レーザ(レーザダイオード、LD)におい
て、LDの型は基本的に電流狭窄通路のみで作り得る利
得導波路型と、作り付は屈折率導波路型、もしくは導波
路側面を完全に埋め込んだ屈折率導波路型に大別できる
。LDの光導波路は活性層と兼ねるものが大半であり、
キイリア注入、閉じ込め機構と光電界分布の閉じ込め導
波機構とをもつダブルへテロ構造が多用されている。ダ
ブルへテロ多層構造は、層に垂直方向のキャリアと光の
閉じ込めのために種々のストライプ形成方法が採られて
いる。
On the other hand, in semiconductor lasers (laser diodes, LDs), the LD type is basically a gain waveguide type that can be made only with a current confinement path, and a refractive index waveguide type that is built in, or a built-in type with a completely buried waveguide side surface. It can be roughly divided into refractive index waveguide types. Most LD optical waveguides also serve as the active layer,
A double heterostructure having a Keyria injection, confinement mechanism, and a confinement waveguide mechanism for optical electric field distribution is often used. In the double-hetero multilayer structure, various stripe formation methods are employed to confine carriers and light in a direction perpendicular to the layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

発光ダイオードや半導体レーザのいずれにしても、活性
領域に対するキャリア注入の効率向上による高輝度化を
図り、発光領域(特に埋め込み型の発光素子の発光領域
)での発熱を効率良く放熱すると共に、活性層の形状を
簡単かつ容易に変えることができるようにし、これらを
実現する構造と相まって素子自体の製作を容易にして大
量生産を可能にする半導体発光素子の出現が待望されて
いるわけである。
In both light-emitting diodes and semiconductor lasers, high brightness is achieved by improving the efficiency of carrier injection into the active region, and the heat generated in the light-emitting region (especially the light-emitting region of embedded light-emitting elements) is efficiently dissipated, and the active region is The emergence of a semiconductor light emitting device that allows the shape of the layers to be changed simply and easily, and in combination with a structure that realizes this, facilitates the fabrication of the device itself and enables mass production, is eagerly awaited.

従って本発明の目的は、半導体レーザや発光ダイオード
などの発光素子として製作が容易であり、活性層の形状
を任意に変えることができ、活性層に対する電流注入効
率を向上させて高輝度化を図ると同時に、特に埋め込み
型の発光素子に比べて放熱性に優れた新規な接合型半導
体発光素子を提供することにある。
Therefore, an object of the present invention is to provide a light-emitting element such as a semiconductor laser or a light-emitting diode that is easy to manufacture, allows the shape of the active layer to be changed arbitrarily, and improves the efficiency of current injection into the active layer to achieve high brightness. At the same time, it is an object of the present invention to provide a novel junction-type semiconductor light-emitting device that has superior heat dissipation properties, especially compared to embedded-type light-emitting devices.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的は、半導体基板の一方側に絶縁層を設け、半導
体基板を露出するように絶縁層に少なくとも1つの溝を
形成し、多溝を覆うように活性層を含む半導体層を絶縁
層上にそれぞれ形成し、半導体層上に上部電極を、及び
半導体基板の他方側に上部電極とは異なる極性の下部電
極を設けたことを特徴とする接合型半導体発光素子によ
り達成される。
The purpose is to provide an insulating layer on one side of a semiconductor substrate, form at least one groove in the insulating layer to expose the semiconductor substrate, and place a semiconductor layer including an active layer on the insulating layer so as to cover the multiple grooves. This is achieved by a junction type semiconductor light emitting device characterized in that an upper electrode is formed on the semiconductor layer, and a lower electrode with a polarity different from that of the upper electrode is provided on the other side of the semiconductor substrate.

本発明の半導体発光素子は、半導体基板上の絶縁層に基
板が露出する少なくとも1つの溝を形成し、この溝を覆
うように活性層を含む半導体層を絶縁層上に形成した構
造であるから、以下の実施例でもその製作工程の一例を
述べであるように製作が大変容易で、構造上活性層の形
状を種々に変化させることが可能で、活性層に電流が効
率良く注入され、加えて特に埋め込み型の発光素子に比
べて放熱に優れているものである。また半導体基板上の
絶縁層に多数の溝を形成し、谷溝に対してそれぞれ半導
体層を形成すれば簡単にアレイ構造の発光素子とするこ
とができ、これを光フアイバ通信に使用する場合、各半
導体層に光ファイバを結合するだけで光ファイバとの二
次元アレイ化が可能となる。
The semiconductor light emitting device of the present invention has a structure in which at least one groove exposing the substrate is formed in an insulating layer on a semiconductor substrate, and a semiconductor layer including an active layer is formed on the insulating layer so as to cover this groove. As shown in the example below, which describes an example of the manufacturing process, it is very easy to manufacture, and the shape of the active layer can be varied in various ways due to its structure. In particular, it has excellent heat dissipation compared to a buried type light emitting element. Furthermore, by forming a large number of grooves in an insulating layer on a semiconductor substrate and forming a semiconductor layer for each groove, a light emitting element with an array structure can be easily obtained.When using this for optical fiber communication, A two-dimensional array with optical fibers can be created by simply coupling optical fibers to each semiconductor layer.

本発明の発光素子に使用する半導体材料には特に制限は
なく、半導体レーザや発光ダイオードに通常使用されて
いる材料であればよく、たとえば■−■族化合物半導体
であるGaAs、 GaP、 AlGaAs、InP 
、 InGaAsP 、 InGaP 、 InAIP
 、 GaAsP 、 GaN 。
The semiconductor material used in the light emitting device of the present invention is not particularly limited, and may be any material commonly used in semiconductor lasers and light emitting diodes, such as GaAs, GaP, AlGaAs, and InP, which are ■-■ group compound semiconductors.
, InGaAsP, InGaP, InAIP
, GaAsP, GaN.

InAsP 、 InAsSbなど、II−Vl族化合
物半導体であるZn5e 、 ZnS 、 ZnO、C
dSe、 CdTeなど、IV−Vl族化合物半導体で
あるPbTe 、 Pb5nTe、 Pb5nSeなど
、さらにrV−IV族化合物半導体であるSiCなどが
あり、それぞれの材料の長所を活かして適用することが
可能である。具体的にその材料の組合せを幾つか列挙す
ると、半導体基板上に設ける絶縁層の材料はSing、
SiNx、 5iOxNy−アモルファス−5i、 A
hOsなどを用い、この絶縁層を形成するための半導体
基板及び絶縁層上に設ける活性層を含む半導体層の材料
としては、 半導体基板の材料二手導体層の材料 ■ GaAs   : Ga、Ir++−xPyA3+
−y、(AlGaAsJylnl−yP −、A1.G
a+−、As■ InP    : Gaxlr+1−
xPyAs+−y \(AIJa+−Jyln+−yA
3 ■ GaSb   : In(PJ3+−JySb+−
y、Ga114n+−NAsySb+−y ■ GaAs+−aPa/GaAs5 GaP   :
(AIxGa+−Jylr++−yP などである。
Zn5e, ZnS, ZnO, C which are II-Vl group compound semiconductors such as InAsP and InAsSb
There are dSe, CdTe, etc., IV-Vl group compound semiconductors such as PbTe, Pb5nTe, Pb5nSe, etc., and rV-IV group compound semiconductors such as SiC, and each material can be applied by taking advantage of its advantages. To specifically list some combinations of materials, the materials of the insulating layer provided on the semiconductor substrate are Sing,
SiNx, 5iOxNy-amorphous-5i, A
The semiconductor substrate for forming this insulating layer and the semiconductor layer including the active layer provided on the insulating layer using hOs etc. are as follows: Material of the semiconductor substrate Material of the second conductor layer ■ GaAs: Ga, Ir++-xPyA3+
-y, (AlGaAsJylnl-yP -, A1.G
a+-, As■ InP: Gaxlr+1-
xPyAs+-y \(AIJa+-Jyln+-yA
3 ■ GaSb: In(PJ3+-JySb+-
y, Ga114n+-NAsySb+-y ■ GaAs+-aPa/GaAs5 GaP:
(AIxGa+-Jylr++-yP, etc.)

〔実施例〕〔Example〕

以下、本発明の接合型半導体発光素子を実施例に基づい
て説明する。
Hereinafter, the junction type semiconductor light emitting device of the present invention will be explained based on Examples.

本発明の半導体発光素子の一実施例を第1図及び第2図
に示す、この発光素子は、n型GaAs基板B上に設け
た絶縁層1においてドーム形状の半導体層Pが12箇所
に設けられた二次元アレイ状のものである。各半導体層
Pは、その断面形状を示す第2図から明らかなように、
絶縁層1には基板Bを露出する円形状溝7が形成され、
溝7を覆うように絶縁層1上にn型AlGaAsクラッ
ド層2 (A1組成比0.4)、n型AlGaAs活性
層3(^l&ll成比0.01)及びp型^lGaAs
クラッド114(A1組成比0.4)が順にエピタキシ
ャル成長され、これら層2.3.4によって半導体層P
を構成している。クラッド層4の頂部以外の表面にはp
側電極E1が、基板Bの下面にはn側電極E2がそれぞ
れ設けられている。
An embodiment of the semiconductor light emitting device of the present invention is shown in FIGS. 1 and 2. In this light emitting device, dome-shaped semiconductor layers P are provided at 12 locations on an insulating layer 1 provided on an n-type GaAs substrate B. It is a two-dimensional array shaped like As is clear from FIG. 2 showing the cross-sectional shape of each semiconductor layer P,
A circular groove 7 exposing the substrate B is formed in the insulating layer 1,
An n-type AlGaAs cladding layer 2 (A1 composition ratio 0.4), an n-type AlGaAs active layer 3 (^l&ll composition ratio 0.01), and a p-type ^lGaAs are formed on the insulating layer 1 so as to cover the groove 7.
A cladding 114 (A1 composition ratio 0.4) is epitaxially grown in order, and these layers 2.3.4 form a semiconductor layer P.
It consists of P is applied to the surface of the cladding layer 4 other than the top.
A side electrode E1 and an n-side electrode E2 are provided on the lower surface of the substrate B, respectively.

本実施例の発光素子は、第3図に示す如く使用に際して
は電極E2側を電極を兼ねるヒートシンク20に取付け
る。一般にヒートシンク20は周知のように、St、 
Cu、 BeO、SiC、ダイヤモンドなどからなり、
取付けには低融点金属(In、 Snなど)またはボン
ディング・ハンダ(Pb−Sn、 Au−5n。
When the light emitting element of this embodiment is used, as shown in FIG. 3, the electrode E2 side is attached to a heat sink 20 which also serves as an electrode. Generally, the heat sink 20 is made of St.
Consists of Cu, BeO, SiC, diamond, etc.
For attachment, use a low melting point metal (In, Sn, etc.) or bonding solder (Pb-Sn, Au-5n.

Au−5iなど)が用いられる。ここで電極E1.82
間に電流を注入した場合、キャリアが活性層3内に効率
良く注入されて閉じ込められ、発光が半導体層Pの頂部
から実質的に基板Bに対して垂直方向に放射される。す
なわち電流は、p側電極Elからクラッド層4を経て活
性層3に注入され、活性領域でのキャリアの再結合によ
る発光に寄与した後、クラッド層2、絶縁層lに形成し
た溝7及び基板Bを経てn側型iE2に流れる。
Au-5i, etc.) are used. Here electrode E1.82
When a current is injected between them, carriers are efficiently injected and confined within the active layer 3, and light is emitted from the top of the semiconductor layer P in a direction substantially perpendicular to the substrate B. That is, the current is injected from the p-side electrode El through the cladding layer 4 into the active layer 3, and after contributing to light emission by carrier recombination in the active region, the current flows through the cladding layer 2, the groove 7 formed in the insulating layer l, and the substrate. It flows through B to the n-side type iE2.

この発光素子では、構造上活性層3に電流が均一かつ効
率良く注入され、発光に関与しない部分には絶縁層lに
よって電流が流れることはない。
In this light emitting device, current is uniformly and efficiently injected into the active layer 3 due to its structure, and the insulating layer 1 prevents current from flowing into portions not involved in light emission.

光フアイバ通信に供するに際しては、光ファイバの直径
と同一径のドーム状に半導体層Pを形成し、かつ光ファ
イバの半導体層Pとの結合端面を半導体層Pに嵌合可能
な形状に仕上げ、さらに光ファイバのコア径とクラッド
層4の電極E1を設けていない頂部とを同じ大きさにす
れば、光ファイバと発光素子を簡単に二次元プレイ状に
結合でき、しかも半導体層Pからの発光が確実に光ファ
イバに伝送される。
When used for optical fiber communication, a semiconductor layer P is formed in a dome shape with the same diameter as the optical fiber, and the end surface of the optical fiber connected to the semiconductor layer P is finished in a shape that can be fitted into the semiconductor layer P. Furthermore, by making the core diameter of the optical fiber and the top part of the cladding layer 4 where the electrode E1 is not provided the same size, the optical fiber and the light emitting element can be easily connected in a two-dimensional play shape, and the light emission from the semiconductor layer P can be is reliably transmitted to the optical fiber.

このような発光素子は、半導体層Pの頂部から基板Bと
垂直方向に光を放射する面発光型であるが、発光ダイオ
ードとして上記実施例では光を半導体層Pの頂部から放
射するためにクラッド層4の頂部には電極E1を設けて
いないが、インジウム、チタン、オキサイドなどからな
る透明電橋であればクラッド層4の全面に設けても構わ
ない。
Such a light emitting element is a surface emitting type that emits light from the top of the semiconductor layer P in a direction perpendicular to the substrate B, but in the above embodiment as a light emitting diode, a cladding is used to emit light from the top of the semiconductor layer P. Although the electrode E1 is not provided on the top of the layer 4, it may be provided over the entire surface of the cladding layer 4 as long as it is a transparent electric bridge made of indium, titanium, oxide, or the like.

或いは光吸収性のGaAs基板を用いずにたとえばAl
GaAs基板を用い、クラッド層4の全面に電極を設け
、溝7の真下に基板B及びi[E2を除去する溝7と連
通ずる貫通孔を形成して、半導体層P側をこれが嵌合す
る大きさの凹部を有し且つ電極を兼ねるヒートシンクに
取付ければ、光を基板Bから実質的に基板Bに対して垂
直方向に放射することができる。
Alternatively, instead of using a light-absorbing GaAs substrate, for example, Al
Using a GaAs substrate, an electrode is provided on the entire surface of the cladding layer 4, and a through hole communicating with the groove 7 for removing the substrate B and i[E2 is formed directly below the groove 7, and the semiconductor layer P side is fitted with this through hole. If it is attached to a heat sink that has a concave portion of the same size and also serves as an electrode, light can be emitted from the substrate B in a direction substantially perpendicular to the substrate B.

次に、第1図に示した構造の半導体発光素子の製造方法
の一例を、n型GaAs基板を用いた場合について第4
図(a)〜(e)を参照しながら説明する。なお基板は
(100)面が望ましいが、((111) A)面など
その他の面でも構わない、また図には代表として1つの
半導体層のみを示しである。
Next, an example of a method for manufacturing a semiconductor light emitting device having the structure shown in FIG.
This will be explained with reference to Figures (a) to (e). Note that the substrate preferably has a (100) plane, but other planes such as a (111) A) plane may be used, and only one semiconductor layer is shown as a representative in the figure.

まず、n型GaAs基板B(第4図(a)参照)上にマ
スキング剤(たとえばSiO2,SiN4などが例示さ
れ、これらは電子ビーム蒸着、スパッタ、CVD法など
によって適用される)で絶縁層1を設け(第4図(b)
参照)、相互に等間隔を置いて基板Bを露出する直径2
〜5戸程度の円形状溝7を絶縁層1に12箇所形成する
(第4図(C)参照)、その後、絶縁1111上におい
て谷溝7を覆うように、液相エピタキシャル成長法(L
PE)、分子線エピタキシャル成長法(MBE)または
有機金属熱分解気相成長法(MOCVD)など(好まし
くはLPE)を用いてn型AlGaAsクラッド層2(
へt!Il成比0.4)、n型^lGaAs活性層3 
(A1組成比0.01)及びρ型AlGaAs層4 (
A1組成比0.4)を順次エビタキシャル成長させてダ
ブルへテロ接合を有する多N構造の半導体層Pを絶縁層
1上にそれぞれ形成する(第4図(d)参照)。そして
、クラッド層4の頂部以外の表面にp側の電極材として
たとえばCr −Au、AuZnからなる電極E1を、
また基板Bの下面にn側の電極材としてたとえばN+−
Au%AuGeからなる電極E2を真空蒸着などの手段
によってそれぞれ設ける(第4図(e)参照)ことによ
り、第1図に示した如き構造の半導体発光素子が製造さ
れる。なお電極Elの形成に際しては、クラッド層4の
全面に設けた後に頂部の不要電極のみを除去するか、ま
たは前述したように透明電極を使用する場合はクラッド
層4の全面に電極を形成してもよい。
First, an insulating layer 1 is formed on an n-type GaAs substrate B (see FIG. 4(a)) with a masking agent (for example, SiO2, SiN4, etc., which can be applied by electron beam evaporation, sputtering, CVD, etc.). (Fig. 4(b))
), diameter 2 exposing the substrates B at equal distances from each other.
Twelve circular grooves 7 of approximately five sizes are formed in the insulating layer 1 (see FIG. 4(C)), and then liquid phase epitaxial growth (L
The n-type AlGaAs cladding layer 2 (
Het! Il composition ratio 0.4), n-type GaAs active layer 3
(A1 composition ratio 0.01) and ρ-type AlGaAs layer 4 (
A1 composition ratio 0.4) is sequentially grown epitaxially to form multi-N structure semiconductor layers P having a double heterojunction on the insulating layer 1 (see FIG. 4(d)). Then, on the surface other than the top of the cladding layer 4, an electrode E1 made of, for example, Cr-Au or AuZn is placed as a p-side electrode material.
Further, as an n-side electrode material on the lower surface of the substrate B, for example, N+-
A semiconductor light emitting device having the structure shown in FIG. 1 is manufactured by providing electrodes E2 made of Au%AuGe by means such as vacuum evaporation (see FIG. 4(e)). When forming the electrode El, either remove only the unnecessary electrode at the top after providing it on the entire surface of the cladding layer 4, or, if a transparent electrode is used as described above, form the electrode on the entire surface of the cladding layer 4. Good too.

実用には得られた発光素子は、第3図の実施例に示すよ
うに、その電極E2をヒートシンク20にボンディング
・ハンダなどで取付け、電極E1をワイヤーボンディン
グすればよい。
In practice, the obtained light emitting element may be attached by attaching its electrode E2 to the heat sink 20 by bonding or soldering, and wire bonding the electrode E1, as shown in the embodiment of FIG.

製造工程からも理解されるように、ダブルへテロ構造の
半導体層を形成した後に電極を付けるだけですむために
、素子の製作が非常に容易である。
As can be understood from the manufacturing process, it is very easy to manufacture the device because it is only necessary to attach the electrodes after forming the double heterostructure semiconductor layer.

加えて、絶縁層の溝上に半導体層を形成するので、基板
の面方位や半導体層の各成長層厚を適宜選定することで
活性層の形状を製造工程で任意に変化させることができ
る。換言すると、本発明の発光素子では、キャリアと光
の閉じ込めのために種々の構造を容易に形成できること
になる。
In addition, since the semiconductor layer is formed on the groove of the insulating layer, the shape of the active layer can be arbitrarily changed in the manufacturing process by appropriately selecting the plane orientation of the substrate and the thickness of each growth layer of the semiconductor layer. In other words, in the light emitting device of the present invention, various structures can be easily formed for confining carriers and light.

第5図は別の実施例の発光素子を示す。この発光素子は
、第2図及び第3図に示したものと外観はほぼ同一であ
るが、用いた半導体材料が異なり、11iB’から光を
放射するものである。その構造は、AlGaAs基板B
’ (AI組成比0.4)上に設けた絶縁層11には基
板B′を露出する円形状溝17が形成され、溝17を覆
うように絶縁7111上にn型AlGaAsクラッド層
12 (AI組成比0.4 ) 、 p型GaAs活性
層13及びp型AlGaAs層14 (AI組成比0.
4)が順にエピタキシャル成長され、基板B°の表面の
うち活性層13の対向部分以外にはn側電極E2が設け
られている。使用に際しては、図に示す如(たとえばA
ul膜15を半導体層P′及び絶縁層11の表面に形成
し、さらにボンディング・ハンダ(Au  Snなど)
16を介して半導体NP°が略嵌合する凹部を有する1
を掻を兼ねたヒートシンク21に半導体層P゛側を取付
ける。この実施例では、発熱部分である活性層13を有
する半導体NP’側をヒートシンク21に取付けである
ため、熱が半導体層P゛からヒートシンク21に直ぐに
伝わり、放熱性に優れている。
FIG. 5 shows a light emitting device according to another embodiment. This light emitting element has almost the same appearance as that shown in FIGS. 2 and 3, but uses a different semiconductor material and emits light from 11 iB'. Its structure is based on the AlGaAs substrate B
' (Al composition ratio 0.4) A circular groove 17 exposing the substrate B' is formed in the insulating layer 11 provided on the insulating layer 11 (Al composition ratio 0.4), and an n-type AlGaAs cladding layer 12 (AI composition ratio 0.4), p-type GaAs active layer 13 and p-type AlGaAs layer 14 (AI composition ratio 0.4).
4) are epitaxially grown in order, and an n-side electrode E2 is provided on the surface of the substrate B° other than the portion facing the active layer 13. When using the
A UL film 15 is formed on the surfaces of the semiconductor layer P' and the insulating layer 11, and bonding solder (Au Sn, etc.) is further applied.
1 having a recess into which the semiconductor NP° is approximately fitted via 16;
The semiconductor layer P' side is attached to a heat sink 21 which also serves as a scratch. In this embodiment, since the semiconductor NP' side having the active layer 13, which is a heat generating portion, is attached to the heat sink 21, heat is immediately transmitted from the semiconductor layer P' to the heat sink 21, resulting in excellent heat dissipation.

本発明は上記実施例に限定されるものではなく、本発明
の目的を逸脱しない限り他の態様であっても構わない、
たとえば絶縁層上に形成する半導体層の形状はドーム状
である必要はなく、矩形状などその他の形状であっても
差し支えない。また、電極E1、E2は実施例に示す大
きさ及び形状に特定されるものではなく、活性層に効率
良く電流が注入され得る限り、任意の大きさ及び形状で
設けることができる。
The present invention is not limited to the above embodiments, and other embodiments may be adopted as long as they do not depart from the purpose of the present invention.
For example, the shape of the semiconductor layer formed on the insulating layer does not have to be dome-shaped, and may be any other shape such as a rectangular shape. Further, the electrodes E1 and E2 are not limited to the size and shape shown in the embodiments, but can be provided in any size and shape as long as current can be efficiently injected into the active layer.

〔発明の効果〕〔Effect of the invention〕

以上より明らかなように、本発明の接合型半導体発光素
子は、半導体基板上の絶縁層に基板を露出する少なくと
も1つの溝を形成し、谷溝を覆うように活性層を含む半
導体層を絶縁層上にそれぞれ形成したことにより、活性
層に対する電流注入効率が向上し、活性領域に効率良く
キャリアが閉じ込められ、特にその製造工程からも明ら
かなように素子の製作が容易であることと相まって大量
生産が可能であり、活性層の形状を比較的簡単に変える
ことができ、しかも通常の埋め込み型の発光素子に比べ
て放熱性に優れている。さらに、多数の溝及び谷溝に対
する半導体層を形成したアレイ構造により、光フアイバ
通信への適用では簡単に光ファイバと二次元アレイ状に
結合でき、実用上非常に有用なものである。
As is clear from the above, in the junction type semiconductor light emitting device of the present invention, at least one groove exposing the substrate is formed in the insulating layer on the semiconductor substrate, and the semiconductor layer including the active layer is insulated so as to cover the valley groove. By forming each layer on the active layer, current injection efficiency into the active layer is improved, carriers are efficiently confined in the active region, and as is clear from the manufacturing process, the device is easy to manufacture, and a large amount of It is easy to produce, the shape of the active layer can be changed relatively easily, and it has superior heat dissipation compared to ordinary embedded light emitting elements. Furthermore, the array structure in which semiconductor layers are formed for a large number of grooves and grooves allows easy coupling with optical fibers in a two-dimensional array when applied to optical fiber communications, making it very useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の接合型半導体発光素子の一実施例の斜
視図、第2図は第1図の発光素子の■−■線における一
部省略断面図、第3図は第1図の発光素子をヒートシン
クに取付けた時の一部省略断面図、第4図(a)〜(e
)は第1図に示した発光素子の製作工程の一例を示す流
れ図、第5図は別の実施例の発光素子をヒートシンクに
取付けた時の−部省略断面図である。 B、B″     :基板 P、P’      :半導体層 1、ll:絶縁層 2〜4.12〜14:エピタキシャル成長層El   
    :p@電極 E2       :n側電極 7.17:溝 20.21:ヒートシンク 8 □1図 第2図
1 is a perspective view of an embodiment of the junction type semiconductor light emitting device of the present invention, FIG. 2 is a partially omitted sectional view of the light emitting device in FIG. Partially omitted cross-sectional views when the light emitting element is attached to the heat sink, Figures 4(a) to (e)
) is a flowchart showing an example of the manufacturing process of the light emitting device shown in FIG. 1, and FIG. 5 is a sectional view with the negative part omitted when the light emitting device of another embodiment is attached to a heat sink. B, B'': Substrate P, P': Semiconductor layer 1, 11: Insulating layer 2-4. 12-14: Epitaxial growth layer El
:p@electrode E2 :n side electrode 7.17: groove 20.21: heat sink 8 □1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の一方側に絶縁層を設け、半導体基板を露
出するように絶縁層に少なくとも1つの溝を形成し、各
溝を覆うように活性層を含む半導体層を絶縁層上にそれ
ぞれ形成し、半導体層上に上部電極を、及び半導体基板
の他方側に上部電極とは異なる極性の下部電極を設けた
ことを特徴とする接合型半導体発光素子。
providing an insulating layer on one side of the semiconductor substrate, forming at least one groove in the insulating layer to expose the semiconductor substrate, forming a semiconductor layer including an active layer on the insulating layer so as to cover each groove; A junction type semiconductor light emitting device characterized in that an upper electrode is provided on a semiconductor layer, and a lower electrode with a polarity different from that of the upper electrode is provided on the other side of the semiconductor substrate.
JP63000556A 1988-01-05 1988-01-05 Junction semiconductor light emitting element Pending JPH01179374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000556A JPH01179374A (en) 1988-01-05 1988-01-05 Junction semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000556A JPH01179374A (en) 1988-01-05 1988-01-05 Junction semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH01179374A true JPH01179374A (en) 1989-07-17

Family

ID=11476997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000556A Pending JPH01179374A (en) 1988-01-05 1988-01-05 Junction semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH01179374A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253649A1 (en) * 2000-10-20 2002-10-30 Josuke Nakata Light-emitting or light-receiving semiconductor device and method for fabricating the same
EP1427027A1 (en) * 2001-08-13 2004-06-09 Josuke Nakata Semiconductor device and method of its manufacture
US7214557B2 (en) 2003-10-24 2007-05-08 Kyosemi Corporation Light receiving or light emitting modular sheet and process for producing the same
US7220997B2 (en) 2002-06-21 2007-05-22 Josuke Nakata Light receiving or light emitting device and itsd production method
US7238966B2 (en) 2002-05-02 2007-07-03 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
US7244998B2 (en) 2001-08-13 2007-07-17 Josuke Nakata Light-emitting or light-receiving semiconductor module and method of its manufacture
US7378757B2 (en) 2003-06-09 2008-05-27 Kyosemi Corporation Power generation system
US7387400B2 (en) 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
US7602035B2 (en) 2001-10-19 2009-10-13 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing same
US7925573B2 (en) 2001-03-07 2011-04-12 The Vanguard Group, Inc. Computer program product for implementing investment company that issues a class of conventional shares and a class of exchange-traded shares in the same fund
CN103178443A (en) * 2013-03-01 2013-06-26 中国科学院长春光学精密机械与物理研究所 Vertical-cavity surface-emitting laser capable of automatically focusing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253649A1 (en) * 2000-10-20 2002-10-30 Josuke Nakata Light-emitting or light-receiving semiconductor device and method for fabricating the same
EP1253649A4 (en) * 2000-10-20 2005-11-16 Josuke Nakata Light-emitting or light-receiving semiconductor device and method for fabricating the same
US8090646B2 (en) 2001-03-07 2012-01-03 The Vanguard Group, Inc. Investment company that issues a class of conventional shares and a class of exchange-traded shares in the same fund
US7925573B2 (en) 2001-03-07 2011-04-12 The Vanguard Group, Inc. Computer program product for implementing investment company that issues a class of conventional shares and a class of exchange-traded shares in the same fund
US7244998B2 (en) 2001-08-13 2007-07-17 Josuke Nakata Light-emitting or light-receiving semiconductor module and method of its manufacture
US7238968B2 (en) 2001-08-13 2007-07-03 Josuke Nakata Semiconductor device and method of making the same
EP1427027A4 (en) * 2001-08-13 2006-12-20 Josuke Nakata Semiconductor device and method of its manufacture
EP1427027A1 (en) * 2001-08-13 2004-06-09 Josuke Nakata Semiconductor device and method of its manufacture
US7602035B2 (en) 2001-10-19 2009-10-13 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing same
US7238966B2 (en) 2002-05-02 2007-07-03 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
US7220997B2 (en) 2002-06-21 2007-05-22 Josuke Nakata Light receiving or light emitting device and itsd production method
US7387400B2 (en) 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
US7378757B2 (en) 2003-06-09 2008-05-27 Kyosemi Corporation Power generation system
US7214557B2 (en) 2003-10-24 2007-05-08 Kyosemi Corporation Light receiving or light emitting modular sheet and process for producing the same
CN103178443A (en) * 2013-03-01 2013-06-26 中国科学院长春光学精密机械与物理研究所 Vertical-cavity surface-emitting laser capable of automatically focusing
CN103178443B (en) * 2013-03-01 2014-10-15 中国科学院长春光学精密机械与物理研究所 Vertical-cavity surface-emitting laser capable of automatically focusing

Similar Documents

Publication Publication Date Title
US6794688B2 (en) Semiconductor light-emitting device and manufacturing method therefor, and LED lamp and LED display
US7714343B2 (en) Light emitting device
KR100469312B1 (en) Semiconductor light emitting element and method of manufacturing the same, and semiconductor device having semiconductor light emitting element
JPH0697703B2 (en) Edge emitting light emitting diode
CA1253948A (en) Asymmetric chip design for leds
JPH01179374A (en) Junction semiconductor light emitting element
JPH0614564B2 (en) Semiconductor light emitting element
JP2824371B2 (en) Light emitting diode
JP2759269B2 (en) Light emitting element
JP2007221175A (en) Semiconductor light emitting element and semiconductor light emitting device
JPS6386580A (en) Light emitting diode
JPH0715033A (en) Semiconductor light emitting device
Dutta et al. High-brightness, AlGaInP-based, visible light-emitting diode for efficient coupling with POF
JP2010161104A (en) Light emitting device and layered light emitting device
JPH01175777A (en) Junction semiconductor light emitting device
KR950002208B1 (en) Laser diode and manufacturing method thereof
JPH0319369A (en) Semiconductor device
JPS63119282A (en) Semiconductor light emitting device structure
JP2759275B2 (en) Light emitting diode and method of manufacturing the same
KR20040098798A (en) Superluminescent diode using active layer of quantum dots structure and method for manufacturing the same
EP0308082A2 (en) Edge emitting light emission diode
JPH04159784A (en) Semiconductor light emitting element and manufacture thereof
JPH01179388A (en) Junction type semiconductor light emitting element
JP2655411B2 (en) Edge-emitting semiconductor light emitting device
JPS5839080A (en) Light emitting diode